JPH09127001A - Nondestructive inspection method for sealed material - Google Patents

Nondestructive inspection method for sealed material

Info

Publication number
JPH09127001A
JPH09127001A JP28359095A JP28359095A JPH09127001A JP H09127001 A JPH09127001 A JP H09127001A JP 28359095 A JP28359095 A JP 28359095A JP 28359095 A JP28359095 A JP 28359095A JP H09127001 A JPH09127001 A JP H09127001A
Authority
JP
Japan
Prior art keywords
container
sealed
raman spectrum
light
spectrum analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28359095A
Other languages
Japanese (ja)
Inventor
Masaru Ishihara
勝 石原
Eiichiro Suzuki
榮一郎 鈴木
Akira Hiraishi
明 平石
Shigeru Yamanaka
茂 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP28359095A priority Critical patent/JPH09127001A/en
Publication of JPH09127001A publication Critical patent/JPH09127001A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a nondestructive inspection method in which the quality of a material sealed inside an enclosed system can be inspected quickly and simply by subjecting the sealed material to a Raman spectrum analysis as it is without opening and destroying its container and measuring a gas composition inside the container. SOLUTION: A sealed material is subjected to a vibrational Raman spectrum analysis without opening its container, and a gas composition inside the sealed container is measured nondestructively. In order to cut off disturbing light originated from diffused reflection due to the sealed container, a sealed preservation container is housed in a container which is provided with an incident-light entrance, a transmitted-light exit and a Raman-scattered-light takeout port which are composed of a material which does not transmit a light-source wavelength. In addition or alternatively, a filter which cuts off only disturbing light or only the light near a detection-light wavelength is used in an optical path, and the vibrational Raman spectrum analysis is performed. In addition, a gas such as oxygen, nitrogen, hydrogen or the like or all of them are combined simultaneously or arbitrarily, and they are measured by the vibrational Raman spectrum analytical method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は材料を密封した閉鎖
系における非破壊検査法、更に詳しくは、閉鎖系容器に
密封した各種材料を該容器のヘッドスペースのガス組成
を振動ラマンスペクトル分析に付す非破壊検査方法に関
する。すなわち、各種材料を密封した容器を破壊または
開封することなく、容器内のガス組成を分析する方法、
及び更に進んでは、得られたガス組成から密封容器内の
生物等の増殖、及び増殖した生物種を同定する等により
密封材料の品質等の検査を行う方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nondestructive inspection method in a closed system in which a material is sealed, and more specifically, various materials sealed in a closed container are subjected to vibrational Raman spectrum analysis of the gas composition in the headspace of the container. Non-destructive inspection method. That is, a method of analyzing the gas composition in a container without breaking or opening the container in which various materials are sealed,
And, further, it relates to a method of inspecting the quality of a sealing material and the like by proliferating organisms and the like in a sealed container from the obtained gas composition and identifying the proliferated species.

【0002】[0002]

【従来の技術】従来、閉鎖系の気相のガス組成分析法と
しては、密封容器からシリンジで容器内ガスの一部を抜
き取り、これをガスクロマトグラフィーにより分析する
方法がある。しかしながら、この方法は多大の時間と労
力を必要とし、例えば、ガス置換食品などの気相中のガ
ス組成を検査する場合に全ての製品について検査するこ
とは事実上困難で、この方法の使用は、事実上、製品の
内のいくつかについての抜き取り検査に限定される。
又、容器内ガスのサンプリング時に空気の混入などの危
険が伴い、容器内のガス組成を迅速かつ正確に測定する
ことは難しく、測定出来るガスの種類も限られている。
2. Description of the Related Art Conventionally, as a closed gas phase gas composition analysis method, there is a method in which a part of the gas in the container is extracted from a sealed container by a syringe and analyzed by gas chromatography. However, this method requires a lot of time and labor, and it is practically difficult to inspect all products when inspecting gas composition in a gas phase such as gas-displaced food, and it is difficult to use this method. , In effect limited to sampling inspections on some of the products.
Further, it is difficult to quickly and accurately measure the gas composition in the container because of the risk of air inclusion when sampling the gas in the container, and the types of gas that can be measured are limited.

