JPH09127058A - Cataphoresis device - Google Patents

Cataphoresis device

Info

Publication number
JPH09127058A
JPH09127058A JP7282887A JP28288795A JPH09127058A JP H09127058 A JPH09127058 A JP H09127058A JP 7282887 A JP7282887 A JP 7282887A JP 28288795 A JP28288795 A JP 28288795A JP H09127058 A JPH09127058 A JP H09127058A
Authority
JP
Japan
Prior art keywords
fluorescence
laser
capillary
electrophoretic
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7282887A
Other languages
Japanese (ja)
Inventor
Takashi Anazawa
隆 穴沢
Satoshi Takahashi
智 高橋
Hideki Kanbara
秀記 神原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7282887A priority Critical patent/JPH09127058A/en
Publication of JPH09127058A publication Critical patent/JPH09127058A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To bring the excitation time of a fluorescent labeled molecule which is subjected to molar amount separation close to an optimum excitation time where sensitivity can be maximized in a laser induction fluorescent measurement cataphoresis device. SOLUTION: A fluorescent labeled sample is eluted from the lower edge of gel into a buffer liquid by cataphoresis and is subjected to fluorescent measurement in the buffer liquid. The strength of electric field applied to both edges of gel is periodically changed with a cycle of T1+T2+T3, where T1, T2, and T3 can be arbitrarily set. The strength of electric field is set to a constant value at the time zone of T1 and no excitation laser is applied. The strength of electric field is set to zero at the time zone of T2 and excitation laser is applied and fluorescent exposure is made. The strength of electric field continuously set to zero at the time zone of T3, no excitation laser is applied, and a fluorescent sample remaining at a measurement position is eliminated. The above is repeated for continuos measurement.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はDNA,RNAまた
は蛋白質などの電気泳動装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrophoresis device for DNA, RNA or protein.

【0002】[0002]

【従来の技術】DNA,RNA等の分析技術は、遺伝子
解析や遺伝子診断を含む医学,生物学の分野でますます
重要になってきている。特に最近では、ゲノム解析計画
に関連して、高速,高スループットのDNA解析装置の
開発が進んでいる。
2. Description of the Related Art Analysis techniques for DNA, RNA, etc. are becoming more and more important in the fields of medicine and biology including gene analysis and gene diagnosis. In particular, recently, development of a high-speed, high-throughput DNA analysis device has been advanced in relation to the genome analysis plan.

【0003】DNA解析は、蛍光標識された試料をゲル
電気泳動によって分子量分離し、レーザ誘起蛍光検出に
より行う。ゲル電気泳動には、アクリルアミドを間隔
0.3mm程度の2枚のガラス板の間に重合させた平板ゲ
ルが良く用いられている。平板ゲル上端にアプライされ
た試料は平板ゲルの両端に電界を印加することで分子量
分離されながら下端方向に泳動される。一定距離泳動さ
れた位置をレーザで平板ゲル側面よりすべての泳動路を
一度に照射し、ビームを通過する蛍光標識試料の分離断
片を励起する。蛍光露光は一定時間間隔で行い、露光時
間と非露光時間の和を周期とした連続周期計測を行う。
この結果を解析することでDNA塩基配列を決定してい
る。
DNA analysis is carried out by separating the molecular weight of a fluorescently labeled sample by gel electrophoresis and detecting it by laser-induced fluorescence. For gel electrophoresis, a flat gel in which acrylamide is polymerized between two glass plates with a gap of about 0.3 mm is often used. The sample applied to the upper end of the slab gel is electrophoresed toward both ends of the slab gel while the molecular weight is separated by applying an electric field to both ends of the slab gel. All the migration paths are irradiated at once from the side of the flat gel with a laser at the position where a certain distance has been migrated, and the separated fragments of the fluorescence-labeled sample passing through the beam are excited. Fluorescence exposure is performed at fixed time intervals, and continuous cycle measurement is performed with the sum of the exposure time and the non-exposure time as the cycle.
The DNA base sequence is determined by analyzing this result.

【0004】最近では平板ゲルに替わり、溶融石英毛細
管内にゲルを重合させたキャピラリゲルが用いられるよ
うになった。キャピラリゲル電気泳動は、スラブゲル電
気泳動と比較して大きな電界を加えられるため、高速,
高分離が可能な方法として注目を集めているアナリティ
カル ケミストリ(Analytical Chemistry)62,900(1
990))。通常、キャピラリゲル電気泳動装置では1本
のキャピラリ管を用い、その下端近傍のキャピラリ中で
蛍光検出するオンカラム計測を行っている。キャピラリ
外表面全体はポリイミドコーティングがなされているの
で、検出位置のコーティングを除去してガラスが露出し
た窓にしておく。この位置にレーザを照射し、電気泳動
によってキャピラリ内部を泳動する蛍光標識試料の分離
断片がビームを通過する際に励起され、発光する蛍光を
連続周期計測,解析することでDNA塩基配列を決定し
ている。
Recently, instead of a flat gel, a capillary gel in which a gel is polymerized in a fused silica capillary tube has been used. Capillary gel electrophoresis is faster than slab gel electrophoresis because it can apply a larger electric field.
Analytical Chemistry 62,900 (1), which has been attracting attention as a method capable of high resolution.
990)). Usually, one capillary tube is used in the capillary gel electrophoresis apparatus, and on-column measurement is performed by detecting fluorescence in the capillary near the lower end of the capillary tube. Since the entire outer surface of the capillary is coated with polyimide, the coating at the detection position is removed to leave a glass-exposed window. The DNA base sequence is determined by irradiating a laser at this position and exciting the emitted fluorescence of the separated fragment of the fluorescence-labeled sample that migrates inside the capillary by electrophoresis and measuring and analyzing the continuous fluorescence. ing.

【0005】しかし、オンカラム計測装置ではレーザビ
ームのキャピラリ表面での散乱が大きいために一度に1
本のキャピラリしか扱えず、スループットが上がらない
という難点があった。そこで最近、キャピラリ複数本を
アレー化して多くの試料を同時に分析するキャピラリア
レーゲル電気泳動装置が開発されている(ネイチャー(N
ature),361,565−566(1993),特開平6
−138037号)この装置ではキャピラリアレー下端を緩衝
液中に浸し、ゲル電気泳動によって分子量分離された断
片をそのまま緩衝液中に溶出させ、キャピラリの存在し
ない部分で蛍光検出する、オフカラム計測を行ってい
る。また、緩衝液を泳動方向にゆっくり流すことによっ
て、異なるキャピラリゲルから溶出された分離断片が緩
衝液中で互いに混合したり、あるいは1本のキャピラリ
ゲル中で分離されていた二つの断片が緩衝液中で混合し
たりしないようにしている。キャピラリアレー出口近傍
の、キャピラリの存在しない緩衝液部分をレーザ照射す
ることでキャピラリ表面でのレーザビーム散乱の問題を
回避し、複数のキャピラリから溶出された断片を一括励
起し、同時蛍光分析することが可能になっている。
However, in the on-column measuring device, the scattering of the laser beam on the capillary surface is large, and therefore, one laser beam is measured at a time.
There is a problem that only the capillaries of books can be handled and the throughput cannot be increased. Therefore, recently, a capillary-ray gel electrophoresis device has been developed that analyzes multiple samples simultaneously by arraying multiple capillaries (Nature (N
ature), 361, 565-566 (1993), JP-A-6
-138037) In this device, the lower end of the capillary array is immersed in a buffer solution, the fragments whose molecular weights have been separated by gel electrophoresis are eluted as they are in the buffer solution, and fluorescence is detected in the areas where there are no capillaries. There is. Further, by slowly flowing the buffer solution in the migration direction, the separated fragments eluted from different capillary gels are mixed with each other in the buffer solution, or the two fragments separated in one capillary gel are separated by the buffer solution. I try not to mix them inside. Avoiding the problem of laser beam scattering on the capillary surface by irradiating the buffer solution in the vicinity of the exit of the capillary array where there is no capillary, to excite the fragments eluted from multiple capillaries collectively and perform simultaneous fluorescence analysis. Is possible.

【0006】[0006]

【発明が解決しようとする課題】レーザ照射し続けられ
ている蛍光分子は励起と発光を繰り返すが、ある確率で
蛍光分子は分解してそれ以上の発光はなくなる。通常、
蛍光計測では蛍光分子1個が発光する回数が多いほど感
度が高くなる。一般に発光回数は、レーザ出力が大きい
ほど、励起時間が長いほど多い。しかし、蛍光分子はあ
る確率で分解するので、一定レーザ出力では感度を上げ
る最適励起時間Topが存在する。
The fluorescent molecule which is being continuously irradiated with laser repeats excitation and emission, but with a certain probability, the fluorescent molecule is decomposed and no more emission occurs. Normal,
In fluorescence measurement, the sensitivity increases as the number of times that one fluorescent molecule emits light increases. Generally, the number of times of light emission increases as the laser output increases and the excitation time increases. However, since the fluorescent molecule decomposes with a certain probability, there is an optimum excitation time Top that increases the sensitivity at a constant laser output.

