JPH09130920A - Vehicle speed controller - Google Patents

Vehicle speed controller

Info

Publication number
JPH09130920A
JPH09130920A JP7282831A JP28283195A JPH09130920A JP H09130920 A JPH09130920 A JP H09130920A JP 7282831 A JP7282831 A JP 7282831A JP 28283195 A JP28283195 A JP 28283195A JP H09130920 A JPH09130920 A JP H09130920A
Authority
JP
Japan
Prior art keywords
wheel
command
drive
driving
vehicle speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7282831A
Other languages
Japanese (ja)
Other versions
JP3320961B2 (en
Inventor
Mikio Saito
幹夫 斉藤
Yoshiaki Ezaki
芳明 江崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP28283195A priority Critical patent/JP3320961B2/en
Publication of JPH09130920A publication Critical patent/JPH09130920A/en
Application granted granted Critical
Publication of JP3320961B2 publication Critical patent/JP3320961B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/10Indicating wheel slip ; Correction of wheel slip
    • B60L3/106Indicating wheel slip ; Correction of wheel slip for maintaining or recovering the adhesion of the drive wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2036Electric differentials, e.g. for supporting steering vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/34Wheel chairs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/46Wheel motors, i.e. motor connected to only one wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/14Acceleration
    • B60L2240/16Acceleration longitudinal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/14Acceleration
    • B60L2240/20Acceleration angular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/32Driving direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/46Drive Train control parameters related to wheels
    • B60L2240/461Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/46Drive Train control parameters related to wheels
    • B60L2240/465Slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/24Driver interactions by lever actuation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the comfortableness from deteriorating even if a vehicle turns abruptly when it is traveling at high speed. SOLUTION: A joy stick input section 71 calculates the back/forth component and left/right component of tilt angle from the tilt angle of a joy stick 11 and a command vehicle speed calculating section 72 calculates command vehicle speeds VL, VR for left and right wheels. A command vehicle speed corrective calculation section 74 calculates the absolute value of speed difference |VL-VR|, determines a deceleration coefficient using the absolute value and then calculates corrected command vehicle speeds VL', VR' for the left and right wheels using the command vehicle speeds VL, VR and the deceleration coefficient.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、左右の駆動輪をそ
れぞれ個別に駆動するようにした車両の車両速度制御装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vehicle speed control device for a vehicle in which left and right drive wheels are individually driven.

【0002】[0002]

【従来の技術】従来、電動車椅子の走行指示装置として
ジョイスティックが使用されることが多い。この走行指
示装置は、前後左右にジョイスティックを傾倒できるよ
うになっており、この傾倒方向に車椅子を走行させると
ともに、傾倒角に応じて走行速度を制御するようになっ
ている。すなわち、ジョイスティックを浅く傾倒すると
緩やかな速度で走行し、深く傾倒させると高速で走行す
るようになっている。また、このジョイスティックの操
作によって、前進、後進や、旋回走行あるいはその場で
の回転が可能になっている。
2. Description of the Related Art Conventionally, a joystick is often used as a traveling instruction device for an electric wheelchair. This travel instruction device is capable of tilting the joystick forward, backward, leftward and rightward, and allows the wheelchair to travel in the tilting direction and controls the traveling speed according to the tilting angle. That is, when the joystick is tilted shallowly, it travels at a slow speed, and when it is tilted deeply, it travels at a high speed. Further, by operating the joystick, it is possible to move forward, reverse, turn, or rotate on the spot.

【0003】電動車椅子は身障者が使用するので、その
最高速度はせいぜい健常者が歩行する程度に抑制されて
いる。そこで、使用者が電動車椅子の運転に慣れてくる
と、ジョイスティックを限界まで傾倒させて最高速度で
走行することが多くなっていた。
Since an electric wheelchair is used by a physically handicapped person, the maximum speed of the electric wheelchair is restricted to the extent that a healthy person can walk at most. Therefore, when the user becomes accustomed to driving an electric wheelchair, the joystick is tilted to the limit and the user often runs at the maximum speed.

【0004】[0004]

【発明が解決しようとする課題】ところが、最高速度で
走行中に、急にジョイスティックを操作して旋回走行を
させると、いかに最高速度が健常者の歩行速度程度であ
るとはいっても、旋回半径が小さいと大きい遠心力が発
生することになり、乗り心地が悪化する虞れがあった。
However, when the joystick is suddenly operated to make a turning movement while the vehicle is traveling at the maximum speed, no matter how the maximum speed is the walking speed of a healthy person, the turning radius is If it is small, a large centrifugal force will be generated, which may deteriorate the riding comfort.

【0005】本発明は、上記問題を解決するもので、高
速で走行中に急に旋回走行をしても乗り心地の悪化を防
止する車両速度制御装置を提供することを目的とする。
The present invention solves the above problems, and an object of the present invention is to provide a vehicle speed control device which prevents deterioration of the riding comfort even when the vehicle suddenly turns while traveling at high speed.

【0006】[0006]

【課題を解決するための手段】本発明は、左の駆動輪を
回転駆動する左駆動手段と右の駆動輪を回転駆動する右
駆動手段とを備えた車両において、上記左右の駆動輪を
同一方向に同一車輪速度で回転駆動させる第1の操作と
上記左右の駆動輪を互いに逆方向にそれぞれ所定の車輪
速度で回転駆動させる第2の操作とがいずれか単独また
は同時に可能であって、上記各操作の操作量に応じて上
記各駆動輪の指令車輪速度を指示する操作手段と、この
指示された各駆動輪の指令車輪速度の差の絶対値の大き
さに応じて上記各指令車輪速度の絶対値を低減する補正
を行う補正手段と、この補正された各指令車輪速度で上
記各駆動輪を回転駆動すべく上記左駆動手段及び右駆動
手段を制御する駆動制御手段とを備えたものである(請
求項1)。
According to the present invention, in a vehicle having left driving means for rotationally driving a left driving wheel and right driving means for rotationally driving a right driving wheel, the left and right driving wheels are the same. The first operation of rotationally driving the wheel at the same wheel speed in the same direction and the second operation of rotationally driving the left and right driving wheels at respective predetermined wheel speeds in the opposite directions can be performed individually or simultaneously, and Operating means for instructing the command wheel speed of each drive wheel according to the operation amount of each operation, and each command wheel speed according to the magnitude of the absolute value of the difference between the command wheel speeds of the instructed drive wheels. And a drive control means for controlling the left drive means and the right drive means to rotationally drive the drive wheels at the corrected command wheel speeds. (Claim 1).

【0007】この構成によれば、第1の操作の操作量及
び第2の操作の操作量に応じて、左右の駆動輪の指令車
輪速度が操作手段によって指示され、この指示された各
駆動輪の指令車輪速度の差の絶対値の大きさに応じて、
各指令車輪速度の絶対値を低減する補正が補正手段によ
って行われる。そして、この補正された各指令車輪速度
で左右の駆動輪を回転駆動すべく左駆動手段及び右駆動
手段が制御される。これによって、操作手段で行われる
操作によって各駆動輪の指令車輪速度の差の絶対値が大
きい、すなわち車両の走行旋回半径が小さいときは、各
指令車輪速度が小さく補正され、車両に発生する遠心力
が低下する。
According to this structure, the command wheel speeds of the left and right drive wheels are instructed by the operating means in accordance with the operation amount of the first operation and the operation amount of the second operation, and each instructed drive wheel is driven. Depending on the magnitude of the absolute value of the command wheel speed difference of
The correction means reduces the absolute value of each commanded wheel speed. Then, the left drive means and the right drive means are controlled to rotationally drive the left and right drive wheels at each of the corrected command wheel speeds. As a result, when the absolute value of the difference between the command wheel speeds of the drive wheels is large due to the operation performed by the operating means, that is, when the vehicle has a small turning radius, the command wheel speeds are corrected to be small and the centrifugal force generated in the vehicle is reduced. The power decreases.

【0008】また、左の駆動輪を回転駆動する左駆動手
段と右の駆動輪を回転駆動する右駆動手段とを備えた車
両において、上記左右の駆動輪を同一方向に同一車輪速
度で回転駆動させる第1の操作と上記左右の駆動輪を互
いに逆方向にそれぞれ所定の車輪速度で回転駆動させる
第2の操作とがいずれか単独または同時に可能であっ
て、上記各操作の操作量に応じて上記各駆動輪の指令車
輪速度を指示する操作手段と、この指示された各駆動輪
の指令車輪速度を用いて上記車両の遠心加速度を算出す
る加速度演算手段と、算出された上記遠心加速度と予め
設定された値とを比較する比較手段と、上記遠心加速度
が上記設定値より大きいときは、上記遠心加速度が上記
設定値に一致するように上記各駆動輪の指令車輪速度を
補正する補正手段と、この補正された各指令車輪速度で
上記各駆動輪を回転駆動すべく上記左駆動手段及び右駆
動手段を制御する駆動制御手段とを備えたものである
(請求項2)。
Further, in a vehicle having a left drive means for rotationally driving the left drive wheel and a right drive means for rotationally driving the right drive wheel, the left and right drive wheels are rotationally driven in the same direction at the same wheel speed. The first operation to perform and the second operation to rotate the left and right drive wheels in opposite directions to each other at predetermined wheel speeds are possible individually or simultaneously, and depending on the operation amount of each operation. Operating means for instructing the command wheel speed of each drive wheel, acceleration calculating means for calculating the centrifugal acceleration of the vehicle using the instructed wheel speed of each drive wheel, the calculated centrifugal acceleration and Comparing means for comparing with a set value, and correcting means for correcting the commanded wheel speed of each drive wheel so that the centrifugal acceleration matches the set value when the centrifugal acceleration is larger than the set value. This corrected the commanded wheel speed is obtained by a drive control means for controlling the left drive unit and right drive unit to drive the rotation of each drive wheel (claim 2).

【0009】この構成によれば、第1の操作の操作量及
び第2の操作の操作量に応じて、左右の駆動輪の指令車
輪速度が操作手段によって指示され、この指示された各
駆動輪の指令車輪速度を用いて車両の遠心加速度が算出
される。そして、算出された遠心加速度が予め設定され
た値より大きいときは、遠心加速度が設定値に一致する
ように各駆動輪の指令車輪速度が補正される。そして、
この補正された各指令車輪速度で左右の駆動輪を回転駆
動すべく左駆動手段及び右駆動手段が制御される。これ
によって、操作手段で行われる操作によって車両の走行
旋回半径が小さいときでも、車両に発生する遠心加速度
が設定値以下に維持されるので、車両の乗り心地の低下
が確実に防止される。
According to this structure, the command wheel speeds of the left and right drive wheels are instructed by the operating means in accordance with the operation amount of the first operation and the operation amount of the second operation, and each of the instructed drive wheels is instructed. The centrifugal acceleration of the vehicle is calculated using the commanded wheel speed of. When the calculated centrifugal acceleration is larger than a preset value, the command wheel speed of each drive wheel is corrected so that the centrifugal acceleration matches the set value. And
The left drive means and the right drive means are controlled to rotationally drive the left and right drive wheels at each of the corrected command wheel speeds. As a result, the centrifugal acceleration generated in the vehicle is maintained below the set value even when the vehicle has a small turning radius due to the operation performed by the operating means, so that the comfort of the vehicle is reliably prevented from being degraded.