【0003】一方、無菌状態にある医薬品アンプル中の
窒素及び酸素ガスを回転ラマンスペクトル分析法により
測定し、アンプル中にガスの充填が所定通り行われたか
否かを検査する方法が知られている(GLEN F.B
AILEY and HERBERT A.MOOR
E,JR.:Jounal of the Paren
teral Drug Association,
,(2)127−133(1980))。しかし、密
封材料を開封することなく、ラマンスペクトル分析に付
し、容器内の微生物の増殖等による容器内気体組成の変
化に基いて製品の品質を検査する方法は知られていな
い。
On the other hand, there is known a method of measuring nitrogen and oxygen gas in an aseptic drug ampoule by a rotating Raman spectrum analysis method and inspecting whether or not the ampoule has been filled with gas in a predetermined manner. (GLEN FB
AILEY and HERBERT A. MOOR
E, JR. : Journal of the Parent
Teral Drug Association, 3
4 , (2) 127-133 (1980)). However, there is no known method for subjecting the product to Raman spectrum analysis without opening the sealing material and inspecting the quality of the product based on the change in the gas composition in the container due to the growth of microorganisms in the container.

【0004】[0004]

【発明が解決しようとする課題】前項記載の従来技術の
背景下に、本発明は、材料を密封した閉鎖系に関して系
内気体の非破壊検査法を開発すること、及び密封容器内
の微生物等の増殖により消費される主に酸素等、及び微
生物等の増殖により発生する二酸化炭素、水素、硫化水
素、窒素、メタン等の個々の気体、または、全ての気体
を同時に、又は任意の組み合わせを同時に分析し、これ
らの測定結果を基にした、閉鎖系内に密封した材料の迅
速簡便な品質検査法を開発することを目的とする。
Under the background of the prior art described in the preceding paragraph, the present invention is to develop a nondestructive inspection method of gas in a system for a closed system in which a material is sealed, and a microorganism in a sealed container. Oxygen, etc., which is mainly consumed by the growth of, and carbon dioxide, hydrogen, hydrogen sulfide, nitrogen, methane, etc., which are generated by the growth of microorganisms, individually, or all the gases at the same time, or any combination at the same time. The purpose is to develop a rapid and simple quality inspection method for materials sealed in a closed system based on analysis results and these measurement results.

【0005】[0005]

【課題を解決するための手段】本発明者は、前項記載の
目的を達成すべく鋭意研究の結果、材料を密封した閉鎖
系に関して、ラマンスペクトル分析を利用すれば、密封
容器を開封することなく、密封容器中のガス組成を非破
壊的に容易に測定することができること、及びそのよう
な測定結果に基けば、密封材料の品質検査を非破壊的に
行なうことができることを見出し、このような知見に基
いて本発明を完成した。
As a result of earnest research to achieve the object described in the preceding paragraph, the present inventor has found that when a Raman spectrum analysis is used for a closed system in which a material is sealed, the sealed container is not opened. It has been found that the gas composition in a sealed container can be easily measured nondestructively, and that the quality inspection of the sealing material can be carried out nondestructively based on the measurement result. The present invention has been completed based on such findings.

【0006】すなわち、本発明は、密封材料をその容器
を開封破壊することなくそのままラマンスペクトル分析
に付して容器内のガス組成を測定する方法、及びこの測
定結果に基いて密封された材料の品質検査を行う事を特
徴とする密封材料の非破壊検査法に関する。
That is, the present invention provides a method for measuring a gas composition in a container by subjecting the sealed material to Raman spectrum analysis as it is without breaking the container, and a method of measuring the sealed material based on the measurement result. The present invention relates to a nondestructive inspection method for sealing materials, which is characterized by performing quality inspection.

【0007】[0007]

【発明の実施の形態】以下、本発明を詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.

【0008】本発明にいう密封材料としては、ソーセー
ジ、漬物などの密封容器入り食品、ガス置換食品、「バ
ルベール」などの密封容器入り市販の水、牛乳などの密
封容器入り飲料、「レンチナン」(抗癌剤)などの密封
容器入り医薬品、化粧水などの密封容器入り化粧品等を
挙げることができる。ガス置換食品とは、食品の保存、
賞味期限延長等食品のライフサイクル延長のために食品
を収容した袋などの容器内空気を窒素、二酸化炭素等、
またはこれらの混合ガス等で置換後、密封包装したもの
をいう。
Examples of the sealing material in the present invention include foods in sealed containers such as sausage and pickles, gas-substituted foods, commercially available water in sealed containers such as "Barber", beverages in sealed containers such as milk, "lentinan" ( Examples thereof include a medicine in a sealed container such as an anticancer agent, and a cosmetic in a sealed container such as a lotion. Gas replacement food is the preservation of food,
For extending the life cycle of food such as extension of shelf life, the air in the container such as a bag containing food is nitrogen, carbon dioxide, etc.
Alternatively, it means a product that is hermetically sealed after being replaced with a mixed gas or the like.