【0007】平板ゲル電気泳動,オンカラムキャピラリ
ゲル電気泳動では、分子量分離された断片内の蛍光分子
1個の励起時間は、1分子がレーザビームを通過する時
間に露光時間比率を乗じて得られ、レーザビーム径及び
露光時間比率に比例し、その分子の泳動速度に反比例す
る。ここで露光時間比率は、蛍光計測周期に対する露光
時間の比率と定義する。1回の周期計測で露光を行わな
い時間をT1,露光時間をT2,計測周期をT0=T1
+T2とすると、露光時間比率はT2/T0となる。し
たがって励起時間Texは、泳動距離(試料注入端からレ
ーザビームまでの距離)をL,泳動時間(泳動開始から
検出されるまでの時間)をT,レーザビーム径をΔLと
すると、数1となる。
In flat-plate gel electrophoresis and on-column capillary gel electrophoresis, the excitation time of one fluorescent molecule in a fragment whose molecular weight has been separated is obtained by multiplying the time required for one molecule to pass through a laser beam by the exposure time ratio, It is proportional to the laser beam diameter and exposure time ratio, and inversely proportional to the migration speed of the molecule. Here, the exposure time ratio is defined as the ratio of the exposure time to the fluorescence measurement cycle. The time period in which no exposure is performed in one cycle measurement is T1, the exposure time is T2, and the measurement cycle is T0 = T1.
When + T2 is set, the exposure time ratio becomes T2 / T0. Therefore, the excitation time Tex is given by Equation 1 where L is the migration distance (distance from the sample injection end to the laser beam), T is the migration time (time from the start of migration to detection), and ΔL is the laser beam diameter. .

【0008】[0008]

【数1】 (Equation 1)

【0009】つまり、分子量の小さい分子はTが小さい
ためにTex<Topとなって励起不足となり、分子量の大
きな分子はTが大きいためにTex>Topとなって励起過
剰となるので、いずれの場合も最適励起時間からはずれ
て最高感度を上げることはできない。
That is, since T has a small T, Tex <Top is inadequate for a molecule having a small molecular weight, and Tex> Top has an overexcitation for a molecule having a large molecular weight because T is large. However, the maximum sensitivity cannot be increased beyond the optimum excitation time.

【0010】一方、分離断片をキャピラリゲル下端より
緩衝液中に溶出させて蛍光計測するオフカラムキャピラ
リゲル電気泳動では事情が異なる。緩衝液中で拡散等に
よる試料の混合が生じないように、緩衝液を泳動方向に
定常的に流している。緩衝液流速Vf とすると励起時間
Texは、数2となり、泳動時間、すなわち、分子量によ
らないことがわかる。
On the other hand, the situation is different in off-column capillary gel electrophoresis in which the separated fragment is eluted from the lower end of the capillary gel into a buffer solution and fluorescence is measured. The buffer solution is constantly flowed in the migration direction so that sample mixing due to diffusion or the like does not occur in the buffer solution. When the buffer solution flow rate is Vf, the excitation time Tex becomes the equation 2, and it can be seen that it does not depend on the migration time, that is, the molecular weight.

【0011】[0011]

【数2】 (Equation 2)

【0012】しかし、試料の緩衝液中での混合を押さえ
るためには、緩衝液流速Vf は分離断片のキャピラリゲ
ル中での泳動速度より大きくする必要がある。このため
励起時間Texは、平板ゲル電気泳動,オンカラムキャピ
ラリゲル電気泳動の場合と比較して短く、泳動時間、す
なわち、分子量が大きな分子ほどその差は大きくなる。
つまりオフカラムキャピラリゲル電気泳動では分子量に
よらずTex<Topとなって励起不足になっている。
However, in order to suppress the mixing of the sample in the buffer solution, the buffer solution flow rate Vf needs to be higher than the migration speed of the separated fragments in the capillary gel. Therefore, the excitation time Tex is shorter than in the case of flat plate gel electrophoresis and on-column capillary gel electrophoresis, and the difference becomes larger as the migration time, that is, the larger the molecular weight of the molecule.
That is, in off-column capillary gel electrophoresis, Tex <Top is set regardless of the molecular weight, and the excitation is insufficient.

【0013】本発明の目的はレーザ誘起蛍光計測電気泳
動装置において、励起時間が最適値に対して不足または
過剰になっている状態を是正することで感度を向上させ
る手法を提供することにある。
An object of the present invention is to provide a method for improving sensitivity in a laser-induced fluorescence measurement electrophoretic device by correcting a state where the excitation time is insufficient or excessive with respect to an optimum value.

【0014】[0014]

【課題を解決するための手段】本発明においては、平板
ゲルあるいはキャピラリゲルの両端に印加する電界強度
を周期的に変化させ、周期中の電界強度がゼロあるいは
比較的低い状態でレーザ励起及び蛍光露光を行う。平板
ゲル電気泳動,オンカラムキャピラリゲル電気泳動で
は、例えば、電界強度を加える場合とゼロにする場合を
交互に繰り返し、電界強度ゼロの時間帯にレーザ励起及
び蛍光露光を行う。オフカラムキャピラリゲル電気泳動
では試料が溶出する緩衝液を流さずに、例えば、電界強
度を加える場合とゼロにする場合を交互に繰り返し、電
界強度ゼロの時間帯に蛍光露光と分解されずに残ってい
る蛍光を除去する時間帯を設ける。蛍光除去は例えばそ
の時間帯に限って緩衝液を流したり、あるいは強力なレ
ーザビームを照射して短時間で蛍光分子を分解させる手
段等により行う。
In the present invention, the electric field strength applied to both ends of a flat gel or a capillary gel is periodically changed, and laser excitation and fluorescence are performed in a state where the electric field strength during the cycle is zero or relatively low. Expose. In the flat plate gel electrophoresis and the on-column capillary gel electrophoresis, for example, the case of applying the electric field strength and the case of setting the electric field strength to zero are alternately repeated, and laser excitation and fluorescence exposure are performed in a time zone when the electric field strength is zero. In off-column capillary gel electrophoresis, for example, the case where the electric field strength is applied and the case where the electric field strength is set to zero are alternately repeated without flowing the buffer solution that elutes the sample, and it remains without being decomposed with fluorescence exposure in the time zone when the electric field strength is zero. A time period for removing the fluorescent light is provided. The fluorescence is removed, for example, by flowing a buffer solution only in that time zone or by irradiating a strong laser beam to decompose the fluorescent molecules in a short time.

【0015】一定電界強度を加える場合とゼロにする場
合を交互に繰り返すことを考える。平板ゲル電気泳動,
オンカラムキャピラリゲル電気泳動では、電界印加時間
幅をT1,電界ゼロ時間幅をT2とし、T2の時間帯に
レーザ励起蛍光露光を行い、周期T1+T2の周期計測
を行う。電気泳動で分子量分離された断片内の蛍光分子
1個の励起時間は、従来の技術と異なり、レーザビーム
径,露光時間比率、その分子の泳動速度とは無関係で、
固定値T2になる。ただし、同一の蛍光分子が異なる蛍
光露光時間帯で励起されないようにするには、数3の条
件を満たす必要がある。
It is considered that the case of applying a constant electric field strength and the case of setting a constant electric field strength are alternately repeated. Slab gel electrophoresis,
In on-column capillary gel electrophoresis, the electric field application time width is T1, the electric field zero time width is T2, laser excitation fluorescence exposure is performed in the time zone of T2, and the cycle measurement of cycle T1 + T2 is performed. The excitation time of one fluorescent molecule in the fragment whose molecular weight has been separated by electrophoresis is different from the conventional technique, regardless of the laser beam diameter, the exposure time ratio, and the migration speed of the molecule,
It becomes a fixed value T2. However, in order to prevent the same fluorescent molecule from being excited in different fluorescence exposure time zones, it is necessary to satisfy the condition of Expression 3.

【0016】[0016]

【数3】 (Equation 3)

【0017】この条件を満たすようにT1は泳動時間に
よって変化させても良い。もちろんT2は任意に設定で
きるから、最適励起時間Topと一致させたり、それに近
づけたりすることができ、高感度化が達成できる。
T1 may be changed according to the migration time so as to satisfy this condition. Of course, T2 can be set arbitrarily, so that it can be matched with or close to the optimum excitation time Top, and high sensitivity can be achieved.