【0010】また、上記操作手段は、上記第1の操作の
操作量に比べて上記第2の操作の操作量の重み付けを低
減して上記各指令車輪速度を指示するものである(請求
項3)。
Further, the operation means reduces the weighting of the operation amount of the second operation as compared with the operation amount of the first operation to instruct each of the command wheel speeds (claim 3). ).

【0011】この構成によれば、第1の操作の操作量に
比べて第2の操作の操作量の重み付けを低減して各駆動
輪の指令車輪速度が指示されるので、操作手段で行われ
る操作量に比べて、各駆動輪の指令車輪速度の差の絶対
値が低減される。従って、車両の走行旋回半径が小さく
ならないので、車両に大きい遠心力が発生せず、車両の
乗り心地の低下が更に確実に防止される。
According to this structure, the command wheel speed of each drive wheel is instructed by reducing the weighting of the operation amount of the second operation as compared with the operation amount of the first operation. The absolute value of the difference between the command wheel speeds of the drive wheels is reduced as compared with the operation amount. Therefore, since the traveling turning radius of the vehicle does not become small, a large centrifugal force is not generated in the vehicle, and the reduction in the riding comfort of the vehicle is further reliably prevented.

【0012】また、請求項1〜3のいずれかに記載の車
両速度制御装置において、上記操作手段で指示された上
記各駆動輪の指令車輪速度を用いて車両の走行旋回半径
を算出する半径演算手段を備え、上記補正手段は、上記
走行旋回半径が変化しないように上記各駆動輪の指令車
輪速度を補正するものである(請求項4)。
Further, in the vehicle speed control device according to any one of claims 1 to 3, a radius calculation for calculating a traveling turning radius of the vehicle by using a command wheel speed of each of the drive wheels instructed by the operating means. The correction means corrects the commanded wheel speed of each of the drive wheels so that the traveling turning radius does not change (claim 4).

【0013】この構成によれば、操作手段で行われる操
作による車両の走行旋回半径が変化しないように各駆動
輪の指令車輪速度が補正されるので、車両の操作性が低
下することなく、車両の乗り心地が低下しない。
According to this structure, the command wheel speeds of the respective drive wheels are corrected so that the vehicle turning radius is not changed by the operation performed by the operating means, so that the operability of the vehicle is not deteriorated and the vehicle operability is reduced. Ride comfort does not deteriorate.

【0014】また、左の駆動輪を回転駆動する左駆動手
段と右の駆動輪を回転駆動する右駆動手段とを備えた車
両において、上記左右の駆動輪を同一方向に同一車輪速
度で回転駆動させる第1の操作と上記左右の駆動輪を互
いに逆方向にそれぞれ所定の車輪速度で回転駆動させる
第2の操作とがいずれか単独または同時に可能であっ
て、上記各操作の操作量に応じて上記各駆動輪の指令車
輪速度を指示する操作手段と、この指示された各駆動輪
の指令車輪速度で上記各駆動輪を回転駆動すべく上記左
駆動手段及び右駆動手段を制御する駆動制御手段とを備
え、上記操作手段は、上記第1の操作の操作量に比べて
上記第2の操作の操作量の重み付けを低減して上記各駆
動輪の指令車輪速度を指示するものである(請求項
5)。
Further, in a vehicle having a left drive means for rotationally driving the left drive wheel and a right drive means for rotationally driving the right drive wheel, the left and right drive wheels are rotationally driven in the same direction at the same wheel speed. The first operation to perform and the second operation to rotate the left and right drive wheels in opposite directions to each other at predetermined wheel speeds are possible individually or simultaneously, and depending on the operation amount of each operation. Operation means for instructing the command wheel speed of each drive wheel, and drive control means for controlling the left drive means and the right drive means so as to rotationally drive each drive wheel at the instructed wheel speed of each drive wheel. The operating means reduces the weighting of the operation amount of the second operation as compared with the operation amount of the first operation and indicates the command wheel speed of each drive wheel (claim). Item 5).

【0015】この構成によれば、第1の操作の操作量及
び第2の操作の操作量に応じて、左右の駆動輪の指令車
輪速度が操作手段によって指示される。そして、この指
示された各指令車輪速度で左右の駆動輪を回転駆動すべ
く左駆動手段及び右駆動手段が制御される。このとき、
第1の操作の操作量に比べて第2の操作の操作量の重み
付けを低減して各駆動輪の指令車輪速度が指示されるの
で、操作手段で行われる操作量に比べて、各駆動輪の指
令車輪速度の差の絶対値が低減される。従って、車両の
走行旋回半径が小さくならないので、車両に大きい遠心
力が発生しない。
According to this structure, the command wheel speeds of the left and right drive wheels are instructed by the operating means in accordance with the operation amount of the first operation and the operation amount of the second operation. Then, the left drive means and the right drive means are controlled to rotationally drive the left and right drive wheels at the instructed wheel speeds. At this time,
Since the command wheel speed of each drive wheel is instructed by reducing the weighting of the operation amount of the second operation as compared with the operation amount of the first operation, each drive wheel is compared with the operation amount performed by the operating means. The absolute value of the difference between the commanded wheel speeds is reduced. Therefore, since the traveling turning radius of the vehicle does not become small, a large centrifugal force is not generated in the vehicle.

【0016】[0016]

【発明の実施の形態】まず、図12を用いて本発明の原
理について説明する。図12は、車両が旋回走行すると
きの駆動輪の速度と旋回半径を説明する模式図である。
First, the principle of the present invention will be described with reference to FIG. FIG. 12 is a schematic diagram for explaining the speed and the turning radius of the drive wheels when the vehicle turns.

【0017】同図中、VLは左の駆動輪の車輪速度(以
下、左輪車速という)、VRは右の駆動輪の車輪速度
(以下、右輪車速という)、VCは車両の速度、RLは左
の駆動輪の旋回半径、RRは右の駆動輪の旋回半径、RC
は車両の走行旋回半径、TREADは車両のトレッドであ
る。なお、図12では車両が右に旋回する状態を示して
いるので、VL>VR、RL>RRである。
In the figure, V L is the wheel speed of the left drive wheel (hereinafter referred to as the left wheel vehicle speed), V R is the wheel speed of the right drive wheel (hereinafter referred to as the right wheel vehicle speed), and V C is the vehicle speed. , R L is the turning radius of the left drive wheel, R R is the turning radius of the right drive wheel, R C
Is the vehicle turning radius and TREAD is the tread of the vehicle. Since the vehicle in FIG. 12 shows a state in which turning to the right, V L> V R, an R L> R R.

【0018】一般に、車両に発生する遠心力は、Generally, the centrifugal force generated in a vehicle is

【0019】[0019]

【数1】遠心力=重量×(走行速度)2/走行旋回半径 で表される。従って、同一速度で走行しても、走行旋回
半径が小さい程、大きい遠心力が発生する。
[Equation 1] Centrifugal force = weight × (traveling speed) 2 / traveling turning radius Therefore, even if the vehicle travels at the same speed, a greater centrifugal force is generated as the traveling turning radius is smaller.

【0020】また、図12より、Further, from FIG.

【0021】[0021]

【数2】TREAD=RL−RR [Equation 2] TREAD = RL- RR

【0022】[0022]

【数3】VL/VR=RL/RR [Formula 3] V L / V R = R L / R R

【0023】[0023]

【数4】RC=RR+TREAD/2[Equation 4] R C = R R + TREAD / 2

【0024】[0024]

【数5】VC=(VL+VR)/2の各式が得られる。## EQU5 ## Each equation of V C = (V L + V R ) / 2 is obtained.

【0025】上記数2と上記数3より、From the above equations 2 and 3,

【0026】[0026]

【数6】 TREAD=RR×VL/VR−RR =RR×(VL−VR)/VR が得られ、この式を変形すると、[6] TREAD = R R × V L / V R -R R = R R × (V L -V R) / V R is obtained by modifying this equation,

【0027】[0027]

【数7】RR=VR×TREAD/(VL−VR) が得られる。この数7を上記数4に代入すると、Equation 7] R R = V R × TREAD / (V L -V R) is obtained. Substituting this Equation 7 into Equation 4 above,

【0028】[0028]

【数8】 RC=RR+TREAD/2 =VR×TREAD/(VL−VR)+TREAD/2 =TREAD×{1/2+VR/(VL−VR)} が得られる。Equation 8] R C = R R + TREAD / 2 = V R × TREAD / (V L -V R) + TREAD / 2 = TREAD × {1/2 + V R / (V L -V R)} is obtained.

【0029】ここで、車両が速度一定で前進走行する場
合、すなわちVCが一定で、VL,VR≧0の場合につい
て考える。
Now, let us consider a case where the vehicle travels forward at a constant speed, that is, when V C is constant and V L and V R ≧ 0.

【0030】上記数8によれば、走行旋回半径RCは、
R/(VL−VR)で決まる。一方、車両の速度VCが一
定であるので、上記数5より(VL+VR)が一定にな
る。よって、左右の駆動輪(以下、左右輪という)の車
速差(VL−VR)が増大するということは、右輪車速V
Rが低下するということを意味するので、VR/(VL
R)が低減する。
According to the above equation 8, the traveling turning radius R C is
Determined by the V R / (V L -V R ). On the other hand, since the vehicle speed V C is constant, (V L + V R ) is constant from Equation 5 above. Therefore, the left and right drive wheels (hereinafter, referred to as the left and right wheels) The fact that the vehicle speed difference (V L -V R) is increased, the right wheel speed V
Since it means that R decreases, V R / (V L
V R) is reduced.

【0031】従って、左右輪の車速差(VL−VR)が大
きいほど、走行旋回半径RCが小さくなるので、上記数
1より車両に発生する遠心力が増大することとなる。な
お、図12の場合と逆に、左に旋回するVR>VLの場合
でも同様になる。
Therefore, the larger the vehicle speed difference ( VL -VR) between the left and right wheels is, the smaller the traveling turning radius RC becomes. Therefore, the centrifugal force generated in the vehicle is increased from the equation ( 1 ). Note that, contrary to the case of FIG. 12, the same applies when V R > V L of turning left.

【0032】そこで、本発明は、車両の上記特性を利用
して、左右輪の車速差の絶対値が大きくなるような指令
が操作手段によりなされたとしても、その指令通りに各
駆動輪を駆動させるのではなく、自動的に各駆動輪の速
度を低下させることによって、操作手段による指令が最
高速度のままで旋回走行させても、乗り心地の悪化を防
止するようにしている。
Therefore, according to the present invention, by utilizing the above characteristics of the vehicle, even if the operating means issues a command to increase the absolute value of the vehicle speed difference between the left and right wheels, the drive wheels are driven according to the command. Instead, the speed of each driving wheel is automatically reduced to prevent the ride quality from deteriorating even when the vehicle is turning while the command from the operating means remains at the maximum speed.