【0009】本発明によれば、このような密封容器は、
材料を収容したまま振動ラマンスペクトル分析に付され
るので、その器壁は少なくとも一部が光線を容器内気体
を貫通できるものでなくてはならない。通常のガラスビ
ン、ポリエチレン包装袋などの密封容器はそのままラマ
ンスペクトル分析に付すことができるが、例えば、ガラ
スチューブ、アンプル等の乱反射の影響が大きすぎると
きは、乱反射に由来する妨害光を遮断するために、光源
波長を透過しない金属製等の特別の形状の容器を使用す
るか又はフィルターを使用するか或いは両者を併用する
ことで、このような影響を除くことができる。そのよう
な特別な形状の容器として、たとえば、図1に示す筒状
容器を挙げる事が出来る。この容器の径はガラスチュー
ブ、アンプルの径に応じてある範囲で可変のものとする
ことができる。
According to the invention, such a sealed container is
Since the material is subjected to the vibrational Raman spectrum analysis while containing it, at least a part of its wall must be capable of penetrating the light beam into the gas in the container. Ordinary glass bottles, sealed containers such as polyethylene packaging bags can be subjected to Raman spectrum analysis as they are, but for example, when the influence of diffuse reflection on glass tubes, ampoules, etc. is too large, the interference light due to diffuse reflection is blocked. In addition, such influence can be eliminated by using a container having a special shape such as a metal which does not transmit the wavelength of the light source, using a filter, or using both together. As such a container having a special shape, for example, a cylindrical container shown in FIG. 1 can be cited. The diameter of this container can be varied within a certain range depending on the diameters of the glass tube and the ampoule.

【0010】例えば、ガス置換食品を密封包装したまま
振動ラマンスペクトル分析に付する方法は、例えば次の
ようにして行うことが出来る。
For example, a method of subjecting a gas-substituted food to a vibrational Raman spectrum analysis in a hermetically-sealed package can be performed as follows, for example.

【0011】特別の形状の容器を使用する場合は、図1
に示すように、これにサンプルを収納して振動ラマンス
ペクトル分析に付する。フィルターを使用する場合は、
図2に示すように、光路の適当な位置にフィルターをお
いてラマンスペクトル分析に付する。ここで、フィルタ
ーとしては、励起レーザー光波長のみを除去できるフィ
ルターを使用することが出来る。尚、Sはサンプル(試
料)を、そして、IPDAはダイオードアレイ(Int
ensified photodiode arra
y)を意味する。他に、CCD(charge−cou
pled device)やICCD(intensi
fied CCD)なども用いることができる。
If a specially shaped container is used, then FIG.
Samples are stored in this and subjected to vibrational Raman spectrum analysis as shown in FIG. If you use a filter,
As shown in FIG. 2, a filter is placed at an appropriate position in the optical path and subjected to Raman spectrum analysis. Here, as the filter, a filter that can remove only the wavelength of the excitation laser light can be used. In addition, S is a sample (sample), and IPDA is a diode array (Int).
enhanced photodiode arra
y) is meant. In addition, CCD (charge-cou)
PLED device and ICCD (intense)
A fied CCD) or the like can also be used.

【0012】スペクトルとしては振動スペクトル及び回
転スペクトルがあるが、前者の方が、レーリー散乱から
波長的に遠いため、乱反射により妨害されにくく、かつ
低分解能の条件でも成分のスペクトルが十分に分離して
検査出来る点で後者に対して優位性があり、測定対象に
もよるが本発明では振動スペクトルに拠るのが好まし
い。但し、水素の場合は、回転スペクトルであっても約
580cm-1附近に最も強いシグナルを与えるのでこれ
を利用することもできる。
Although there are vibration spectra and rotation spectra as spectra, the former is far from the Rayleigh scattering in terms of wavelength and is therefore less likely to be disturbed by diffuse reflection, and the component spectra are sufficiently separated even under low resolution conditions. It is superior to the latter in that it can be inspected, and in the present invention, it is preferable to rely on the vibration spectrum, although it depends on the measurement target. However, in the case of hydrogen, even the rotational spectrum gives the strongest signal in the vicinity of about 580 cm -1 , which can be used.