【0018】一方、オフカラムキャピラリゲル電気泳動
では、電界印加時間幅をT1,電界ゼロ時間幅をT2+
T3とし、T2の時間帯にレーザ励起蛍光露光を行い、
T3の時間帯に蛍光除去を行い、周期T1+T2+T3
の周期計測を行う。電気泳動で分子量分離された断片内
の蛍光分子1個の励起時間は、この場合も従来の技術と
異なり、レーザビーム径,露光時間比率、その分子の泳
動速度とは無関係で、固定値T2になる。また、この方
法では時間帯T3での蛍光除去が行われるため、同一の
蛍光分子が異なる蛍光露光時間帯で励起されることはな
い。したがってT1に対する条件はない。もちろんT2
は任意に設定できるから、最適励起時間Topと一致させ
たり、近づけたりすることができ、高感度化が達成でき
る。また、T1+T2を蛍光露光時間帯としてもよい。
On the other hand, in off-column capillary gel electrophoresis, the electric field application time width is T1, and the electric field zero time width is T2 +.
T3, laser-excited fluorescence exposure is performed in the time period of T2,
Fluorescence is removed during the period T3, and the cycle is T1 + T2 + T3.
The period is measured. Also in this case, the excitation time of one fluorescent molecule in the fragment whose molecular weight has been separated by electrophoresis is fixed to T2 regardless of the laser beam diameter, the exposure time ratio, and the migration speed of the molecule. Become. Further, in this method, since the fluorescence is removed in the time zone T3, the same fluorescent molecule is not excited in different fluorescence exposure time zones. Therefore, there is no condition for T1. Of course T2
Can be set arbitrarily, so that it can be matched with or close to the optimum excitation time Top, and high sensitivity can be achieved. Further, T1 + T2 may be the fluorescence exposure time zone.

【0019】[0019]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施例1)本実施例は平板ゲル電気泳動によるDNA
塩基配列決定を対象にしたもので、基本構成を図1に示
した。平板ゲル1は、長さ35cm,幅20cm,間隔0.
3mmの2枚の石英ガラス板の間に、変性剤として7Mの
ウレアを含んだ6%T(Totalmonomer concentratio
n),5%C(Crosslinking material concentration)
の濃度のアクリルアミドゲルを重合させて調製した。
(Example 1) In this example, DNA by slab gel electrophoresis was used.
The basic configuration is shown in Fig. 1 for the purpose of nucleotide sequencing. The slab gel 1 has a length of 35 cm, a width of 20 cm, and an interval of 0.
6% T (Total monomer concentratio) containing 7 M urea as a modifier between two 3 mm quartz glass plates.
n), 5% C (Crosslinking material concentration)
It was prepared by polymerizing acrylamide gel of the following concentration.

【0020】蛍光励起レーザ2はHe−Neレーザ63
3nm(25mW)をビーム径0.3mmに集光して、平板
ゲル上端より30cmの位置を平板ゲルの側面より泳動方
向に垂直に入射させ、すべての泳動路を一度に励起して
蛍光計測を行った。バンドパスフィルタ3(中心波長6
65nmで半値幅40nmの干渉フィルタで励起光を完
全カット)、及びカメラレンズ4を介し、冷却型の1次
元CCDカメラ5ですべての泳動路からの蛍光を一度に
露光計測した。
The fluorescence excitation laser 2 is a He-Ne laser 63.
3 nm (25 mW) was focused on a beam diameter of 0.3 mm, and a position 30 cm from the top of the slab gel was made incident vertically from the side of the slab gel in the migration direction, and all migration paths were excited at one time for fluorescence measurement. went. Bandpass filter 3 (center wavelength 6
Excitation light was completely cut by an interference filter having a half-value width of 40 nm at 65 nm), and fluorescence from all migration paths was exposed and measured at once by a cooling type one-dimensional CCD camera 5 through a camera lens 4.

【0021】DNAシーケンス反応は通常のサンガー法
に従った。バイオロジカル・ディテクション・システム
社(米国)より販売されている蛍光体Cy5(発光極大
波長665nm)を標識したM13ユニバーサルプライ
マを用い、末端塩基種A,C,G,Tごとにシーケンス
反応を行った。4種の反応物は平板ゲル上端の異なる泳
動路に設定した。
The DNA sequencing reaction followed the conventional Sanger method. Using M13 universal primer labeled with fluorescent substance Cy5 (emission maximum wavelength 665 nm) sold by Biological Detection System (USA), a sequence reaction is performed for each terminal base species A, C, G, T. It was The four reaction products were set in different migration paths at the top of the slab gel.

【0022】平板ゲルの上端と下端の間に印加する電界
強度は図2に示したように周期的に時間変化させた。す
なわち、時間幅T1の一定電界強度30V/cm(1k
V)区間と時間幅T2の電界強度ゼロ区間を交互に繰り
返させた。時間幅T1は図2に示したように泳動時間に
応じて段階的に変化させ、同一の蛍光分子が異なる露光
時間帯でレーザ励起されないようにした。これは分子量
分離された断片を泳動距離30cmで、レーザ径に相当す
る0.3mm の幅を単位に、順番に漏れなく、十分に励起
して蛍光計測するためである。ここで泳動時間とは、計
測時間と異なり、電界を印加している時間の総和(それ
までの時間幅T1の総和)と定義する。
The electric field strength applied between the upper and lower ends of the slab gel was periodically changed with time as shown in FIG. That is, the constant electric field strength of the time width T1 is 30 V / cm (1 k
V) section and zero electric field strength section of time width T2 were alternately repeated. The time width T1 was changed stepwise according to the migration time as shown in FIG. 2 so that the same fluorescent molecule was not laser-excited in different exposure time zones. This is because the fragments whose molecular weights have been separated are electrophoresed at a migration distance of 30 cm, and are sufficiently excited in sequence in a unit of a width of 0.3 mm corresponding to the laser diameter to measure fluorescence. Unlike the measurement time, the migration time is defined as the sum of the times during which the electric field is applied (the sum of the time width T1 up to that time).

【0023】例えば、泳動時間が0秒から1000秒ま
ではT1=1秒、1000秒から2000秒まではT1
=2秒、2000秒から3000秒まではT1=3秒と
いうように、1000×n秒から1000×(n+1)
秒まではT1=n+1秒(ここでnは0から35までの
整数)として約10時間泳動を続けた。時間幅T2は図
3に示したように泳動時間によらずに1秒に固定した。
この1秒間の電界強度ゼロ区間に限り、励起レーザの平
板ゲルへの照射、及び冷却型の1次元CCDカメラによ
る蛍光露光計測を行った。
For example, T1 = 1 second when the migration time is 0 to 1000 seconds, and T1 is 1000 seconds to 2000 seconds.
= 2 seconds, T1 = 3 seconds from 2000 seconds to 3000 seconds, such as 1000 × n seconds to 1000 × (n + 1)
Until the second, T1 = n + 1 second (where n is an integer from 0 to 35) and the electrophoresis was continued for about 10 hours. The time width T2 was fixed at 1 second regardless of the migration time as shown in FIG.
Irradiation of the excitation laser onto the slab gel and fluorescence exposure measurement by a cooling type one-dimensional CCD camera were performed only in this zero second electric field intensity section.

【0024】励起レーザの出力は十分に大きいため(2
5mW)、レーザ径0.3mm のレーザビーム上に存在す
る断片の蛍光分子は1秒間のレーザ照射でほぼ分解する
まで励起された。異なる塩基種に対応した四つの泳動路
からの蛍光を独立に計測し、その時間変化を解析するこ
とにより試料のDNA塩基配列を決定した。
Since the output of the pump laser is sufficiently large (2
5 mW), the fluorescent molecules of the fragment existing on the laser beam having a laser diameter of 0.3 mm were excited by laser irradiation for 1 second until they were almost decomposed. Fluorescence from four migration paths corresponding to different base species was independently measured, and the change over time was analyzed to determine the DNA base sequence of the sample.

【0025】以上の手法による蛍光計測を行うことで、
電気泳動分離された断片を無駄なく高効率に励起でき、
高感度計測が可能になった。
By performing the fluorescence measurement by the above method,
The fragments separated by electrophoresis can be excited efficiently without waste,
High-sensitivity measurement has become possible.