【0033】以下、本発明が適用される電動車椅子の実
施形態について説明する。図1は、同第1実施形態の制
御構成を示すブロック図である。
An embodiment of an electric wheelchair to which the present invention is applied will be described below. FIG. 1 is a block diagram showing the control configuration of the first embodiment.

【0034】この電動車椅子は、操作パネル1と、電源
部2と、モータ3L,3Rと、リレー4L,4Rと、モ
ータ制御部5L,5Rと、コントロールボード6と、C
PU7とを備えている。
This electric wheelchair includes an operation panel 1, a power supply unit 2, motors 3L and 3R, relays 4L and 4R, motor control units 5L and 5R, a control board 6, and C.
And PU7.

【0035】上記操作パネル1は、乗員が操作するため
のジョイスティック11及びメインスイッチ12を備え
ている。このジョイスティック11は、電動車椅子の走
行を操作する操作手段を構成するもので、その基部を支
点として周囲360°方向に向けて傾倒可能になってお
り、傾倒方向によって車両の進行方向を指示し、傾倒の
深さである傾倒角によって車両の速度を指示するように
なっており、その操作量、すなわち傾倒角の前後方向成
分に応じた操作信号及び左右方向成分に応じた操作信号
を出力するように構成されている。
The operation panel 1 has a joystick 11 and a main switch 12 which are operated by an occupant. The joystick 11 constitutes an operating means for operating the running of the electric wheelchair, and can be tilted in a 360 ° direction around the base of the joystick as a fulcrum. The tilting direction indicates the traveling direction of the vehicle. The speed of the vehicle is instructed by the tilt angle, which is the depth of tilt, and the operation amount, that is, the operation signal corresponding to the front-back direction component and the operation signal corresponding to the left-right direction component of the tilt angle are output. Is configured.

【0036】上記メインスイッチ12は、電源部2とコ
ントロールボード6間に介設され、コントロールボード
6への電源供給のオン、オフを操作するものである。上
記電源部2は、蓄電池等からなり、各部に電源を供給す
るものである。
The main switch 12 is provided between the power supply section 2 and the control board 6 and operates to turn on / off the power supply to the control board 6. The power supply unit 2 is composed of a storage battery or the like and supplies power to each unit.

【0037】上記モータ3L、リレー4L及びモータ制
御部5Lは、この電動車椅子の左の駆動輪を駆動する左
駆動手段を構成し、上記モータ3R、リレー4R及びモ
ータ制御部5Rは、右の駆動輪を駆動する右駆動手段を
構成する。
The motor 3L, the relay 4L and the motor control unit 5L constitute a left drive means for driving the left drive wheel of the electric wheelchair, and the motor 3R, the relay 4R and the motor control unit 5R drive the right drive wheel. It constitutes a right driving means for driving the wheels.

【0038】上記モータ3L,3Rは、それぞれこの電
動車椅子の左右輪を回転させるもので、それぞれリレー
4L,4Rを介してモータ制御部5L,5Rに接続され
ている。モータ3L,3Rには、それぞれ、車速センサ
31L,31Rが配設されている。車速センサ31L,
31Rは、パルスエンコーダや光センサ等からなり、モ
ータの回転速度を検出して、その速度に応じたパルス信
号を出力するものである。
The motors 3L and 3R rotate the left and right wheels of the electric wheelchair, and are connected to motor control units 5L and 5R via relays 4L and 4R, respectively. Vehicle speed sensors 31L and 31R are provided in the motors 3L and 3R, respectively. Vehicle speed sensor 31L,
The reference numeral 31R is composed of a pulse encoder, an optical sensor, etc., and detects the rotation speed of the motor and outputs a pulse signal corresponding to the rotation speed.

【0039】上記リレー4L,4Rは、それぞれ、コモ
ン接点41L,41R、オン接点42L,42R及びオ
フ接点43L,43Rを有し、その切り替えはCPU7
によって制御されるようになっている。図1では、各リ
レー4L,4Rはオン状態を示している。
The relays 4L and 4R have common contacts 41L and 41R, ON contacts 42L and 42R, and OFF contacts 43L and 43R, respectively, which are switched by the CPU 7.
Is controlled by the In FIG. 1, each of the relays 4L and 4R is in the ON state.

【0040】上記モータ制御部5L,5Rは、それぞれ
モータ3L,3Rに駆動電流を供給するもので、その供
給電流レベルは、CPU7によって制御されるようにな
っている。
The motor control units 5L and 5R supply drive currents to the motors 3L and 3R, respectively, and the supply current levels thereof are controlled by the CPU 7.

【0041】上記コントロールボード6には、入出力イ
ンタフェース(以下、IFという)61〜64、CPU
7やメモリ8等が配設され、CPU7は、ジョイスティ
ック入力部71、指令車速計算部72、車速計算部7
3、指令車速補正計算部74及びPWM波計算部75を
備えている。上記メモリ8には、制御プログラムや後述
する最高速度Vmax、設定値Gmax等の各種のデータが記
憶されている。
The control board 6 includes input / output interfaces (hereinafter referred to as IFs) 61 to 64, a CPU.
7, a memory 8 and the like are provided, and the CPU 7 has a joystick input unit 71, a command vehicle speed calculation unit 72, and a vehicle speed calculation unit 7
3, a command vehicle speed correction calculation unit 74 and a PWM wave calculation unit 75 are provided. The memory 8 stores a control program and various data such as a maximum speed Vmax and a set value Gmax described later.

【0042】IF61は、上記ジョイスティック11と
ジョイスティック入力部71間に介設され、IF62
は、上記モータ制御部5L,5RとPWM波計算部75
間に介設され、IF63は、上記リレー4L,4Rと指
令車速補正計算部74間に介設され、IF64は、上記
車速センサ31L,31Rと車速計算部73間に介設さ
れており、それぞれ各種信号の入出力処理を行うもので
ある。
The IF 61 is provided between the joystick 11 and the joystick input section 71, and the IF 62
Is the motor controller 5L, 5R and the PWM wave calculator 75
The IF 63 is interposed between the relays 4L and 4R and the command vehicle speed correction calculator 74, and the IF 64 is interposed between the vehicle speed sensors 31L and 31R and the vehicle speed calculator 73. The input / output processing of various signals is performed.

【0043】ジョイスティック入力部71には、IF6
1を介してジョイスティック11の傾倒方向及び傾倒角
に関する信号がA/D変換されて入力される。ジョイス
ティック入力部71は、この入力信号から傾倒角の前後
方向成分及び左右方向成分を算出し、指令車速計算部7
2に出力するものである。なお、これらの値は、ジョイ
スティック11が前方(右方)に傾倒されたときは正、
後方(左方)に傾倒されたときは負にしている。
The joystick input section 71 has an IF6
A signal relating to the tilt direction and tilt angle of the joystick 11 is A / D converted and input via 1. The joystick input unit 71 calculates the front-back direction component and the left-right direction component of the tilt angle from this input signal, and the command vehicle speed calculation unit 7
2 is output. These values are positive when the joystick 11 is tilted forward (to the right),
Negative when tilted backward (to the left).

【0044】上記指令車速計算部72は、ジョイスティ
ック11の傾倒角の前後方向成分及び左右方向成分か
ら、左輪の指令車速VL及び右輪の指令車速VRを仮に算
出し、指令車速補正計算部74に出力するものである。
The command vehicle speed calculation unit 72 tentatively calculates the command vehicle speed V L for the left wheel and the command vehicle speed V R for the right wheel from the front-back direction component and the left-right direction component of the tilt angle of the joystick 11, and the command vehicle speed correction calculation unit. It outputs to 74.

【0045】ここで、図2を用いて、指令車速計算部7
2における左輪車速VL及び右輪車速VRの算出について
説明する。図2は、ジョイスティック11の傾倒方向及
び傾倒角を示す説明図で、Rmaxは傾倒角が最大のとき
のストロークを示す。
Here, referring to FIG. 2, the command vehicle speed calculation unit 7
Calculation of the left wheel vehicle speed V L and the right wheel vehicle speed V R in 2 will be described. FIG. 2 is an explanatory diagram showing the tilting direction and tilting angle of the joystick 11, and Rmax represents the stroke when the tilting angle is maximum.

【0046】[0046]

【数9】VL=F1(傾倒角の前後方向成分,傾倒角の左
右方向成分) VR=F2(傾倒角の前後方向成分,傾倒角の左右方向成
分) 指令車速計算部72は、左輪車速VL及び右輪車速V
Rを、上記数9に示すように、ジョイスティック11の
傾倒角の前後方向成分及び左右方向成分をパラメータと
する関数F1,F2によって算出している。
[Formula 9] V L = F 1 (Front-back direction component of tilt angle, left-right direction component of tilt angle) V R = F 2 (Front-back direction component of tilt angle, left-right direction component of tilt angle) Command vehicle speed calculation unit 72 , Left-wheel vehicle speed VL and right-wheel vehicle speed V
As shown in the above equation 9, R is calculated by the functions F 1 and F 2 having the front-back direction component and the left-right direction component of the tilt angle of the joystick 11 as parameters.

【0047】ジョイスティック11が前後方向の+方向
に傾倒されて左右方向成分=0の場合、すなわち図2の
の場合には、上記関数F1,F2はVL=VRとなるよう
に設定されており、これによって電動車椅子は前進走行
する。
In the case where the joystick 11 is tilted in the + -direction of the front-rear direction and the left-right direction component = 0, that is, in the case of FIG. 2, the functions F 1 and F 2 are set so that V L = V R. As a result, the electric wheelchair moves forward.

【0048】また、ジョイスティック11が前後方向成
分及び左右方向成分を含む+方向に傾倒された場合、す
なわち図2のの場合には、上記関数F1,F2はVL
Rとなるように設定されており、これによって電動車
椅子は右方向に旋回走行する。
When the joystick 11 is tilted in the + direction including the front-back direction component and the left-right direction component, that is, in the case of FIG. 2, the functions F 1 and F 2 have V L > V L >.
It is set to V R , which causes the electric wheelchair to turn to the right.

【0049】また、ジョイスティック11が左右方向の
+方向に傾倒されて前後方向成分=0の場合、すなわち
図2のの場合には、上記関数F1,F2は左右輪の回転
方向が逆になり、速度の絶対値は等しくなる、すなわち
L=−VR>0となるように設定されており、これによ
って電動車椅子はその場で回転する。
Further, when the joystick 11 is tilted in the + direction of the left and right direction and the longitudinal component = 0, that is, in the case of FIG. 2, the functions F 1 and F 2 have opposite rotational directions of the left and right wheels. becomes, the absolute value of the velocity is equal, i.e. V L = -V R> 0 and is set to be, whereby electric wheelchair rotates on the spot.