【0013】ラマンスペクトル分析用光源としては、試
料に損傷を与えず、密封容器の器壁を透過するものであ
れば、その波長を問わず使用することができる。例え
ば、Ar+ −レーザーのレーザー光で514.5nm、
488.0nmなどの波長のもの等である。振動スペク
トルの場合、例えば、窒素、酸素及び二酸化炭素は、そ
れぞれ、ラマンシフトは2331、1555及び138
8cm-1(他にフェルミ共鳴により1286cm-1にも
出現)である。
As the light source for Raman spectrum analysis, any light source that does not damage the sample and transmits through the vessel wall of the sealed container can be used regardless of its wavelength. For example, 514.5 nm with laser light of Ar + -laser,
For example, a wavelength of 488.0 nm or the like. For vibrational spectra, for example, nitrogen, oxygen and carbon dioxide have Raman shifts of 2331, 1555 and 138, respectively.
8cm -1 (appearing in 1286Cm -1 by Fermi resonance otherwise).

【0014】又、基質に13C−グルコースなどの同位体
を使用すれば微生物の代謝により発生する二酸化炭素な
どを他の二酸化炭素と区別して測定することができる。
更に、微生物の呼吸、代謝などによらず化合物の分解例
えばグルタミン酸の分解系による二酸化炭素の発生も測
定できる。固体の密封サンプルは固体の水分を 1H−N
MRで直接測定し、ガス分析の結果とあわせて製品検査
を行なうことができる。
If an isotope such as 13 C-glucose is used as a substrate, carbon dioxide generated by metabolism of microorganisms can be measured separately from other carbon dioxide.
Further, the decomposition of the compound, for example, the generation of carbon dioxide by the decomposition system of glutamic acid can be measured regardless of the respiration and metabolism of microorganisms. Solid sealed samples contain 1 H-N solid water
The product can be inspected by directly measuring it by MR and combining it with the result of gas analysis.

【0015】このような機器を使用してデータを採取し
たとき、採取したデータの処理は、例えば、材料を常圧
の空気中で密封した密封容器内で細菌などの微生物が酸
素を消費し、二酸化炭素を発生したおそれのある場合
は、例えば、次のようにして行うことが出来る。すなわ
ち、サンプルの密封容器と同様の空の容器に空気を封入
したものをラマンスペクトル分析に付してブランクとし
て測定し、機器の補正を行う。次に、サンプルの密封容
器中の窒素、酸素及び二酸化炭素をラマンスペクトル分
析に付して測定し、窒素に対する酸素の比及び窒素に対
する二酸化炭素の比を算出する。初期の内容気体が大気
圧の場合等には、この値を使って酸素及び二酸化炭素の
絶対量を算出することもできる。また、もちろん、振動
ラマンスペクトル上での、ブランク値との絶対強度の比
較から、二酸化炭素及び酸素の存在量そのものを定量又
は半定量し、これらの値を使用することも出来る。又、
測定する各種ガスと窒素をあらかじめ一定の割合で混合
した既知の標準ガスの値を測定して標準曲線を作成し、
この標準曲線を基に計算することもできる。
When data is collected using such a device, the collected data is processed, for example, by microorganisms such as bacteria consuming oxygen in a sealed container in which the material is sealed in air at normal pressure, When there is a possibility that carbon dioxide is generated, for example, it can be performed as follows. That is, an empty container similar to the sealed container of the sample filled with air is subjected to Raman spectrum analysis and measured as a blank to correct the instrument. Next, the nitrogen, oxygen, and carbon dioxide in the sealed container of the sample are subjected to Raman spectrum analysis and measured, and the ratio of oxygen to nitrogen and the ratio of carbon dioxide to nitrogen are calculated. When the initial content gas is atmospheric pressure, this value can be used to calculate the absolute amounts of oxygen and carbon dioxide. In addition, of course, it is also possible to quantitatively or semiquantitatively determine the existing amount of carbon dioxide and oxygen based on the absolute intensity comparison with the blank value on the vibrational Raman spectrum, and use these values. or,
Create a standard curve by measuring the value of a known standard gas in which various gases to be measured and nitrogen are mixed in a fixed ratio in advance,
It can also be calculated based on this standard curve.