【0026】本実施例では時間幅T1を泳動時間に応じ
て変化させ、分子量分離された断片の露光時間を制御し
たが、この方法以外でも例えば、時間幅T1を一定にし
て印加電界強度を泳動時間に応じて変化させてもよい。
In the present embodiment, the time width T1 was changed according to the migration time to control the exposure time of the fragment whose molecular weight was separated. However, other than this method, for example, the time width T1 is kept constant and the applied electric field strength is migrated. You may change according to time.

【0027】(実施例2)本実施例は10本のキャピラ
リゲル電気泳動によるDNA塩基配列決定を対象にした
もので、基本構成を図3に示した。キャピラリゲルは、
長さ50cm,外径0.35mm,内径0.1mmの溶融石英管
に、変性剤として7Mのウレアを含んだ4%T(Total
monomer concentration),5%C(Crosslinking mate
rialconcentration)の濃度のアクリルアミドゲルを重合
させて調製した。キャピラリの注入端より30cmの位置
にはポリイミド被覆を除去して蛍光計測窓を予め作製し
ておき、泳動距離は30cmに固定した。このキャピラリ
ゲル10本を図3の6のように、0.35mm ピッチに揃
えて2次元状に配列し、水平方向可動ステージ8に固定
した。ただし図3にはキャピラリゲルの計測窓近傍のみ
を描いた。計測窓はキャピラリゲル配列方向に揃え、ス
テージのこの部分は石英ガラス製の板にした。
(Example 2) This example is intended for DNA base sequence determination by 10 capillary gel electrophoresis, and the basic constitution is shown in FIG. Capillary gel is
4% T (Total of 5 cm in length, outer diameter 0.35 mm, inner diameter 0.1 mm) containing 7 M urea as a modifier in a fused silica tube
monomer concentration), 5% C (Crosslinking mate
It was prepared by polymerizing acrylamide gel at a concentration of rial concentration). The polyimide coating was removed at a position 30 cm from the injection end of the capillary to prepare a fluorescence measurement window in advance, and the migration distance was fixed at 30 cm. As shown in 6 of FIG. 3, ten of these capillary gels were arranged in a two-dimensional array with a pitch of 0.35 mm and fixed to the horizontally movable stage 8. However, in FIG. 3, only the vicinity of the measurement window of the capillary gel is drawn. The measurement window was aligned in the direction of the capillary gel array, and this part of the stage was a quartz glass plate.

【0028】蛍光励起レーザ7はArイオンレーザ48
8nm及び515nm(40mW)をビーム径0.1mm
に集光して、ステージ上方斜め45度方向から1本のキ
ャピラリゲルの計測窓に照射した。可動ステージは0.
35mm 単位でキャピラリゲル配列方向(図3の矢印方
向)に動かし、すべてのキャピラリゲルを順番にレーザ
照射し、ステージ下方より蛍光計測を行った。発光蛍光
は図3に示したように、対物レンズ9で平行光束にして
から励起光カットフィルタ10を透過させ、3組のダイ
クロイックミラー11で4種の波長成分に選別した後、
4組のホトマルチプライヤ12で一度に計測した。
The fluorescence excitation laser 7 is an Ar ion laser 48.
Beam diameter 0.1 mm at 8 nm and 515 nm (40 mW)
Then, the sample was focused on the sample and was irradiated onto the measurement window of one capillary gel from the direction obliquely above the stage at 45 degrees. Movable stage is 0.
The capillary gel was moved in units of 35 mm in the direction of the capillary gel arrangement (the direction of the arrow in FIG. 3), and all the capillary gel was sequentially irradiated with laser light, and fluorescence was measured from below the stage. As shown in FIG. 3, the emitted fluorescence is converted into a parallel light flux by the objective lens 9 and then transmitted through the excitation light cut filter 10 and is separated into four wavelength components by the three dichroic mirrors 11,
Measurement was performed at once with four sets of photomultipliers 12.

【0029】10種の試料のシーケンス反応はサンガー
法に従ったパーキンエルマー社の反応キットを用いて行
った。調製されたDNA断片には,末端塩基種A,C,
G,Tに対応して4種の蛍光体JOE(極大発光波長5
50nm),FAM(極大発光波長520nm),TA
MRA(極大発光波長580nm),ROX(極大発光
波長605nm)を標識した。これら4種の蛍光が波長
選別されて図4に示した4組のホトマルチプライヤに入
射するように、3組のダイクロイックミラーを設計し
た。末端塩基種に対応した4種の反応物を試料種ごとに
混合した後、エタノール沈殿によって10倍に濃縮して
試料溶媒をホルムアミドに置換した。10本のキャピラ
リゲルの注入端をそれぞれ10種の試料液中に浸し、キ
ャピラリゲルの両端に100V/cm(5kV)の一定電
界強度を5秒間印加して試料注入を行った。
The sequence reaction of 10 kinds of samples was carried out using a reaction kit manufactured by Perkin Elmer Co. according to the Sanger method. The prepared DNA fragment contains terminal base species A, C,
Corresponding to G and T, four types of phosphor JOE (maximum emission wavelength 5
50 nm), FAM (maximum emission wavelength 520 nm), TA
MRA (maximum emission wavelength 580 nm) and ROX (maximum emission wavelength 605 nm) were labeled. Three sets of dichroic mirrors were designed so that these four types of fluorescence were wavelength-selected and incident on the four sets of photomultipliers shown in FIG. Four kinds of reaction products corresponding to the terminal base species were mixed for each sample species and then concentrated 10 times by ethanol precipitation to replace the sample solvent with formamide. The injection ends of 10 capillary gels were immersed in 10 kinds of sample solutions, and a constant electric field strength of 100 V / cm (5 kV) was applied to both ends of the capillary gel for 5 seconds to perform sample injection.

【0030】キャピラリゲルの両端に印加する電界強度
は図4に示したように周期的に時間変化させた。すなわ
ち、時間幅T1の一定電界強度区間200V/cm(10
kV)と時間幅T2の電界強度ゼロ区間を交互に繰り返
させた。時間幅T1は図4に示したように泳動時間に応
じて段階的に変化させ、同一の蛍光分子が異なる露光時
間帯でレーザ励起されないようにした。これは分子量分
離された断片を泳動距離30cmで、レーザ径に相当する
0.1mm の幅を単位に、順番に漏れなく、十分に励起し
て蛍光計測するためである。ここで泳動時間とは、計測
時間と異なり、電界を印加している時間の総和(それま
での時間幅T1の総和)と定義する。例えば、泳動時間
が0秒から1500秒まではT1=0.5秒 、1500
秒から3000秒まではT1=1秒、3000秒から450
0秒まではT1=1.5秒 というように、1500×n
秒から1500×(n+1)秒まではT1=0.5×(n
+1)秒(ここでnは0から5までの整数)として約2
時間半泳動を続けた。時間幅T2は図4に示したように
泳動時間によらずに15秒に固定した。この15秒間の
電界強度ゼロ区間に限り、可動ステージの移動,励起レ
ーザのキャピラリゲルへの照射、及び4組のホトマルチ
プライヤによる蛍光露光計測を行った。可動ステージは
1.5秒間隔で0.35mm単位で動かし、10本のキャピ
ラリゲルを順番に励起した。キャピラリゲル1本あたり
の蛍光露光時間は1秒に固定し、残りの0.5 秒の間に
ステージの移動,コンピュータによるデータ処理を行っ
た。励起レーザの出力は十分に大きいため(40m
W)、レーザ径0.1mmのレーザビーム上に存在する断
片からの蛍光は1秒間のレーザ照射でほぼ分解するまで
励起された。4組のホトマルチプライヤで得られた4種
の信号の時間変化はコンピュータで10本のキャピラリ
ゲルごとに解析され、10種の試料のDNA塩基配列を
決定した。以上の手法による蛍光計測を行うことで、電
気泳動分離された断片を無駄なく高効率に励起でき、高
感度計測が可能になった。
The electric field strength applied to both ends of the capillary gel was periodically changed with time as shown in FIG. That is, the constant electric field strength section of the time width T1 is 200 V / cm (10
kV) and the electric field intensity zero section of the time width T2 were alternately repeated. The time width T1 was changed stepwise according to the migration time as shown in FIG. 4 so that the same fluorescent molecule was not laser-excited in different exposure time zones. This is because the fragments whose molecular weights have been separated have a migration distance of 30 cm, and are sufficiently excited in order to measure fluorescence in a unit of a width of 0.1 mm corresponding to the laser diameter without leakage. Unlike the measurement time, the migration time is defined as the sum of the times during which the electric field is applied (the sum of the time width T1 up to that time). For example, T1 = 0.5 seconds, 1500 when the migration time is from 0 seconds to 1500 seconds
From 1 second to 3000 seconds T1 = 1 second, 3000 seconds to 450 seconds
T1 = 1.5 seconds until 0 seconds, 1500 × n
From 1 second to 1500 × (n + 1) seconds, T1 = 0.5 × (n
+1) seconds (where n is an integer from 0 to 5) about 2
The electrophoresis was continued for half an hour. The time width T2 was fixed at 15 seconds regardless of the migration time as shown in FIG. Only during this zero second electric field intensity section, movement of the movable stage, irradiation of the excitation laser to the capillary gel, and fluorescence exposure measurement by four sets of photomultipliers were performed. The movable stage was moved in units of 0.35 mm at intervals of 1.5 seconds, and 10 capillary gels were sequentially excited. The fluorescence exposure time per capillary gel was fixed at 1 second, and during the remaining 0.5 seconds, the stage was moved and data processing by the computer was performed. The output of the pump laser is large enough (40 m
W), the fluorescence from the fragment existing on the laser beam with the laser diameter of 0.1 mm was excited by laser irradiation for 1 second until it was almost decomposed. The time changes of the four types of signals obtained by the four sets of photomultipliers were analyzed by a computer for every 10 capillary gels, and the DNA base sequences of the 10 types of samples were determined. By performing the fluorescence measurement by the above method, the fragments electrophoretically separated can be efficiently excited without waste, and high-sensitivity measurement becomes possible.