【0050】図3は、図2のに示すように、ジョイス
ティック11を最大の傾倒角で前後方向成分の前方
(+)から左右方向成分の右方(+)に回転操作したと
きに、左右方向成分の値X(最大が100)に対する左
輪車速VL、右輪車速VR、左右輪の車速差(VL−VR
及び車両の速度VC=(VL+VR)/2を示す図であ
る。
In FIG. 3, when the joystick 11 is rotated from the front (+) of the front-back direction component to the right (+) of the left-right direction component at the maximum tilt angle, as shown in FIG. component values X left wheel speed V L for (maximum 100), the right wheel speed V R, the vehicle speed difference between the left and right wheels (V L -V R)
FIG. 6 is a diagram showing a vehicle speed V C = (V L + V R ) / 2.

【0051】図3では、上記数9の関数F1,F2を、In FIG. 3, the functions F 1 and F 2 of the above equation 9 are

【0052】[0052]

【数10】VL=F1(Y,X)=Y+pX VR=F2(Y,X)=Y−pX とし、VL,VRの最高速度を100としている。なお、
pは前後方向成分に対する左右方向成分の重み付けを表
す係数である。上記数10においてp=1/2とする
と、X2+Y2=Rmax2より、
## EQU10 ## V L = F 1 (Y, X) = Y + pX V R = F 2 (Y, X) = Y−pX, and the maximum speed of V L and V R is 100. In addition,
p is a coefficient representing the weighting of the left-right direction component with respect to the front-back direction component. If p = 1/2 in the above formula 10, from X 2 + Y 2 = Rmax 2 ,

【0053】[0053]

【数11】 VL=Y+1/2X=√(Rmax2−X2)+1/2X VR=Y−1/2X=√(Rmax2−X2)−1/2X が得られる。このVL,VRを表したのが図3である。Equation 11] V L = Y + 1 / 2X = √ (Rmax 2 -X 2) + 1 / 2X V R = Y-1 / 2X = √ (Rmax 2 -X 2) -1 / 2X is achieved. FIG. 3 shows these V L and V R.

【0054】図3において、点AはVR=0で、右90
°旋回を示し、点BはVL=−VR=50で、その場旋回
を示している。なお、X=0〜X1の範囲では、左輪車
速VLは、破線で示す算出値が実線で示す最高速度10
0に制限されている。
In FIG. 3, the point A has V R = 0 and the right 90
A turn is shown, and point B is V L = −V R = 50, indicating a turn on the spot. In the range of X = 0 to X 1, left wheel speed V L is the maximum speed 10 the calculated value shown by a broken line shown by a solid line
Limited to 0.

【0055】図3に示すように、指令車速計算部72に
おける算出結果では、左右方向成分Xが増大すると左右
輪の車速差(VL−VR)は単調に増大している。
[0055] As shown in FIG. 3, with the calculated result of the command vehicle speed calculating unit 72, a vehicle speed difference between the left-right direction component X increases right and left wheels (V L -V R) is monotonically increasing.

【0056】図1に戻って、車速計算部73は、IF6
4を介して車速センサ31L,31Rから入力されるパ
ルス信号を用いて、左右の駆動輪の実際の速度、すなわ
ち実車速vL,vRを算出し、これらを指令車速補正計算
部74及びPWM波計算部75に出力するものである。
Returning to FIG. 1, the vehicle speed calculation unit 73 uses the IF6
The actual speeds of the left and right driving wheels, that is, the actual vehicle speeds v L and v R are calculated by using the pulse signals input from the vehicle speed sensors 31L and 31R via the controller 4, and these are calculated by the command vehicle speed correction calculation unit 74 and the PWM. It is output to the wave calculation unit 75.

【0057】指令車速補正計算部74は、以下に説明す
る手順に従って、上記指令車速計算部72で算出された
左輪車速VL及び右輪車速VRを補正して左輪の補正指令
車速VL'及び右輪の補正指令車速VR'を算出し、この算
出した左右輪の補正指令車速VL',VR'をPWM波計算
部75に出力するものである。
The command vehicle speed correction calculation unit 74 corrects the left wheel vehicle speed V L and the right wheel vehicle speed V R calculated by the command vehicle speed calculation unit 72 according to the procedure described below to correct the left wheel corrected command vehicle speed V L '. And the correction command vehicle speed V R ′ for the right wheel and the calculated correction command vehicle speed V L ′, V R ′ for the left and right wheels are output to the PWM wave calculation unit 75.

【0058】まず、指令車速計算部72で算出された左
輪車速VL及び右輪車速VRから、その車速差の絶対値|
L−VR|を求め、この値を下記数12に示す関数G1
に代入して減速係数RGを算出する。
First, from the left wheel vehicle speed V L and the right wheel vehicle speed V R calculated by the command vehicle speed calculator 72, the absolute value of the vehicle speed difference |
V L −V R | is calculated, and this value is given by the function G 1
To calculate the deceleration coefficient R G.

【0059】[0059]

【数12】RG=G1(|VL−VR|) 図4は、関数G1の一例を示す図である。図4に示すよ
うに、関数G1は、車速差|VL−VR|が大きくなる
と、減速係数RGが小さくなるように設定されている。
## EQU12 ## R G = G 1 (| V L −V R |) FIG. 4 is a diagram showing an example of the function G 1 . As shown in FIG. 4, the function G 1 is the vehicle speed difference | V L -V R | When larger, the deceleration coefficient R G is set to be smaller.

【0060】次に、左右輪の指令車速VL,VRと上記減
速係数RGを下記数13に示す関数H1,H2に代入し
て、左輪の補正指令車速VL'及び右輪の補正指令車速V
R'を算出する。
Next, the command vehicle speed V L of right and left wheels, by substituting V R and the deceleration coefficient R G to a function H 1, H 2 shown in the following Expression 13, the correction command vehicle speed V L of the left wheel 'and the right wheel Correction command vehicle speed V
Calculate R '.

【0061】[0061]

【数13】VL'=H1(VL,RG) VR'=H2(VR,RG) この関数H1,H2は、VL'<VL,VR'<VRとなるよう
に設定している。関数H1,H2の一例を下記数14に示
す。
Equation 13] V L '= H 1 (V L, R G) V R' = H 2 (V R, R G) This function H 1, H 2 is, V L '<V L, V R'< is set in such a way that V R. An example of the functions H 1 and H 2 is shown in Expression 14 below.

【0062】[0062]

【数14】VL'=VL×(k×RG) VR'=VR×(k×RG) 数14において、kは定数で、k=1としてもよい。In Equation 14] V L '= V L × ( k × R G) V R' = V R × (k × R G) number 14, k is a constant, it may be k = 1.

【0063】この数14を用いて左右輪の指令車速
L,VRを補正指令車速VL',VR'に補正しても、上記
数8の関係より、走行旋回半径RCは変化しない。従っ
て、走行コースが変化することなく減速されることにな
る。
Even if the command vehicle speeds V L and V R for the left and right wheels are corrected to the corrected command vehicle speeds V L ′ and V R ′ using this equation 14, the traveling turning radius R C changes due to the relationship of the above equation 8. do not do. Therefore, the traveling course is decelerated without changing.

【0064】なお、上記関数G1は、上記図4に示す0
≦|VL−VR|≦d1の範囲では、VL'=VL、VR'=
Rとなるように設定されている。これは、手の不自由
な乗員が自分の意志通りに微妙なジョイスティック11
の操作ができず、例えば直進したいので前方にジョイス
ティック11を操作しようとするが、意に反して左右方
向にも少し操作してしまったような場合に、左右輪の指
令車速差が生じ、敏感に指令車速が減速補正されて、乗
り心地が悪化するのを防止するためである。
The above function G 1 is 0 as shown in FIG.
≦ | V L -V R | in the range of ≦ d1, V L '= V L, V R' =
It is set such that V R. This is because the handicapped passenger has a delicate joystick 11
Can not be operated, for example, because I want to go straight, I try to operate the joystick 11 forward, but if I accidentally operated a little in the left and right directions, a command vehicle speed difference between the left and right wheels will occur and This is to prevent the commanded vehicle speed from being decelerated and corrected to deteriorate the riding comfort.

【0065】図1に戻って、上記指令車速補正計算部7
4は、また、算出された左右輪の補正指令車速VL',V
R'の絶対値が予め設定された最高速度Vmaxを越える
と、この最高速度Vmaxに制限している。すなわち、算
出された左輪の補正指令車速VL'が|VL'|>Vmaxな
らば、|VL'|=Vmaxとし、算出された右輪の補正指
令車速VR'が|VR'|>Vmaxならば、|VR'|=Vmax
とする。
Returning to FIG. 1, the commanded vehicle speed correction calculator 7 is used.
4 is the calculated correction command vehicle speed V L ', V for the left and right wheels.
When the absolute value of R'exceeds a preset maximum speed Vmax, the maximum speed Vmax is limited. That is, the correction command vehicle speed V L of the calculated left wheel 'is | V L' |> Vmax If, | V L '| = a Vmax, the calculated right wheel correction command vehicle speed V R' is | V R '|> Vmax if, | V R '| = Vmax
And

【0066】また、指令車速補正計算部74は、左右輪
の車速を最高速度Vmaxに制限するために、車速計算部
73から入力される実車速vL,vRを監視している。
Further, the command vehicle speed correction calculation unit 74 monitors the actual vehicle speeds v L and v R input from the vehicle speed calculation unit 73 in order to limit the vehicle speed of the left and right wheels to the maximum speed Vmax.

【0067】また、指令車速補正計算部74は、左右輪
の補正指令車速VL',VR'の算出結果が0、すなわち両
方又はいずれかの駆動輪を停止させるときには、IF6
3を介して停止させる方のリレー4L,4Rにオフ信号
を出力してリレーをオフにし、対応するモータ3L,3
Rへの電流供給を遮断して停止させる。一方、左右輪の
補正指令車速VL',VR'の算出結果が0以外のときに
は、IF63を介して対応するリレー4L,4Rにオン
信号を出力してオンにさせる。
[0067] Further, command vehicle speed correction calculation unit 74, when the correction command vehicle speed V L of left and right wheels ', V R' calculation result of 0, i.e., stopping the both or either of the drive wheels, IF6
An off signal is output to the relays 4L and 4R, which are to be stopped via 3, to turn off the relays, and the corresponding motors 3L and 3R
The current supply to R is cut off and stopped. On the other hand, the correction command vehicle speed V L of left and right wheels ', V R' when the calculation result of the non-zero, the corresponding relay 4L through IF63, and outputs an ON signal is turned on 4R.

【0068】PWM波計算部75は、車速計算部73か
ら入力される実車速vL,vRと、指令車速補正計算部7
4から入力される左右輪の補正指令車速VL',VR'とか
ら、補正指令車速と実車速の偏差(VL'−vL),
(VR'−vR)を計算し、下記数15に示す関数DL,D
Rを用いてデューティ比KL,KRを算出する。
The PWM wave calculation unit 75 has the actual vehicle speeds v L and v R input from the vehicle speed calculation unit 73 and the commanded vehicle speed correction calculation unit 7.
Correction command vehicle speed V L of right and left wheels inputted from 4 ', V R' from the corrected command speed and the actual vehicle speed deviation (V L '-v L),
(V R '-v R) is calculated and the function D L shown in the following Expression 15, D
The duty ratios K L and K R are calculated using R.