【0016】本発明者の知見によれば、このようにラマ
ンスペクトル分析によって得られた密封容器中のガス組
成の変化が大きいもの、例えば、密封材料中の微生物又
は害虫などの生物が酸素を消費して二酸化炭素を発生す
る場合においては、二酸化炭素/酸素の比が大きくなっ
たものはこれらの生物が増殖して品質が劣化したと判定
される。また、包装時のガス組成と製品流通過程又は保
存過程におけるガス組成の比較から密封包装製品中の生
物の増殖状況や汚染状況、増殖した生物種の特定等が可
能である。更に、ラマンスペクトル分析法を利用する本
発明によれば、例えばガス置換食品について、目的のガ
ス組成の包装が行われたか否かを検査することもでき
る。この検査は、製品製造工程のラインに分析機器を設
置して、連続的に行なうことができ、このようにして製
品の品質検査を簡便容易に行うことが可能となる。
According to the knowledge of the inventor of the present invention, such a gas having a large change in the gas composition in the sealed container obtained by Raman spectrum analysis, for example, a microorganism such as a microorganism or a pest in the sealing material consumes oxygen. In the case where carbon dioxide is generated and the carbon dioxide / oxygen ratio is increased, it is determined that these organisms grow and the quality is deteriorated. Further, by comparing the gas composition during packaging with the gas composition during the product distribution process or storage process, it is possible to identify the growth status and contamination status of organisms in the hermetically sealed product, the identification of the grown species. Further, according to the present invention using the Raman spectrum analysis method, it is possible to inspect, for example, a gas-displaced food product whether or not the desired gas composition has been packaged. This inspection can be performed continuously by installing an analytical instrument on the line of the product manufacturing process, and thus the quality inspection of the product can be performed easily and easily.

【0017】このようにして、従来、時間と労力を要し
た製品の製造過程又は流通過程における品質検査を、製
品を開封することなく、極めて迅速簡便に行うことがで
きる。
In this way, the quality inspection in the manufacturing process or distribution process of the product, which conventionally takes time and labor, can be performed extremely quickly and easily without opening the product.

【0018】[0018]

【実施例】以下、実施例により本発明を更に説明する。The present invention will be further described with reference to the following examples.

【0019】実施例 1 PBYG培地(バクトペプトン 0.5%、ビーフエキ
ストラクト 0.3%、イーストエキストラクト 0.
1%、グルコース 1%。なお、Brachymona
s denitrificansの場合は更に硝酸カリ
ウム 0.2%を添加した培地を使用)を使用して、下
記第1表に示す各種菌株を37℃で3日間密封バイアル
で静置培養した。Clostridium sporo
genesは嫌気ボックス内で静置培養した。Cand
ida albicans及びAspergillus
nigerは28℃で3日間密封バイアルで静置培養
した。そして、生育とガス発生状況との関係を振動ラマ
ンスペクトル分析法で調べた。
Example 1 PBYG medium (Bactopeptone 0.5%, beef extract 0.3%, yeast extract 0.
1%, glucose 1%. In addition, Brachymona
In the case of S. denitrificans, a medium supplemented with 0.2% potassium nitrate was used), and various strains shown in Table 1 below were statically cultured in a sealed vial at 37 ° C. for 3 days. Clostridium sporo
Genes were statically cultured in an anaerobic box. Cand
ida albicans and Aspergillus
The niger was statically cultured at 28 ° C. for 3 days in a sealed vial. Then, the relationship between the growth and the gas generation state was investigated by the vibrational Raman spectrum analysis method.

【0020】[0020]

【表1】 [Table 1]

【0021】培養したバイアルを開封することなく振動
ラマンスクトル分析に付し、微生物が増殖した時、バイ
アル内のガス組成の変化が振動ラマンスクトル分析法で
調べられるかどうかを実験した。
The cultured vials were subjected to vibrating Ramanskull analysis without opening, and it was tested whether changes in the gas composition in the vials could be investigated by vibrating Ramanskull analysis when microorganisms grew.