【0031】本実施例ではレーザ径に相当する0.1mm
の幅を単位に、順番に漏れなく、十分に励起して蛍光計
測するために、電界強度のオンオフを行ったが、この方
法以外でも次の様な方法が可能である。電界強度は一定
にし、蛍光標識断片がレーザ径に相当する0.1mm の幅
だけ泳動するごとに強い出力のレーザをパルス的に照射
することにより、レーザビームの位置まで順次泳動され
る様々な蛍光標識断片を順番に漏れなく、十分に励起し
て蛍光計測することができる。
In this embodiment, the laser diameter is 0.1 mm.
The electric field intensity was turned on and off in order to excite fluorescence sufficiently without leaking in order with the width of the unit as a unit, but the following method is also possible other than this method. By keeping the electric field strength constant and irradiating a pulse of a high-power laser every time the fluorescent-labeled fragment migrates by a width of 0.1 mm corresponding to the laser diameter, various fluorescent lights are sequentially migrated to the position of the laser beam. The labeled fragments can be sequentially excited without any omission and fluorescence can be measured.

【0032】(実施例3)本実施例は20本のキャピラ
リゲル電気泳動によるDNA塩基配列決定を対象にした
もので、基本構成を図5,図6に示した。キャピラリゲ
ルは、長さ30cm,外径0.2mm,内径0.1mmの溶融石
英管に、変性剤として7Mのウレアを含んだ4%T,5
%Cの濃度のアクリルアミドゲルを重合させて調製し
た。キャピラリ内面には予めシラン化処理を施しておく
ことによって、キャピラリ内面とゲルを化学的に固定し
た。このキャピラリゲル20本を図5,図6の13のよ
うに、0.4mm ピッチに揃えて2次元状に配列し、分離
断片の溶出端を揃えて計測セル15の中の緩衝液20に
浸した。ただし図5,図6のキャピラリゲルは溶出端部
分のみを描いた。
(Embodiment 3) This embodiment is aimed at determining the DNA base sequence by electrophoresis of 20 capillary gels, and the basic constitution is shown in FIGS. Capillary gel is a 4% T, 5 containing a 7M urea as a modifier in a fused silica tube having a length of 30 cm, an outer diameter of 0.2 mm and an inner diameter of 0.1 mm.
It was prepared by polymerizing an acrylamide gel having a concentration of% C. The inner surface of the capillary was chemically silanized by subjecting the inner surface of the capillary to a silanization treatment in advance. As shown in 13 of FIGS. 5 and 6, the 20 capillary gels are arranged in a two-dimensional array with 0.4 mm pitch, and the elution ends of the separated fragments are aligned and immersed in the buffer solution 20 in the measuring cell 15. did. However, in the capillary gels of FIGS. 5 and 6, only the elution end portion was drawn.

【0033】蛍光励起レーザ14はYAGレーザ532
nm(20mW)及びHe−Neレーザ594nm(1
0mW)を同軸にした後、ビーム径0.2mm に集光し
て、緩衝液中のキャピラリゲル溶出端より0.2mm 下方
をキャピラリゲル配列方向に照射し、20本のキャピラ
リゲルから電気泳動によって緩衝液中に溶出された断片
を一度に励起した。つまり、レーザビーム径とキャピラ
リゲル溶出端の間には0.1mm の間隔を設け、レーザビ
ームがキャピラリゲルに散乱されないようにした。蛍光
計測はキャピラリゲル配列平面に対して垂直方向より行
った。水平方向に幅8mmに1列に並ぶ20個の蛍光発光
点群を第一カメラレンズ16で平行光束にし、像を垂直
方向に四つに分割する像分割プリズム及び四つの像を結
ぶ光束に対応させた4種の組み合わせフィルタ17を透
過させ、第二カメラレンズ18で結像させた。なお、こ
の蛍光選別法については特開平2−269936 号に詳しく記
されている。20×4=80個に2次元状に展開された
蛍光発光点群は、冷却型の2次元CCDカメラ19で一
度に露光計測した。
The fluorescence excitation laser 14 is a YAG laser 532.
nm (20 mW) and He-Ne laser 594 nm (1
(0 mW) is made coaxial, then the beam diameter is focused to 0.2 mm, and 0.2 mm below the elution end of the capillary gel in the buffer solution is irradiated in the direction of the capillary gel array, and 20 capillary gels are electrophoresed. The fragments eluted in buffer were excited at once. That is, a space of 0.1 mm was provided between the laser beam diameter and the capillary gel elution end to prevent the laser beam from being scattered by the capillary gel. The fluorescence measurement was performed in the direction perpendicular to the plane of the capillary gel array. Corresponds to an image splitting prism that splits an image into four in the vertical direction and a light flux that connects four images by collimating 20 fluorescent light emission point groups arranged in a row with a width of 8 mm in the horizontal direction by the first camera lens 16 The four types of combination filters 17 thus made were transmitted and an image was formed by the second camera lens 18. The fluorescence selection method is described in detail in JP-A-2-269936. The fluorescent emission point group developed in a two-dimensional manner into 20 × 4 = 80 pieces was subjected to exposure measurement at one time by a cooling type two-dimensional CCD camera 19.

【0034】20種の試料のシーケンス反応はサンガー
法に従って行った。調製されたDNA断片には、末端塩基
種A,C,G,Tに対応して4種の蛍光体Cy3(極大発
光波長565nm),TRITC(極大発光波長580
nm),Texas Red(極大発光波長615nm),C
y5(極大発光波長665nm)を標識した。ここで、C
y3,Cy5はバイオロジカル・ディテクション・システ
ム社(米国)より販売されており、TRITC,Texas
Redはモレキュラー・プローブ社より販売されてい
る。これら4種の蛍光が波長選別されて2次元CCDカ
メラに結像されるように、4種の組み合わせフィルタを
設計した。末端塩基種に対応した4種の反応物を試料種
ごとに混合した後、エタノール沈殿によって10倍に濃
縮して試料溶媒をホルムアミドに置換した。20本のキ
ャピラリゲルの試料注入端をそれぞれ20種の試料液中
に浸し、キャピラリゲルの両端に100V/cm(3k
V)の一定電界強度を2秒間印加して試料注入を行っ
た。
The sequence reaction of 20 kinds of samples was performed according to the Sanger method. The prepared DNA fragments contained four types of fluorescent substances Cy3 (maximum emission wavelength 565 nm) and TRITC (maximum emission wavelength 580) corresponding to the terminal base species A, C, G, and T.
nm), Texas Red (maximum emission wavelength 615 nm), C
y5 (maximum emission wavelength 665 nm) was labeled. Where C
y3 and Cy5 are sold by Biological Detection Systems, Inc. (US), TRITC, Texas
Red is sold by Molecular Probes. Four types of combination filters were designed so that these four types of fluorescence were wavelength-selected and imaged on a two-dimensional CCD camera. Four kinds of reaction products corresponding to the terminal base species were mixed for each sample species and then concentrated 10 times by ethanol precipitation to replace the sample solvent with formamide. The sample injection ends of 20 capillary gels were immersed in 20 kinds of sample liquids, respectively, and 100 V / cm (3k) was applied to both ends of the capillary gel.
The sample was injected by applying a constant electric field strength of V) for 2 seconds.