【0069】[0069]

【数15】KL=DL(VL',Δ(VL'−vL)) KR=DR(VR',Δ(VR'−vR)) 上記関数DL,DRは、補正指令車速及び補正指令車速と
実車速の偏差に応じたデューティ比が得られるように設
定されている。
## EQU15 ## K L = D L (V L ', Δ (V L ' -v L )) K R = D R (V R ', Δ (V R ' -v R )) The above functions D L , D R is set so as to obtain the correction command vehicle speed and the duty ratio according to the deviation between the correction command vehicle speed and the actual vehicle speed.

【0070】そして、PWM波計算部75は、IF62
を介して、このデューティ比KL,KRに応じたPWM波
制御信号をモータ制御部5L,5Rに出力し、モータ3
L,3Rに供給する駆動電流レベルを制御する。これに
よって、モータ3L,3Rの回転速度、すなわち左右の
駆動輪の車速が制御される。
Then, the PWM wave calculation section 75
A PWM wave control signal corresponding to the duty ratios K L and K R is output to the motor control units 5L and 5R via the
The drive current level supplied to L and 3R is controlled. As a result, the rotation speeds of the motors 3L and 3R, that is, the vehicle speeds of the left and right drive wheels are controlled.

【0071】次に、図5を用いて第1実施形態の動作に
ついて説明する。図5は、第1実施形態の動作手順を示
すフローチャートである。
Next, the operation of the first embodiment will be described with reference to FIG. FIG. 5 is a flowchart showing the operation procedure of the first embodiment.

【0072】まず、ジョイスティック11の傾倒角信号
から傾倒角の前後方向成分及び左右方向成分が算出され
て指令車速計算部72に入力され(ステップS1)、次
いで、左右輪の指令車速VL,VRが算出され(ステップ
S2)、この算出値から車速差の絶対値|VL−VR|が
算出され(ステップS3)、この絶対値を用いて減速係
数RGが算出され(ステップS4)、指令車速VL,VR
及び減速係数RGを用いて左右輪の補正指令車速VL',
R'が算出される(ステップS5)。
First, the front-rear direction component and the left-right direction component of the tilt angle are calculated from the tilt angle signal of the joystick 11 and input to the command vehicle speed calculation unit 72 (step S1), and then the command vehicle speeds V L , V of the left and right wheels. R is calculated (step S2), and the absolute value of the vehicle speed difference from the calculated value | V L -V R | is calculated (step S3), and the absolute value using a deceleration coefficient R G is calculated (step S4) , the command vehicle speed V L, V R
And correction command vehicle speed V L 'of the left and right wheels using the deceleration coefficient R G ,
V R 'is calculated (step S5).

【0073】次に、左右輪の実車速vL,vRが算出され
(ステップS6)、次いで、補正指令車速と実車速の偏
差(VL'−vL),(VR'−vR)が算出され(ステップ
S7)、これらを用いてPWM波のデューティ比KL
Rが算出され(ステップS8)、このデューティ比
L,KRに応じたPWM波制御信号が出力される(ステ
ップS9)。
Next, the actual vehicle speed v L of the right and left wheels, v R is calculated (step S6), and then correction command vehicle speed and actual vehicle speed deviation (V L '-v L), (V R' -v R ) Is calculated (step S7), and using these, the duty ratio K L of the PWM wave,
K R is calculated (step S8), and the duty ratio K L, PWM wave control signal corresponding to K R is output (step S9).

【0074】そして、システム終了、すなわちメインス
イッチ12がオフであれば(ステップS10でYE
S)、終了し、メインスイッチ12がオフでなければ
(ステップS10でNO)、ステップS1に戻って以上
の動作が繰り返される。
Then, the system is terminated, that is, if the main switch 12 is off (YES in step S10).
S), and if the main switch 12 is not off (NO in step S10), the process returns to step S1 and the above operation is repeated.

【0075】このように、第1実施形態によれば、左右
輪の指令車速VL,VRを、その車速差の絶対値|VL
R|に応じて減速した補正指令車速VL',VR'に補正
するようにしたので、ジョイスティック11の傾倒角を
最高速度に操作して旋回走行しても、乗り心地の悪化を
防止することができる。また、上記各指令車速VL,VR
を、走行旋回半径が変化しないように補正したので、ジ
ョイスティック11の操作と実際の電動車椅子の走行と
を整合させることができ、これによって、操作性の低下
を防止することができる。
[0075] Thus, according to the first embodiment, the command vehicle speed V L of right and left wheels, the V R, the absolute value of the vehicle speed difference | V L -
V R | correction command vehicle speed V L which is decelerated in accordance with the ', V R' since so as to correct, even with turning by operating the tilting angle of the joystick 11 to the maximum speed, prevent the ride comfort deterioration can do. Also, each command vehicle speed V L, V R
Is corrected so that the traveling turning radius does not change, so that the operation of the joystick 11 and the actual traveling of the electric wheelchair can be matched with each other, and thus the operability can be prevented from being deteriorated.

【0076】なお、上記減速係数RGは、上述したよう
に関数G1を用いて計算で求めるのに代えて、予め作成
されたテーブルデータをメモリ8に記憶しておき、車速
差の絶対値に応じてこのテーブルデータを参照して求め
るようにしてもよい。
The deceleration coefficient R G is not calculated by using the function G 1 as described above, but table data prepared in advance is stored in the memory 8 and the absolute value of the vehicle speed difference is calculated. According to the above, the table data may be referred to and obtained.

【0077】図6は、本発明が適用される電動車椅子の
第2実施形態の制御構成を示すブロック図である。な
お、第1実施形態と同一構成要素には同一符号を付し、
相違点についてのみ説明する。
FIG. 6 is a block diagram showing the control configuration of the second embodiment of the electric wheelchair to which the present invention is applied. The same components as those in the first embodiment are designated by the same reference numerals,
Only the differences will be described.

【0078】第2実施形態では、ジョイスティック入力
部71は、ジョイスティック11の傾倒角の左右方向成
分を指令車速補正計算部74にも出力する。
In the second embodiment, the joystick input section 71 also outputs the horizontal component of the tilt angle of the joystick 11 to the command vehicle speed correction calculation section 74.

【0079】そして、指令車速補正計算部74は、左右
輪の車速差の絶対値|VL−VR|に代えて、ジョイステ
ィック11の傾倒角の左右方向成分の絶対値を下記数1
6に示す関数G2に代入して減速係数RGを算出する。
Then, the command vehicle speed correction calculation unit 74 replaces the absolute value | V L -V R | of the vehicle speed difference between the left and right wheels with the absolute value of the horizontal component of the tilt angle of the joystick 11 as shown in the following formula 1.
The deceleration coefficient R G is calculated by substituting it into the function G 2 shown in FIG.

【0080】[0080]

【数16】RG=G2(|傾倒角の左右方向成分|) 図7は、関数G2の一例を示す図である。図7に示すよ
うに、関数G2は、ジョイスティック11の傾倒角の左
右方向成分の絶対値が大きくなると、減速係数RGが小
さくなるように設定されている。また、上記図4に示し
た関数G1と同様に、0≦|VL−VR|≦D1の範囲で
は、VL'=VL、VR'=VRとなるように設定されてい
る。
## EQU16 ## R G = G 2 (| horizontal component of tilt angle |) FIG. 7 is a diagram showing an example of the function G 2 . As shown in FIG. 7, the function G 2 is set so that the deceleration coefficient R G becomes smaller as the absolute value of the horizontal component of the tilt angle of the joystick 11 becomes larger. Similar to the function G 1 shown in FIG. 4, 0 ≦ | V L -V R | in the range of ≦ D1, V L '= V L, V R' is set to be = V R There is.

【0081】この場合でも、左右輪の車速差の絶対値|
L−VR|は、ジョイスティック11の傾倒角の左右方
向成分の絶対値によってのみ決定されるので、同様に減
速係数RGを求めることができる。従って、第1実施形
態と同様に、走行旋回半径RCは変化せず、走行コース
が変化することなく減速されることになる。
Even in this case, the absolute value of the vehicle speed difference between the left and right wheels |
Since V L −V R | is determined only by the absolute value of the horizontal component of the tilt angle of the joystick 11, the deceleration coefficient R G can be similarly obtained. Therefore, similarly to the first embodiment, the traveling turning radius R C does not change and the traveling course is decelerated without changing.

【0082】次に、図8を用いて第2実施形態の動作に
ついて説明する。図8は、第2実施形態の動作手順を示
すフローチャートである。
Next, the operation of the second embodiment will be described with reference to FIG. FIG. 8 is a flowchart showing the operation procedure of the second embodiment.

【0083】ステップS21,S22は、上記図5のス
テップS1,S2と同様である。ステップS22に続い
て、ステップS21で算出されたジョイスティック11
の傾倒角の左右方向成分の絶対値を用いて、減速係数R
Gが算出される(ステップS23)。続くステップS2
4〜S29は、上記図5のステップS5〜S10と同様
である。
Steps S21 and S22 are the same as steps S1 and S2 in FIG. Following step S22, the joystick 11 calculated in step S21
Deceleration coefficient R using the absolute value of the left-right direction component of the tilt angle of
G is calculated (step S23). Subsequent step S2
4 to S29 are the same as steps S5 to S10 in FIG.

【0084】このように、第2実施形態によれば、左右
輪の指令車速VL,VRを、ジョイスティック11の傾倒
角の左右方向成分の絶対値に応じて減速した補正指令車
速VL',VR'に補正するようにしたので、ジョイスティ
ック11の傾倒角を最高速度に操作して旋回走行して
も、乗り心地の悪化を防止することができる。また、上
記各指令車速VL,VRを、走行旋回半径が変化しないよ
うに補正したので、ジョイスティック11の操作と実際
の電動車椅子の走行とを整合させることができ、これに
よって、操作性の低下を防止することができる。
[0084] Thus, according to the second embodiment, the command vehicle speed V L of right and left wheels, the V R, corrected command vehicle speed V L which is decelerated in accordance with the absolute value of the horizontal direction component of the tilt angle of the joystick 11 ' , V R ', the deterioration of riding comfort can be prevented even when the joystick 11 is turned to the maximum speed by turning the tilt angle. Also, each command vehicle speed V L, the V R, since the travel turning radius is corrected so as not to be changed, it is possible to align the running of the actual electric wheelchair and operation of the joystick 11, whereby, the operability The decrease can be prevented.