【0022】その結果を第1表に併示した。これらの結
果から、ラマンスペクトル分析により、密封容器中のガ
ス組成が非破壊的に測定でき、延いてはラマンスペクト
ル分析法が製品の微生物管理をはじめとする品質検査に
利用出来る事が示された。
The results are also shown in Table 1. From these results, it was shown that the gas composition in the sealed container can be measured nondestructively by Raman spectrum analysis, and by extension, the Raman spectrum analysis method can be used for quality inspection including microbial control of products. .

【0023】実施例 2 PBYG培地(バクトペプトン 0.5%、ビーフエキ
ストラクト 0.3%、イーストエキストラクト 0.
1%、グルコース 1%)にSalmonella t
yphimuriumを植菌し、37℃で静置培養し
て、培養途中の密封バイアル内のガス組成を振動ラマン
スペクトル分析により測定した。一方、ガス組成測定後
のバイアルを開封して培養途中の生菌数を上記培地組成
の寒天平板培地にまいて測定した。そして、微生物の増
殖の程度と二酸化炭素/酸素の変化との間に相関関係が
あるかどうかを調べた。測定結果を下記第2表に示す。
Example 2 PBYG medium (Bactopeptone 0.5%, beef extract 0.3%, yeast extract 0.
1%, glucose 1%) to Salmonella t
Yphimurium was inoculated and statically cultured at 37 ° C., and the gas composition in the sealed vial during the culture was measured by vibrational Raman spectrum analysis. On the other hand, the vial after the gas composition measurement was opened, and the number of viable bacteria in the middle of the culture was spread on the agar plate medium having the above medium composition and measured. Then, it was investigated whether or not there is a correlation between the degree of microbial growth and the change in carbon dioxide / oxygen. The measurement results are shown in Table 2 below.

【0024】[0024]

【表2】 [Table 2]

【0025】第2表に示したように、微生物の増殖の程
度と二酸化炭素/酸素の変化との間には正の相関関係が
認められ、振動ラマンスペクトル分析が製品の微生物管
理をはじめとする品質検査に利用出来る事が示された。
As shown in Table 2, there is a positive correlation between the degree of growth of microorganisms and the change in carbon dioxide / oxygen, and vibrational Raman spectrum analysis is applied to microbial control of products. It was shown that it can be used for quality inspection.

【0026】実施例 3 マアジフィーレをポリエチレン製の容器に窒素60%と
二酸化炭素40%の混合ガスでガス置換して密封した製
品を5℃で4日保存した時の生菌数とガス組成の変化を
非破壊的に振動ラマンスペクトル分析法により測定し
た。生菌数の測定は実施例1と同様の方法によった。結
果を下記第3表に示す。
Example 3 Majifile was replaced with a mixed gas of 60% nitrogen and 40% carbon dioxide in a polyethylene container and sealed, and the sealed product was stored at 5 ° C. for 4 days. The changes were non-destructively measured by vibrational Raman spectroscopy. The viable cell count was measured by the same method as in Example 1. The results are shown in Table 3 below.

【0027】[0027]

【表3】 [Table 3]

【0028】第3表に示したように、実際のガス置換食
品においてもラマンスペクトル分析法により密封した気
相のガス組成が非破壊的に測定できた。そして、二酸化
炭素の光子カウント数の増加から製品中の生菌数の増殖
の程度を算出することが可能であることが示された。
As shown in Table 3, the gas composition of the gas phase sealed by the Raman spectrum analysis could be measured nondestructively even in the actual gas-substituted food. It was shown that it is possible to calculate the degree of growth of the viable cell count in the product from the increase in the carbon dioxide photon count.

【0029】実施例 4 市販の天然水「バルベール」ポリ容器入り製品を5℃で
保存し、実施例3と同様な方法で生菌数と容器内の気相
中のガス組成を非破壊的に振動ラマンスペクトル分析法
により測定した。結果を下記第4表に示す。
Example 4 A commercially available natural water “Barber” poly-container product was stored at 5 ° C. and the number of viable bacteria and the gas composition in the gas phase in the container were nondestructively stored in the same manner as in Example 3. It was measured by a vibrational Raman spectrum analysis method. The results are shown in Table 4 below.