【0035】キャピラリゲルの両端に印加する電界強度
は図7に示したように周期的に時間変化さた。すなわ
ち、時間幅T1の一定電界強度区間200V/cm(6k
V)と時間幅T2+T3の電界強度ゼロ区間を交互に繰
り返させた。時間幅T1は図7に示したように泳動時間
によらず1秒に固定した。ここで泳動時間とは、計測時
間と異なり、電界を印加している時間の総和(それまで
の時間幅T1の総和)と定義する。電界強度ゼロ区間の
時間幅T2及びT3は図7に示したように泳動時間によ
らずにそれぞれ0.5秒に固定した。0.5秒間のT2区
間に限り、励起レーザの緩衝液中への照射、2次元CC
Dカメラによる蛍光露光を行った。また、続く0.5 秒
間のT3区間に限り、計測部分の緩衝液を図6の矢印方
向にフローさせ、キャピラリゲルより溶出して浮遊して
いる断片の蛍光を計測位置近傍から完全に除去した。以
上の合計2秒周期の計測を約4時間(泳動時間は約2時
間)続けた。2次元CCDカメラで得られた4種の蛍光
に対応する4種の信号の時間変化はコンピュータで20
本のキャピラリゲルごとに解析され、20種の試料のD
NA塩基配列を決定した。以上の手法による蛍光計測を
行うことで、電気泳動分離された断片を無駄なく高効率
に励起でき、高感度計測が可能になった。
The electric field strength applied to both ends of the capillary gel was periodically changed with time as shown in FIG. That is, a constant electric field strength section of time width T1 is 200 V / cm (6 k
V) and the electric field intensity zero section of the time width T2 + T3 were alternately repeated. The time width T1 was fixed at 1 second regardless of the migration time as shown in FIG. Unlike the measurement time, the migration time is defined as the sum of the times during which the electric field is applied (the sum of the time width T1 up to that time). As shown in FIG. 7, the time widths T2 and T3 of the zero electric field strength section were fixed at 0.5 seconds, regardless of the migration time. Irradiation of excitation laser into buffer solution, two-dimensional CC only for T2 section of 0.5 seconds
Fluorescence exposure with a D camera was performed. Further, only in the subsequent T3 section for 0.5 seconds, the buffer solution in the measurement portion was caused to flow in the direction of the arrow in FIG. 6 to completely remove the fluorescence of the fragment eluted and suspended from the capillary gel from the vicinity of the measurement position. . The measurement of the total 2 second cycle was continued for about 4 hours (migration time was about 2 hours). The time change of four kinds of signals corresponding to the four kinds of fluorescence obtained by the two-dimensional CCD camera is calculated by the computer.
D of 20 kinds of samples analyzed by each capillary gel of the book
The NA base sequence was determined. By performing the fluorescence measurement by the above method, the fragments electrophoretically separated can be efficiently excited without waste, and high-sensitivity measurement becomes possible.

【0036】(実施例4)本実施例は96本のキャピラ
リゲル電気泳動によるDNA塩基配列決定を対象にした
もので、基本構成を図8に示した。キャピラリゲルは、
長さ30cm,外径0.2mm,内径0.1mmの溶融石英管
に、変性剤として7Mのウレアを含んだ4%T,5%C
の濃度のアクリルアミドゲルを重合させて調製した。キ
ャピラリ内面には予めシラン化処理を施しておくことに
よって、キャピラリ内面とゲルを化学的に固定した。
(Embodiment 4) This embodiment is intended for DNA base sequence determination by 96 capillary gel electrophoresis, and the basic constitution is shown in FIG. Capillary gel is
4% T, 5% C containing 7M urea as a modifier in a fused silica tube having a length of 30 cm, an outer diameter of 0.2 mm and an inner diameter of 0.1 mm.
It was prepared by polymerizing acrylamide gel of the following concentration. The inner surface of the capillary was chemically silanized by subjecting the inner surface of the capillary to a silanization treatment in advance.

【0037】このキャピラリゲル96本を、図8,図9
に示したような12×8の格子状に配列した96穴を持
つ石英製セル24の各穴に1本ずつ配置した。ただし図
8中のキャピラリゲルは試料断片の溶出端側のみを描い
た。セル全体及び各穴は緩衝液槽23の中の緩衝液20
で満たした。セルの各穴は96穴すべて同形にした。セ
ル全体の大きさは図9に示したように、格子面が12mm
×8mm,厚みが10mmとした。格子の単位は図10に示
したように、1mm×1mm,厚みが10mmで、穴は中心に
0.4mm×0.4mmで貫通させた。外径0.2mm のキャピ
ラリゲルは穴の中心位置に配置し、溶出端はセルの底面
より2mm手前で固定した。
The 96 capillary gels are shown in FIGS.
A quartz cell 24 having 96 holes arranged in a 12 × 8 grid pattern as shown in FIG. However, the capillary gel in FIG. 8 depicts only the elution end side of the sample fragment. The whole cell and each hole are the buffer solution 20 in the buffer solution tank 23.
Filled with All 96 holes of the cell were made the same shape. As shown in Fig. 9, the size of the whole cell is 12 mm in the lattice plane.
The thickness was × 8 mm and the thickness was 10 mm. As shown in FIG. 10, the unit of the lattice was 1 mm × 1 mm and the thickness was 10 mm, and the hole was penetrated in the center with 0.4 mm × 0.4 mm. A capillary gel having an outer diameter of 0.2 mm was placed at the center of the hole, and the elution end was fixed 2 mm before the bottom surface of the cell.

【0038】蛍光励起レーザ32はArイオンレーザ4
88nm及び515nm(40mW)をビーム径0.3mm
に集光して、キャピラリゲルの溶出端より0.3mm下方
を、セルを底面方向から見た図11に示したように、レ
ーザビームを7個の直角プリズム31で繰り返し折り返
すことによって96本のキャピラリゲルから電気泳動に
よって緩衝液中に溶出された断片を一度に励起した。レ
ーザビーム径とキャピラリゲル溶出端の間には0.15m
m の間隔を設け、レーザビームがキャピラリゲルに散乱
されないようにした。また、セル中を透過するレーザビ
ームが反射,散乱,吸収等で出力が減衰しないように、
96穴の内面精度を整えた。
The fluorescence excitation laser 32 is an Ar ion laser 4
Beam diameter of 0.3 mm at 88 nm and 515 nm (40 mW)
As shown in FIG. 11 in which the cell is viewed from the bottom surface, the laser beam is repeatedly turned back by seven right-angle prisms 31 to collect 96 pieces of light, The fragments eluted in the buffer by electrophoresis from the capillary gel were excited at one time. 0.15 m between the laser beam diameter and the elution end of the capillary gel
An interval of m 2 was provided to prevent the laser beam from being scattered by the capillary gel. Also, to prevent the laser beam passing through the cell from being attenuated by reflection, scattering, absorption, etc.,
The inner surface precision of 96 holes was adjusted.

【0039】一方、蛍光分解レーザ33としてHe−C
dレーザ325nm(100mW)をビーム径0.3mm
に集光して、キャピラリゲルの溶出端より0.3mm下方
を、図12に示したようにArイオンレーザと逆経路
で、96本のキャピラリゲルから電気泳動によって緩衝
液中に溶出された断片を一度に照射,分解した。蛍光計
測は図8に示したように、セル底面方向、つまり鉛直下
方より行った。12mm×8mmに格子状に配列した96個
の蛍光発光点群を第一カメラレンズ25で平行光束に
し、像を8mmの辺方向に四つに分割する像分割プリズム
及び四つの像を結ぶ光束に対応させた4種の組み合わせ
フィルタ26を透過させ、第二カメラレンズ27で結像
させた。
On the other hand, He--C is used as the fluorescence decomposition laser 33.
d laser 325nm (100mW) beam diameter 0.3mm
Fragments eluted at 0.3 mm below the elution end of the capillary gel in a buffer solution by electrophoresis from 96 capillary gels in the reverse route to the Ar ion laser as shown in FIG. Was irradiated and decomposed at once. As shown in FIG. 8, the fluorescence measurement was performed from the bottom direction of the cell, that is, vertically downward. The 96 fluorescent light emission point groups arranged in a grid pattern of 12 mm x 8 mm are made into a parallel light beam by the first camera lens 25, and an image division prism that divides the image into four in the side direction of 8 mm and a light beam that connects the four images are formed. The corresponding four combination filters 26 were transmitted and an image was formed by the second camera lens 27.