【0085】なお、上記減速係数RGは、上述したよう
に関数G2を用いて計算で求めるのに代えて、予め作成
されたテーブルデータをメモリ8に記憶しておき、車速
差の絶対値に応じてこのテーブルデータを参照して求め
るようにしてもよい。
Note that the deceleration coefficient R G is not calculated by using the function G 2 as described above, but table data prepared in advance is stored in the memory 8 and the absolute value of the vehicle speed difference is stored. According to the above, the table data may be referred to and obtained.

【0086】図9は、本発明が適用される電動車椅子の
第3実施形態の制御構成を示すブロック図である。な
お、第1実施形態と同一構成要素には同一符号を付し、
相違点についてのみ説明する。
FIG. 9 is a block diagram showing the control configuration of the third embodiment of the electric wheelchair to which the present invention is applied. The same components as those in the first embodiment are designated by the same reference numerals,
Only the differences will be described.

【0087】第3実施形態は、第1実施形態において、
新たに、ジョイスティック入力部11と指令車速計算部
72間に左右成分重み付け計算部76が介設され、一
方、指令車速補正計算部74が除去されている。
The third embodiment differs from the first embodiment in that
A left and right component weighting calculation unit 76 is newly provided between the joystick input unit 11 and the command vehicle speed calculation unit 72, while the command vehicle speed correction calculation unit 74 is removed.

【0088】左右成分重み付け計算部76は、ジョイス
ティック入力部71で算出された傾倒角の前後方向成分
及び左右方向成分の内で、左右方向成分を下記数17に
示す関数fに代入して補正するとともに、この補正値及
び前後方向成分を指令車速計算部72に出力するもので
ある。
The left / right component weighting calculation unit 76 substitutes the left / right direction component of the tilt angle calculated by the joystick input unit 71 into the function f shown in the following formula 17 for correction. At the same time, the correction value and the front-back direction component are output to the command vehicle speed calculation unit 72.

【0089】そして、指令車速計算部72は、左右成分
重み付け計算部76で得られた傾倒角の左右方向成分の
補正値及び前後方向成分から、下記数17に示すよう
に、関数F1,F2によって指令車速VL,VRを算出する
とともに、この算出値をPWM波計算部75に出力する
ものである。
Then, the command vehicle speed calculator 72 calculates the functions F 1 and F from the correction values of the left and right components of the tilt angle and the front and rear components obtained by the left and right component weighting calculator 76, as shown in the following Expression 17. The command vehicle speeds V L and V R are calculated by 2 and the calculated values are output to the PWM wave calculation unit 75.

【0090】[0090]

【数17】VL=F1(傾倒角の前後方向成分,f(傾倒
角の左右方向成分)) VR=F2(傾倒角の前後方向成分,f(傾倒角の左右方
向成分)) 上記関数fは、ジョイスティック11の傾倒角の左右方
向成分に対する重み付けを前後方向成分よりも低下させ
るように設定されている。この傾倒角の左右方向成分
は、左右輪の指令車速VL,VRの車速差|VL−VR|を
生じさせるものであり、上記関数fによって、車速差|
L−VR|が低減することとなる。
[Formula 17] V L = F 1 (front-back component of tilt angle, f (left-right component of tilt angle)) V R = F 2 (front-back component of tilt angle, f (left-right component of tilt angle)) The function f is set so that the weighting of the tilting angle of the joystick 11 with respect to the left-right direction component is lower than that of the front-back direction component. Lateral direction component of the tilt angle, the command vehicle speed V L of right and left wheels, the vehicle speed difference V R | V L -V R | is intended to cause, by the function f, the vehicle speed difference |
V L -V R | is to be reduced.

【0091】また、指令車速計算部72は、第1実施形
態の指令車速補正計算部74が有していた指令車速の最
高速度Vmax制限機能、車速計算部73から入力される
実車速vL,vRの監視機能、リレー4L,4Rへのオ
ン、オフ信号出力機能を有している。
Further, the command vehicle speed calculation section 72 has a maximum speed Vmax limiting function of the command vehicle speed which the command vehicle speed correction calculation section 74 of the first embodiment has, an actual vehicle speed v L input from the vehicle speed calculation section 73, It has a v R monitoring function and an ON / OFF signal output function to the relays 4L and 4R.

【0092】次に、図10を用いて第3実施形態の動作
について説明する。図10は、第3実施形態の動作手順
を示すフローチャートである。
Next, the operation of the third embodiment will be described with reference to FIG. FIG. 10 is a flowchart showing the operation procedure of the third embodiment.

【0093】ステップS41は、上記図5のステップS
1と同様である。ステップS41に続いて、ステップS
41で算出されたジョイスティック11の傾倒角の左右
方向成分を上記関数fに代入して、左右方向成分の重み
付け計算が行われる(ステップS42)。
The step S41 is the step S of FIG.
The same as 1. Following step S41, step S
The left-right direction component of the tilt angle of the joystick 11 calculated in 41 is substituted into the function f, and weighting calculation of the left-right direction component is performed (step S42).

【0094】次いで、この重み付け計算の結果と、ジョ
イスティック11の傾倒角の前後方向成分とから、左右
輪の指令車速VL,VRが算出され(ステップS43)、
左右輪の実車速vL,vRが算出され(ステップS4
4)、次いで、指令車速と実車速の偏差(VL−vL),
(VR−vR)が算出される(ステップS45)。
Next, the command vehicle speeds V L and V R for the left and right wheels are calculated from the result of the weighting calculation and the front-back direction component of the tilt angle of the joystick 11 (step S43).
The actual vehicle speeds v L and v R of the left and right wheels are calculated (step S4
4), then the command vehicle speed and actual vehicle speed deviation (V L -v L),
(V R -v R) is calculated (step S45).

【0095】続くステップS46〜S48は、上記図5
のステップS8〜S10と同様である。
The following steps S46 to S48 are the same as those in FIG.
The same as steps S8 to S10.

【0096】このように、第3実施形態によれば、ジョ
イスティック11の傾倒角の左右方向成分に対する重み
付けを前後方向成分よりも低下させて関数F1,F2に代
入するようにしたので、左右輪の指令車速VL,VRの車
速差|VL−VR|が低減し、これによって、ジョイステ
ィック11の傾倒角を最高速度に操作して旋回走行して
も、乗り心地の悪化を防止することができる。また、上
記傾倒角の左右方向成分に対する重み付けを低下させる
のみであるので、CPU7の演算時間を短縮できるとと
もに、簡易な構成の制御プログラムで実現することがで
きる。
As described above, according to the third embodiment, the weighting of the tilting angle of the joystick 11 with respect to the left-right direction component is made lower than the front-back direction component and is substituted into the functions F 1 and F 2. speed difference command vehicle speed V L, V R of wheels | V L -V R | is reduced, thereby, even when turning by operating the tilting angle of the joystick 11 to the maximum speed, prevent the ride comfort deterioration can do. Further, since only the weighting of the tilt angle in the left-right direction component is reduced, the calculation time of the CPU 7 can be shortened and the control program can be realized with a simple configuration.

【0097】次に、本発明が適用される電動車椅子の第
4実施形態について説明する。第4実施形態の制御構成
は、上記図1に示す第1実施形態と同一であるが、指令
車速補正計算部74の補正手順が相違しており、この相
違点について説明する。
Next, a fourth embodiment of the electric wheelchair to which the present invention is applied will be described. The control configuration of the fourth embodiment is the same as that of the first embodiment shown in FIG. 1, but the correction procedure of the command vehicle speed correction calculation unit 74 is different, and this difference will be described.

【0098】指令車速補正計算部74は、以下に説明す
る手順に従って、車両の遠心加速度Gを算出し、その値
が予め設定された設定値Gmaxを越えていると、この遠
心加速度Gが上記設定値Gmaxになるように左右輪の指
令車速VL,VRを補正した補正指令車速VL',VR'を算
出するものである。
The command vehicle speed correction calculating section 74 calculates the centrifugal acceleration G of the vehicle according to the procedure described below, and when the value exceeds the preset set value Gmax, this centrifugal acceleration G is set to the above-mentioned setting. value command vehicle speed V L of right and left wheels so as to Gmax, V R correction command vehicle speed correcting the V L ', V R' and calculates a.

【0099】すなわち、まず、指令車速計算部72で算
出された左右輪の指令車速VL,VRを用いて、上記数5
により車両の速度VCを算出するとともに、上記数8に
より車両の走行旋回半径RCを算出する。
That is, first, using the command vehicle speeds V L and V R for the left and right wheels calculated by the command vehicle speed calculation unit 72, the above equation 5 is used.
The vehicle speed V C is calculated by the following equation, and the traveling radius R C of the vehicle is calculated by the above equation 8.

【0100】[0100]

【数18】G=(VC2/RC 次に、上記車両の速度VC及び車両の走行旋回半径RC
用いて、上記数18により車両の遠心加速度Gを算出す
る。なお、上記数1より、上記数18によって遠心加速
度Gが算出されることがわかる。
G = (V C ) 2 / R C Next, the centrifugal acceleration G of the vehicle is calculated by the above equation 18 using the vehicle speed V C and the vehicle turning radius R C. Note that from Equation 1 above, it can be seen that the centrifugal acceleration G is calculated by Equation 18 above.

【0101】そして、この算出した遠心加速度GがG>
Gmaxのときは、下記数19により補正指令車速VL',
R'を算出し、G≦Gmaxのときは、VL'=VL,VR'=
Rとする。
Then, the calculated centrifugal acceleration G is G>
When Gmax, the correction command vehicle speed V L ',
V R 'is calculated, and when G ≤ Gmax, V L ' = V L , V R '=
And V R.

【0102】[0102]

【数19】VL'=√(Gmax/G)×VLR'=√(Gmax/G)×VR なお、上記設定値Gmaxは、旋回走行したときの乗り心
地を損なわない最大値に設定されている。
Equation 19] V L '= √ (Gmax / G) × V L V R' = √ (Gmax / G) × V R The above setting value Gmax is the maximum value that does not impair the riding comfort when the turning Is set to.

【0103】この第4実施形態では、上記数19を用い
て左右輪の指令車速VL,VRを補正指令車速VL',VR'
に補正しても、上記数8の関係より、走行旋回半径RC
は変化しない。従って、第1実施形態と同様に、走行コ
ースが変化することなく減速されることになる。
In the fourth embodiment, the command vehicle speeds V L and V R for the left and right wheels are corrected using the equation (19) to correct the command vehicle speeds V L 'and V R '.
To be corrected, the relationship of the number 8, the travel turning radius R C
Does not change. Therefore, similarly to the first embodiment, the traveling course is decelerated without changing.

【0104】次に、図11を用いて第4実施形態の動作
について説明する。図11は、第4実施形態の動作手順
を示すフローチャートである。
Next, the operation of the fourth embodiment will be described with reference to FIG. FIG. 11 is a flowchart showing the operation procedure of the fourth embodiment.

【0105】ステップS61,S62は、上記図5のス
テップS1,S2と同様である。ステップS62に続い
て、ステップS62で算出された左右輪の指令車速
L,VRを用いて、車両の走行旋回半径RC及び車両の
速度VCが算出される(ステップS63,S64)。
Steps S61 and S62 are the same as steps S1 and S2 in FIG. Following step S62, by using the command vehicle speed V L, V R of the left and right wheels calculated at step S62, the travel turning radius R C and the velocity V C of the vehicle of the vehicle is calculated (step S63, S64).

【0106】次いで、上記車両の走行旋回半径RC及び
速度VCを用いて遠心加速度Gが算出され(ステップS
65)、この遠心加速度Gと上記設定値Gmaxとの大小
が判別される(ステップS66)。そして、G≦Gmax
であれば(ステップS66でNO)、ステップS68に
進み、一方、G>Gmaxであれば(ステップS66でY
ES)、補正指令車速VL',VR'が算出されて(ステッ
プS67)、ステップS68に進む。
Then, the centrifugal acceleration G is calculated using the traveling radius R C of the vehicle and the velocity V C (step S
65), the magnitude of the centrifugal acceleration G and the set value Gmax is discriminated (step S66). And G ≦ Gmax
If so (NO in step S66), the process proceeds to step S68, while if G> Gmax (Y in step S66).
ES), correction command vehicle speed V L ', V R' is calculated (step S67), the process proceeds to step S68.

【0107】続くステップS68〜S72は、上記図5
のステップS6〜S10と同様である。
The following steps S68 to S72 are the same as those in FIG.
The same as steps S6 to S10.

【0108】このように、第4実施形態によれば、車両
の遠心加速度Gが設定値Gmax以下になるように、左右
輪の指令車速VL,VRを補正指令車速VL',VR'に補正
するようにしたので、ジョイスティック11の傾倒角を
最高速度に操作して旋回走行しても、乗り心地の悪化を
防止することができる。また、上記各指令車速VL,VR
を、走行旋回半径が変化しないように補正したので、ジ
ョイスティック11の操作と実際の電動車椅子の走行と
を整合させることができ、これによって、操作性の低下
を防止することができる。
[0108] Thus, according to the fourth embodiment, as in centrifugal acceleration G of the vehicle is less than or equal to the specified value Gmax, command vehicle speed V L of right and left wheels, V R the correction command vehicle speed V L ', V R Since the correction is made to ', deterioration in riding comfort can be prevented even if the tilt angle of the joystick 11 is operated at the maximum speed and the vehicle travels while making a turn. Also, each command vehicle speed V L, V R
Is corrected so that the traveling turning radius does not change, so that the operation of the joystick 11 and the actual traveling of the electric wheelchair can be matched with each other, and thus the operability can be prevented from being deteriorated.

【0109】なお、上記第1実施形態又は上記第2実施
形態に、上記第3実施形態を付加して実施してもよい。
すなわち、第3実施形態で求めた左右輪の指令車速
L,VRを、第1実施形態又は第2実施形態における左
右輪の指令車速VL,VRとして用いてもよい。この場合
には、上記図1又は図6の指令車速計算部72におい
て、ジョイスティック11の傾倒角の左右方向成分の重
み付け計算を行うようにすればよい。
The third embodiment may be added to the first embodiment or the second embodiment.
That is, the command vehicle speed V L of right and left wheels obtained in the third embodiment, the V R, command vehicle speed V L of right and left wheels in the first embodiment or the second embodiment may be used as V R. In this case, the command vehicle speed calculation unit 72 shown in FIG. 1 or 6 may perform the weighted calculation of the horizontal component of the tilt angle of the joystick 11.

【0110】[0110]

【発明の効果】以上説明したように、請求項1の発明に
よれば、操作手段の第1の操作の操作量及び第2の操作
の操作量に応じて指示された各駆動輪の指令車輪速度の
差の絶対値の大きさに応じて各指令車輪速度の絶対値を
低減する補正を行うようにしたので、操作手段で行われ
る操作によって指示される各駆動輪の指令車輪速度の差
の絶対値が大きい、すなわち車両の走行旋回半径が小さ
いときは、各指令車輪速度が小さく補正され、これによ
って車両に発生する遠心力を低下させることができ、操
作手段の操作量が大きいときでも乗り心地の悪化を防止
できる。
As described above, according to the first aspect of the invention, the command wheels of the respective drive wheels instructed according to the operation amount of the first operation and the operation amount of the second operation of the operating means. Since the correction for reducing the absolute value of each command wheel speed is made according to the magnitude of the absolute value of the speed difference, the difference between the command wheel speed differences of the respective drive wheels instructed by the operation performed by the operation means is performed. When the absolute value is large, that is, when the vehicle's turning radius is small, each commanded wheel speed is corrected to a small value, which can reduce the centrifugal force generated in the vehicle. It is possible to prevent deterioration of comfort.

【0111】また、請求項2の発明によれば、操作手段
の第1の操作の操作量及び第2の操作の操作量に応じて
指示された各駆動輪の指令車輪速度を用いて車両の遠心
加速度を算出し、この遠心加速度が予め設定された値に
一致するように各駆動輪の指令車輪速度を補正するよう
にしたので、操作手段で行われる操作によって車両の走
行旋回半径が小さいときでも、車両に発生する遠心加速
度を設定値以下に維持することができ、車両の乗り心地
の低下を確実に防止することができる。
Further, according to the invention of claim 2, the command wheel speed of each drive wheel instructed according to the operation amount of the first operation and the operation amount of the second operation of the operating means is used to drive the vehicle. Since the centrifugal acceleration is calculated and the commanded wheel speed of each drive wheel is corrected so that this centrifugal acceleration matches a preset value, when the vehicle has a small turning radius due to the operation performed by the operation means. However, the centrifugal acceleration generated in the vehicle can be maintained below the set value, and the deterioration of the riding comfort of the vehicle can be reliably prevented.

【0112】また、請求項3の発明によれば、第1の操
作の操作量に比べて第2の操作の操作量の重み付けを低
減して各駆動輪の指令車輪速度を指示するようにしたの
で、操作手段で行われる操作量に比べて、各駆動輪の指
令車輪速度の差の絶対値が低減され、これによって車両
の走行旋回半径が小さくならないので、車両に大きい遠
心力が発生するのを防止でき、乗り心地の低下を更に確
実に防止できる。
According to the third aspect of the present invention, the commanded wheel speed of each drive wheel is indicated by reducing the weighting of the operation amount of the second operation compared to the operation amount of the first operation. Therefore, the absolute value of the difference between the command wheel speeds of the respective drive wheels is reduced compared to the operation amount performed by the operating means, and the traveling turning radius of the vehicle is not reduced by this, so that a large centrifugal force is generated in the vehicle. Can be prevented, and the reduction in riding comfort can be prevented more reliably.

【0113】また、請求項4の発明によれば、操作手段
で行われる操作による車両の走行旋回半径が変化しない
ように各駆動輪の指令車輪速度を補正するようにしたの
で、車両の操作性の低下を防止することができるととも
に、車両の乗り心地の低下を防止できる。
Further, according to the invention of claim 4, the command wheel speed of each drive wheel is corrected so as not to change the traveling turning radius of the vehicle due to the operation performed by the operating means. It is possible to prevent the deterioration of the ride comfort of the vehicle while preventing the deterioration of the ride quality of the vehicle.

【0114】また、請求項5の発明によれば、操作手段
の第1の操作の操作量に比べて第2の操作の操作量の重
み付けを低減して各駆動輪の指令車輪速度を指示するよ
うにしたので、操作手段で行われる操作量に比べて、各
駆動輪の指令車輪速度の差の絶対値が低減され、これに
よって車両の走行旋回半径が小さくならないので、車両
に大きい遠心力が発生するのを防止でき、操作手段の操
作量が大きいときでも乗り心地の悪化を防止できる。
According to the fifth aspect of the invention, the commanded wheel speed of each drive wheel is instructed by reducing the weighting of the operation amount of the second operation as compared with the operation amount of the first operation of the operation means. As a result, the absolute value of the difference between the command wheel speeds of the drive wheels is reduced compared to the amount of operation performed by the operating means, and the traveling turning radius of the vehicle is not reduced by this, so a large centrifugal force is applied to the vehicle. It is possible to prevent the occurrence of the occurrence, and it is possible to prevent the ride comfort from being deteriorated even when the operation amount of the operation means is large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明が適用される電動車椅子の第1実施形態
の制御構成を示すブロック図である。
FIG. 1 is a block diagram showing a control configuration of a first embodiment of an electric wheelchair to which the present invention is applied.

【図2】ジョイスティック11の傾倒方向及び傾倒角を
示す説明図である。
FIG. 2 is an explanatory diagram showing a tilt direction and a tilt angle of a joystick 11.

【図3】図2のに示すように、ジョイスティック11
を最大の傾倒角で前後方向成分の前方(+)から左右方
向成分の右方(+)に回転操作したときに、左右方向成
分の値Xに対する左輪車速VL、右輪車速VR、左右輪の
車速差(VL−VR)及び車両の速度VC=(VL+VR
/2を示す図である。
FIG. 3 shows a joystick 11 as shown in FIG.
When the rotated operation on the right side of the left-right direction component (+) from the front of the front-rear direction component (+) at the maximum tilt angle, the left wheel speed V L for the value X in the left-right direction component, right wheel speed V R, left and right speed difference wheel (V L -V R) and the vehicle speed V C = (V L + V R)
It is a figure which shows / 2.

【図4】関数G1の一例を示す図である。FIG. 4 is a diagram showing an example of a function G 1 .

【図5】第1実施形態の動作手順を示すフローチャート
である。
FIG. 5 is a flowchart showing an operation procedure of the first embodiment.

【図6】本発明が適用される電動車椅子の第2実施形態
の制御構成を示すブロック図である。
FIG. 6 is a block diagram showing a control configuration of a second embodiment of an electric wheelchair to which the present invention is applied.

【図7】関数G2の一例を示す図である。FIG. 7 is a diagram showing an example of a function G 2 .

【図8】第2実施形態の動作手順を示すフローチャート
である。
FIG. 8 is a flowchart showing an operation procedure of the second embodiment.

【図9】本発明が適用される電動車椅子の第3実施形態
の制御構成を示すブロック図である。
FIG. 9 is a block diagram showing a control configuration of a third embodiment of an electric wheelchair to which the present invention is applied.

【図10】第3実施形態の動作手順を示すフローチャー
トである。
FIG. 10 is a flowchart showing an operation procedure of the third embodiment.

【図11】第4実施形態の動作手順を示すフローチャー
トである。
FIG. 11 is a flowchart showing an operation procedure of the fourth embodiment.

【図12】車両が旋回走行するときの駆動輪の速度と旋
回半径を説明する模式図である。
FIG. 12 is a schematic diagram for explaining the speed and turning radius of the drive wheels when the vehicle is turning.