【0040】なお、この蛍光選別法については特開平2
−269936 号に詳しく記されている。96×4=384
個に2次元状に展開された蛍光点群は、冷却型の2次元
CCDカメラ28で一度に露光計測した。
Incidentally, this fluorescence selection method is disclosed in
-269936. 96 x 4 = 384
The fluorescent point groups individually developed in a two-dimensional manner were subjected to exposure measurement at once with a cooling type two-dimensional CCD camera 28.

【0041】96種の試料のシーケンス反応はサンガー
法に従ったパーキンエルマー社の反応キットを用いて行
った。調製されたDNA断片には,末端塩基種A,C,
G,Tに対応して4種の蛍光体JOE(極大発光波長5
50nm),FAM(極大発光波長520nm),TA
MRA(極大発光波長580nm),ROX(極大発光
波長605nm)を標識した。これら4種の蛍光が波長
選別されて2次元CCDカメラに結像されるように、4
種の組み合わせフィルタを設計した。末端塩基種に対応
した4種の反応物を試料種ごとに混合した後、エタノー
ル沈殿によって10倍に濃縮して試料溶媒をホルムアミ
ドに置換した。96本のキャピラリゲルの試料注入端を
それぞれ96種の試料液中に浸し、キャピラリゲルの両
端に100V/cm(3kV)の一定電界強度を2秒間印加
して試料注入を行った。
The sequence reaction of 96 kinds of samples was carried out using a reaction kit manufactured by Perkin Elmer Co. according to the Sanger method. The prepared DNA fragment contains terminal base species A, C,
Corresponding to G and T, four types of phosphor JOE (maximum emission wavelength 5
50 nm), FAM (maximum emission wavelength 520 nm), TA
MRA (maximum emission wavelength 580 nm) and ROX (maximum emission wavelength 605 nm) were labeled. The wavelengths of these four types of fluorescent light are selected and imaged on a two-dimensional CCD camera.
A kind of combinatorial filter was designed. Four kinds of reaction products corresponding to the terminal base species were mixed for each sample species and then concentrated 10 times by ethanol precipitation to replace the sample solvent with formamide. The sample injection ends of the 96 capillary gels were respectively immersed in 96 types of sample liquids, and a constant electric field strength of 100 V / cm (3 kV) was applied to both ends of the capillary gel for 2 seconds for sample injection.

【0042】キャピラリゲルの両端に印加する電界強度
は図13に示したように周期的に時間変化さた。すなわ
ち、時間幅T1の一定電界強度区間200V/cm(6k
V)と時間幅T2+T3の電界強度ゼロ区間を交互に繰
り返させた。時間幅T1は図13に示したように泳動時
間によらず1秒に固定した。ここで泳動時間とは、計測
時間と異なり、電界を印加している時間の総和(それま
での時間幅T1の総和)と定義する。電界強度ゼロ区間
の時間幅T2及びT3は図13に示したように泳動時間
によらずにそれぞれ1秒に固定した。1秒間のT2区間
に限り、励起レーザの緩衝液中への照射,2次元CCD
カメラによる蛍光露光を行った。また、1秒間のT3区
間に限り、分解レーザの緩衝液中への照射,キャピラリ
ゲルより溶出して計測位置近傍に浮遊している試料蛍光
を完全に分解除去した。以上の合計3秒周期の計測を約
6時間(泳動時間は約2時間)続けた。2次元CCDカ
メラで得られた4種の蛍光に対応する4種の信号の時間
変化はコンピュータで96本のキャピラリゲルごとに解
析され、96種の試料のDNA塩基配列を決定した。以
上の手法による蛍光計測を行うことで、電気泳動分離さ
れた断片を無駄なく高効率に励起でき、高感度計測が可
能になった。
The electric field strength applied to both ends of the capillary gel was periodically changed with time as shown in FIG. That is, a constant electric field strength section of time width T1 is 200 V / cm (6 k
V) and the electric field intensity zero section of the time width T2 + T3 were alternately repeated. The time width T1 was fixed at 1 second regardless of the migration time as shown in FIG. Unlike the measurement time, the migration time is defined as the sum of the times during which the electric field is applied (sum of the time width T1 up to that time). As shown in FIG. 13, the time widths T2 and T3 of the zero electric field strength section were fixed to 1 second, respectively, regardless of the migration time. Irradiation of excitation laser into buffer solution, 2D CCD only for T2 section for 1 second
Fluorescent exposure with a camera was performed. Further, only in the T3 section for 1 second, irradiation of the decomposition laser into the buffer solution, and the sample fluorescence which was eluted from the capillary gel and suspended in the vicinity of the measurement position were completely decomposed and removed. The measurement of the above total 3 second cycle was continued for about 6 hours (migration time was about 2 hours). The time change of four kinds of signals corresponding to four kinds of fluorescence obtained by a two-dimensional CCD camera was analyzed by a computer for each 96 capillary gels, and the DNA base sequences of 96 kinds of samples were determined. By performing the fluorescence measurement by the above method, the fragments electrophoretically separated can be efficiently excited without waste, and high-sensitivity measurement becomes possible.

【0043】以上四つの実施例では、印加電界強度をス
テップ状に変化させたが、これ以外でも例えば正弦波状
に変化させ、正弦波の谷の部分を露光時間としてもよ
い。
In the above four embodiments, the applied electric field strength was changed stepwise, but other than this, for example, it may be changed sinusoidally and the valley portion of the sinusoidal wave may be used as the exposure time.

【0044】[0044]

【発明の効果】本発明によれば、電気泳動により分子量
分離された蛍光標識試料を最適な励起時間でレーザ照
射,蛍光露光することが可能となり、蛍光計測感度を向
上させることができる。
EFFECTS OF THE INVENTION According to the present invention, it becomes possible to irradiate a fluorescently labeled sample whose molecular weight has been separated by electrophoresis with a laser beam and to expose it with fluorescence in an optimum excitation time, and to improve the fluorescence measurement sensitivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1の装置の斜視図。FIG. 1 is a perspective view of an apparatus according to a first embodiment.

【図2】実施例1の電界強度周期関数の説明図。FIG. 2 is an explanatory diagram of an electric field strength periodic function according to the first embodiment.

【図3】実施例2の装置の説明図。FIG. 3 is an explanatory diagram of an apparatus according to a second embodiment.

【図4】実施例2の電界強度周期関数の説明図。FIG. 4 is an explanatory diagram of an electric field strength periodic function according to the second embodiment.

【図5】実施例3の装置の斜視図。FIG. 5 is a perspective view of the device according to the third embodiment.

【図6】実施例3の計測セルの説明図。FIG. 6 is an explanatory diagram of a measuring cell according to a third embodiment.

【図7】実施例3の電界強度周期関数の説明図。FIG. 7 is an explanatory diagram of an electric field strength periodic function according to the third embodiment.

【図8】実施例4の装置の斜視図。FIG. 8 is a perspective view of the device according to the fourth embodiment.

【図9】実施例4の計測セルの斜視図。FIG. 9 is a perspective view of a measuring cell according to a fourth embodiment.

【図10】実施例4の計測セルの格子単位の説明図。FIG. 10 is an explanatory diagram of a grid unit of the measurement cell according to the fourth embodiment.

【図11】実施例4の蛍光励起レーザ照射の説明図。FIG. 11 is an explanatory diagram of fluorescence excitation laser irradiation of Example 4.

【図12】実施例4の蛍光分解レーザ照射の説明図。FIG. 12 is an explanatory diagram of fluorescence decomposition laser irradiation of Example 4.

【図13】実施例4の電界強度周期関数の説明図。FIG. 13 is an explanatory diagram of an electric field strength periodic function according to the fourth embodiment.

【符号の説明】[Explanation of symbols]

1…平板ゲル、2…励起レーザ、3…バンドパスフィル
タ、4…結像レンズ、5…1次元CCDカメラ。
1 ... Flat gel, 2 ... Excitation laser, 3 ... Band pass filter, 4 ... Imaging lens, 5 ... One-dimensional CCD camera.

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】レーザ誘起蛍光計測電気泳動装置におい
て、互いに異なる複数種類の電界強度の間を繰り返し連
続的または段階的に変化させる電界強度印加手段と、前
記繰り返しに同期して蛍光受光のための露光を制御して
蛍光計測する手段を具備することを特徴とする電気泳動
装置。
1. A laser-induced fluorescence measurement electrophoretic device, comprising: an electric field strength applying means for repeatedly or continuously changing between different kinds of electric field strengths; and a means for receiving fluorescence in synchronization with the repetition. An electrophoretic device comprising means for controlling exposure to measure fluorescence.
【請求項2】請求項1において、レーザ照射位置に存在
する蛍光標識試料を除去する手段を具備する電気泳動装
置。
2. The electrophoretic device according to claim 1, further comprising means for removing the fluorescence-labeled sample existing at the laser irradiation position.
【請求項3】請求項1または2において、前記複数種類
の電界強度が泳動時間に応じて変化する電気泳動装置。
3. The electrophoretic device according to claim 1, wherein the plurality of types of electric field strengths change according to an electrophoretic time.
【請求項4】請求項1,2または3において、蛍光露光
時間帯の印加電界強度をゼロ、または実質ゼロにする電
気泳動装置。
4. The electrophoretic device according to claim 1, wherein the applied electric field strength in the fluorescence exposure time zone is zero or substantially zero.
【請求項5】請求項1,3または4において、電気泳動
媒体が平板ゲルであって、試料が一定距離泳動された平
板ゲル中の位置を、平板ゲル側面よりレーザを照射して
複数の泳動路を一度に励起したり、あるいはレーザを走
査して複数の泳動路を順番に励起して蛍光計測を行う電
気泳動装置。
5. The electrophoretic medium according to claim 1, 3 or 4, wherein the electrophoretic medium is a flat gel, and a position in the flat gel where the sample has been electrophoresed for a predetermined distance is irradiated with a laser from the side of the flat gel to cause a plurality of electrophoretic migrations. An electrophoretic device that excites a single path at a time or scans a laser to sequentially excite multiple migration paths to measure fluorescence.
【請求項6】請求項1,3または4において、電気泳動
媒体が1本以上のキャピラリゲルであって、試料が一定
距離泳動されたキャピラリゲル中の位置を、レーザ照射
して1本以上のキャピラリゲルを一度に励起したり、あ
るいはレーザを走査して1本以上のキャピラリゲルを順
番に励起して蛍光計測を行う電気泳動装置。
6. The electrophoretic medium according to claim 1, wherein the electrophoretic medium is one or more capillary gels, and the position in the capillary gel where the sample has been electrophoresed for a certain distance is irradiated with laser to obtain one or more capillary gels. An electrophoretic device that excites a capillary gel at a time or scans a laser to sequentially excite one or more capillary gels to measure fluorescence.
【請求項7】請求項2,3または4において、蛍光除去
時間帯と蛍光露光時間帯を交互に繰り返して連続計測を
行う電気泳動装置。
7. An electrophoretic device according to claim 2, 3 or 4, wherein the fluorescence removal time period and the fluorescence exposure time period are alternately repeated to perform continuous measurement.
【請求項8】請求項2,3,4または7において、蛍光
計測を前記蛍光標識試料が前記電気泳動媒体の終端から
溶出された緩衝液中で行う電気泳動装置。
8. The electrophoresis apparatus according to claim 2, 3, 4, or 7, wherein the fluorescence measurement is performed in a buffer solution in which the fluorescence-labeled sample is eluted from the end of the electrophoresis medium.
【請求項9】請求項8において、電気泳動媒体が平板ゲ
ルであって、試料が平板ゲル終端より溶出される緩衝液
中を、平板ゲル側面方向よりレーザ照射して複数の泳動
路を一度に励起したり、あるいはレーザを走査して複数
の泳動路を順番に励起して蛍光計測を行う電気泳動装
置。
9. The electrophoretic medium according to claim 8, wherein the electrophoretic medium is a slab gel, and a buffer solution in which the sample is eluted from the end of the slab gel is irradiated with a laser from the side direction of the slab gel to form a plurality of migration paths at once. An electrophoretic device that excites or scans a laser to sequentially excite a plurality of migration paths to measure fluorescence.
【請求項10】請求項8において、電気泳動媒体が1本
以上のキャピラリゲルであって、試料がキャピラリゲル
終端より溶出される緩衝液中を、レーザ照射して1本以
上のキャピラリゲルを一度に励起したり、あるいはレー
ザを走査して1本以上のキャピラリゲルを順番に励起し
て蛍光計測を行う電気泳動装置。
10. The electrophoretic medium according to claim 8, wherein the electrophoretic medium is one or more capillary gels, and the buffer solution in which the sample is eluted from the end of the capillary gel is irradiated with a laser to expose the one or more capillary gels once. An electrophoretic device that performs fluorescence measurement by exciting at least one or more capillary gels in sequence by scanning a laser.
【請求項11】請求項9,10または11において、前
記蛍光除去手段が蛍光計測領域の緩衝液をフローさせる
ことである電気泳動装置。
11. The electrophoresis apparatus according to claim 9, 10 or 11, wherein the fluorescence removing means causes a buffer solution in the fluorescence measurement region to flow.
【請求項12】請求項8,9または10において、前記
蛍光除去手段が蛍光計測領域への蛍光除去用レーザ照射
であって、このレーザは蛍光計測用励起レーザより大き
な速度で蛍光体を分解させる電気泳動装置。
12. The fluorescence removing means according to claim 8, wherein the fluorescence removing means irradiates a fluorescence measuring region with a fluorescence removing laser, and the laser decomposes the phosphor at a speed higher than that of the fluorescence measuring excitation laser. Electrophoresis device.
【請求項13】請求項8,9または10において、緩衝
液中に溶出された試料の拡散を押さえる壁を設ける電気
泳動装置。
13. The electrophoresis device according to claim 8, 9 or 10, wherein a wall is provided to suppress the diffusion of the sample eluted in the buffer solution.
【請求項14】請求項1,2,3,4,5,6,7,
8,9,10,11,12または13において、蛍光露
光時間帯と同期させたレーザの蛍光計測位置への照射時
間帯を設ける電気泳動装置。
14. The method of claim 1, 2, 3, 4, 5, 6, 7,
An electrophoretic device in 8, 9, 10, 11, 12, or 13 in which an irradiation time zone to the fluorescence measurement position of the laser synchronized with the fluorescence exposure time zone is provided.
JP7282887A 1995-10-31 1995-10-31 Cataphoresis device Pending JPH09127058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7282887A JPH09127058A (en) 1995-10-31 1995-10-31 Cataphoresis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7282887A JPH09127058A (en) 1995-10-31 1995-10-31 Cataphoresis device

Publications (1)

Publication Number Publication Date
JPH09127058A true JPH09127058A (en) 1997-05-16

Family

ID=17658387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7282887A Pending JPH09127058A (en) 1995-10-31 1995-10-31 Cataphoresis device

Country Status (1)

Country Link
JP (1) JPH09127058A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001091463A (en) * 1999-09-22 2001-04-06 Tosoh Corp Scanner type fluorescence detector using small-sized exciting light source
US6387235B1 (en) 1998-09-09 2002-05-14 Hitachi, Ltd. Apparatus for the separation and fractionation of differentially expressed gene fragments

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6387235B1 (en) 1998-09-09 2002-05-14 Hitachi, Ltd. Apparatus for the separation and fractionation of differentially expressed gene fragments
JP2001091463A (en) * 1999-09-22 2001-04-06 Tosoh Corp Scanner type fluorescence detector using small-sized exciting light source

Similar Documents

Publication Publication Date Title
US5833827A (en) Capillary array electrophoresis system
JP3467995B2 (en) Capillary electrophoresis device
Takahashi et al. Multiple sheath-flow gel capillary-array electrophoresis for multicolor fluorescent DNA detection
US20070074973A1 (en) Electrophoresis Apparatus For Simultaneous Loading of Multiple Samples
PT830591E (en) Method and device for molecular sequencing
US6132578A (en) Method and apparatus for electrophoresis separation and detection
EP2027250A2 (en) Bioanalytical instrumentation using a light source subsystem
JP3613032B2 (en) Capillary array electrophoresis device
JP3456070B2 (en) Capillary array electrophoresis device
JP3450947B2 (en) Fluorescence detection type capillary array electrophoresis device
US20030087290A1 (en) Bio-affinity porous matrix in microfluidic channels
JP3539014B2 (en) Capillary array electrophoresis device
JPH09127058A (en) Cataphoresis device
JP3536851B2 (en) Capillary array electrophoresis device
JP2702965B2 (en) Gene detection apparatus and gene detection method
JPH1019846A (en) Multicapillary electrophoretic apparatus
JP3654290B2 (en) Capillary array electrophoresis device
JP3722131B2 (en) Capillary array electrophoresis device
JP3839412B2 (en) Fluorescence detection type capillary array electrophoresis apparatus
JP2840586B2 (en) Light detection electrophoresis device
JP2004144532A (en) Capillary electrophoresis isolation system and isolation method for samples
JP3695631B2 (en) Electrophoresis device
JP3750663B2 (en) Capillary array electrophoresis device
US20040248117A1 (en) Method for detecting a substance and microtiter plate
JP2001133438A (en) Ultracompact thin layer gel electrophoresis apparatus