【符号の説明】[Explanation of symbols]

1 操作パネル 11 ジョイスティック(操作手段) 12 メインスイッチ 2 電源部 3L,3R モータ(左駆動手段、右駆動手段) 31L,31R 車速センサ 4L,4R リレー(左駆動手段、右駆動手段) 5L,5R モータ制御部(左駆動手段、右駆動手段) 6 コントロールボード 7 CPU 71 ジョイスティック入力部 72 指令車速計算部 73 車速計算部 74 指令車速補正計算部(補正手段、加速度演算手
段、比較手段、半径演算手段) 75 PWM波計算部(駆動制御手段) 76 左右成分重み付け計算部(操作手段) 8 メモリ
1 Operation Panel 11 Joystick (Operating Means) 12 Main Switch 2 Power Supply Units 3L, 3R Motors (Left Driving Means, Right Driving Means) 31L, 31R Vehicle Speed Sensors 4L, 4R Relays (Left Driving Means, Right Driving Means) 5L, 5R Motors Control unit (left driving unit, right driving unit) 6 control board 7 CPU 71 joystick input unit 72 commanded vehicle speed calculation unit 73 vehicle speed calculation unit 74 commanded vehicle speed correction calculation unit (correction unit, acceleration calculation unit, comparison unit, radius calculation unit) 75 PWM Wave Calculator (Drive Control Means) 76 Left / Right Component Weighting Calculator (Operating Means) 8 Memory

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 左の駆動輪を回転駆動する左駆動手段と
右の駆動輪を回転駆動する右駆動手段とを備えた車両に
おいて、上記左右の駆動輪を同一方向に同一車輪速度で
回転駆動させる第1の操作と上記左右の駆動輪を互いに
逆方向にそれぞれ所定の車輪速度で回転駆動させる第2
の操作とがいずれか単独または同時に可能であって、上
記各操作の操作量に応じて上記各駆動輪の指令車輪速度
を指示する操作手段と、この指示された各駆動輪の指令
車輪速度の差の絶対値の大きさに応じて上記各指令車輪
速度の絶対値を低減する補正を行う補正手段と、この補
正された各指令車輪速度で上記各駆動輪を回転駆動すべ
く上記左駆動手段及び右駆動手段を制御する駆動制御手
段とを備えたことを特徴とする車両速度制御装置。
1. A vehicle having left driving means for rotationally driving a left driving wheel and right driving means for rotationally driving a right driving wheel, wherein the left and right driving wheels are rotationally driven in the same direction at the same wheel speed. A first operation for rotating the left and right driving wheels in opposite directions to each other at a predetermined wheel speed;
Of the command wheel speed of each of the driving wheels, and the command wheel speed of each of the driving wheels instructed. Correction means for correcting the absolute value of each of the command wheel speeds according to the magnitude of the absolute value of the difference, and the left driving means for rotationally driving each of the drive wheels with the corrected command wheel speeds. And a drive control means for controlling the right drive means, the vehicle speed control device.
【請求項2】 左の駆動輪を回転駆動する左駆動手段と
右の駆動輪を回転駆動する右駆動手段とを備えた車両に
おいて、上記左右の駆動輪を同一方向に同一車輪速度で
回転駆動させる第1の操作と上記左右の駆動輪を互いに
逆方向にそれぞれ所定の車輪速度で回転駆動させる第2
の操作とがいずれか単独または同時に可能であって、上
記各操作の操作量に応じて上記各駆動輪の指令車輪速度
を指示する操作手段と、この指示された各駆動輪の指令
車輪速度を用いて上記車両の遠心加速度を算出する加速
度演算手段と、算出された上記遠心加速度と予め設定さ
れた値とを比較する比較手段と、上記遠心加速度が上記
設定値より大きいときは、上記遠心加速度が上記設定値
に一致するように上記各駆動輪の指令車輪速度を補正す
る補正手段と、この補正された各指令車輪速度で上記各
駆動輪を回転駆動すべく上記左駆動手段及び右駆動手段
を制御する駆動制御手段とを備えたことを特徴とする車
両速度制御装置。
2. A vehicle having left driving means for rotationally driving a left driving wheel and right driving means for rotationally driving a right driving wheel, wherein the left and right driving wheels are rotationally driven in the same direction at the same wheel speed. A first operation for rotating the left and right driving wheels in opposite directions to each other at a predetermined wheel speed;
The operation can be performed independently or at the same time, and the operating means for instructing the command wheel speed of each drive wheel according to the operation amount of each operation, and the command wheel speed of each instructed drive wheel are Acceleration calculating means for calculating the centrifugal acceleration of the vehicle by using the comparing means for comparing the calculated centrifugal acceleration with a preset value; and when the centrifugal acceleration is larger than the set value, the centrifugal acceleration Correction means for correcting the command wheel speeds of the respective drive wheels so as to match the set value, and the left driving means and the right driving means for rotationally driving the respective drive wheels with the corrected respective command wheel speeds. And a drive control means for controlling the vehicle speed control device.
【請求項3】 上記操作手段は、上記第1の操作の操作
量に比べて上記第2の操作の操作量の重み付けを低減し
て上記各指令車輪速度を指示するものであることを特徴
とする請求項1又は2記載の車両速度制御装置。
3. The operating means reduces the weighting of the operation amount of the second operation as compared with the operation amount of the first operation to instruct each of the command wheel speeds. The vehicle speed control device according to claim 1 or 2.
【請求項4】 請求項1〜3のいずれかに記載の車両速
度制御装置において、上記操作手段で指示された上記各
駆動輪の指令車輪速度を用いて車両の走行旋回半径を算
出する半径演算手段を備え、上記補正手段は、上記走行
旋回半径が変化しないように上記各駆動輪の指令車輪速
度を補正するものであることを特徴とする車両速度制御
装置。
4. The vehicle speed control device according to claim 1, wherein a radius calculation for calculating a traveling turning radius of the vehicle by using a command wheel speed of each drive wheel instructed by the operation means. A vehicle speed control device comprising: means for correcting the commanded wheel speed of each drive wheel so that the traveling turning radius does not change.
【請求項5】 左の駆動輪を回転駆動する左駆動手段と
右の駆動輪を回転駆動する右駆動手段とを備えた車両に
おいて、上記左右の駆動輪を同一方向に同一車輪速度で
回転駆動させる第1の操作と上記左右の駆動輪を互いに
逆方向にそれぞれ所定の車輪速度で回転駆動させる第2
の操作とがいずれか単独または同時に可能であって、上
記各操作の操作量に応じて上記各駆動輪の指令車輪速度
を指示する操作手段と、この指示された各駆動輪の指令
車輪速度で上記各駆動輪を回転駆動すべく上記左駆動手
段及び右駆動手段を制御する駆動制御手段とを備え、上
記操作手段は、上記第1の操作の操作量に比べて上記第
2の操作の操作量の重み付けを低減して上記各駆動輪の
指令車輪速度を指示するものであることを特徴とする車
両速度制御装置。
5. A vehicle having left driving means for rotationally driving a left driving wheel and right driving means for rotationally driving a right driving wheel, wherein the left and right driving wheels are rotationally driven in the same direction at the same wheel speed. A first operation for rotating the left and right driving wheels in opposite directions to each other at a predetermined wheel speed;
The operation can be performed independently or simultaneously, and the operation means for instructing the command wheel speed of each drive wheel according to the operation amount of each operation, and the command wheel speed of each drive wheel instructed Drive control means for controlling the left drive means and the right drive means for rotationally driving the respective drive wheels, wherein the operating means operates the second operation as compared with the operation amount of the first operation. A vehicle speed control device, wherein weighting of quantity is reduced to instruct a command wheel speed of each drive wheel.
JP28283195A 1995-10-31 1995-10-31 Vehicle speed control device Expired - Lifetime JP3320961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28283195A JP3320961B2 (en) 1995-10-31 1995-10-31 Vehicle speed control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28283195A JP3320961B2 (en) 1995-10-31 1995-10-31 Vehicle speed control device

Publications (2)

Publication Number Publication Date
JPH09130920A true JPH09130920A (en) 1997-05-16
JP3320961B2 JP3320961B2 (en) 2002-09-03

Family

ID=17657652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28283195A Expired - Lifetime JP3320961B2 (en) 1995-10-31 1995-10-31 Vehicle speed control device

Country Status (1)

Country Link
JP (1) JP3320961B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003059236A1 (en) * 2001-10-26 2003-07-24 Jiao Yi Station A safety wheelchair
CN102198032A (en) * 2010-03-24 2011-09-28 Pg驱动技术有限公司 A controller and control method for a motorised vehicle
CN113928130A (en) * 2021-10-29 2022-01-14 东风越野车有限公司 Electric vehicle wheel control method and device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2484467B (en) * 2010-10-11 2015-07-22 Penny & Giles Controls Ltd A controller and control method for a motorised vehicle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003059236A1 (en) * 2001-10-26 2003-07-24 Jiao Yi Station A safety wheelchair
CN102198032A (en) * 2010-03-24 2011-09-28 Pg驱动技术有限公司 A controller and control method for a motorised vehicle
GB2478956A (en) * 2010-03-24 2011-09-28 Pg Drives Technology Ltd Controlling speed and spin of a motorised vehicle having independently driven wheels
GB2478956B (en) * 2010-03-24 2015-04-22 Penny & Giles Controls Ltd A controller and control method for a motorised vehicle
US9266435B2 (en) 2010-03-24 2016-02-23 Penny & Giles Controls Limited Controller and control method for a motorised vehicle
CN113928130A (en) * 2021-10-29 2022-01-14 东风越野车有限公司 Electric vehicle wheel control method and device
CN113928130B (en) * 2021-10-29 2023-09-15 东风越野车有限公司 Electric automobile wheel control method and equipment

Also Published As

Publication number Publication date
JP3320961B2 (en) 2002-09-03

Similar Documents

Publication Publication Date Title
JP4802622B2 (en) Running body and method of adjusting running body
JP3897293B2 (en) Vehicle operation control device
JP2000318632A (en) Steering device for vehicle
EP2014531A2 (en) Vehicle drive control system
JP5542094B2 (en) Self-propelled vehicle
CN110884559B (en) Steering controller and method of steering control
JP3052537B2 (en) Rear wheel steering angle control device
JP3320961B2 (en) Vehicle speed control device
JP4600223B2 (en) Running body and method of adjusting running body
JP3320962B2 (en) Vehicle operating device
JP2001104396A (en) Motor-driven wheelchair
WO2000023297A1 (en) Control apparatus and a method for steering an electric vehicle
US11303240B2 (en) Traveling control device
JPH0443165A (en) Power steering device for vehicle
JP4650207B2 (en) Vehicle drive control device
JP2012179960A (en) Working vehicle
JP2970351B2 (en) Electric power steering with learning function
JPH09130921A (en) Speed controller for motor vehicle
KR20210041234A (en) Driving control system for electrical wheelchair
JP4289719B2 (en) Electric car
JPH0764222B2 (en) Vehicle attitude control device
JP2003048565A (en) Vehicular steering system
WO2021205575A1 (en) Control device, steering device
JP2018033248A (en) Drive control device of electric vehicle
JP3780586B2 (en) Drive control device for electric vehicle

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110621

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110621

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120621

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120621

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130621

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term