【0030】[0030]

【表4】 [Table 4]

【0031】第4表に示したように市販の水についても
非破壊的に密封したままで微生物の増殖の程度が測定可
能で、品質管理に有用な方法であることが示された。
As shown in Table 4, it was demonstrated that commercially available water can be used to measure the degree of growth of microorganisms in a nondestructively sealed state and is useful for quality control.

【0032】実施例 5 密封ガラスアンプルに封入されたハーブを室温で2か月
間保存し、経時的にアンプル内気相中のCO2 /O2
ラマンスペクトル分析法で非破壊的に測定した。同時に
アンプルを直接NMR測定用ガスラ管に入れて非破壊的
1H−NMRで固相中の水分を測定した。CO2 、O
2 及び水分を測定したアンプルは開管して実施例1にお
けると同様の方法で生菌数を測定した。結果を下記第5
表に示す。
Example 5 The herb enclosed in a hermetically sealed glass ampoule was stored at room temperature for 2 months, and CO 2 / O 2 in the gas phase inside the ampoule was measured non-destructively by Raman spectrum analysis over time. At the same time, the ampoule was directly placed in a gas measuring tube for NMR measurement, and the water content in the solid phase was measured non-destructively by 1 H-NMR. CO 2 , O
2 and the ampoule whose water content was measured were opened and the viable cell count was measured by the same method as in Example 1. The result is the fifth
It is shown in the table.

【0033】[0033]

【表5】 [Table 5]

【0034】第5表に示すように、製品中の生菌数の増
加にともなってCO2 /O2 値及び相対水分量が増加
し、ラマンスペクトル分析法と 1H−NMRによる水分
量測定がハーブ製品の品質検査に有効であることが示さ
れた。
As shown in Table 5, the CO 2 / O 2 value and the relative water content increased as the number of viable bacteria in the product increased, and the water content measurement by Raman spectrum analysis and 1 H-NMR was performed. It has been shown to be effective in the quality inspection of herbal products.

【0035】実施例 6 PBYG培地(バクトペクトン0.5%、ビーフエキス
トラクト0.3%、イーストエキストラクト0.1%、
グルコース1%)を使用して下記第6表に示すE.co
liを37℃で3日間密封バイアルで静置培養した。
Example 6 PBYG medium (0.5% bactopecton, 0.3% beef extract, 0.1% yeast extract,
Glucose 1%) was used to produce E. coli as shown in Table 6 below. co
Li was statically cultured at 37 ° C. for 3 days in a sealed vial.

【0036】そして密封バイアル気相中の水素を580
cm-1の回転ラマンスペクトル分析法により測定した。
一方、生菌数を実施例1におけると同様の方法で測定し
た。結果を下記第6表に示す。
Then, the hydrogen in the gas phase of the sealed vial was adjusted to 580.
It was measured by rotational Raman spectroscopy at cm -1 .
On the other hand, the viable cell count was measured by the same method as in Example 1. The results are shown in Table 6 below.

【0037】[0037]

【表6】 [Table 6]

【0038】第6表に示すように、回転ラマンスペクト
ル分析法により密封バイアル中の水素が測定できること
がわかった。
As shown in Table 6, it was found that hydrogen in a sealed vial can be measured by the rotational Raman spectrum analysis method.

【0039】[0039]

【発明の効果】本発明によれば、材料を密封した閉鎖系
において、密封容器を開封することなく、ラマンスペク
トル分析に付して密封容器中のガス組成を容易に非破壊
的に測定でき、延いては各種製品の迅速簡便な品質検査
が容易となる。
According to the present invention, in a closed system in which a material is hermetically sealed, the gas composition in the hermetically sealed container can be easily and nondestructively measured by Raman spectrum analysis without opening the hermetically sealed container. As a result, quick and easy quality inspection of various products becomes easy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ラマンスペクトル分析を行う時の、密封容器を
収納すべき容器を例示する。
FIG. 1 illustrates a container in which a hermetically sealed container is to be stored when performing Raman spectrum analysis.

【図2】ラマンスペクトル分析を行う時の、光路におく
べきフィルターの位置を例示する。
FIG. 2 illustrates the position of a filter to be placed in the optical path when performing Raman spectrum analysis.

【図3】振動ラマンスペクトル分析法で測定した窒素の
チャートを例示する。
FIG. 3 illustrates a chart of nitrogen measured by a vibrational Raman spectrum analysis method.

【図4】振動ラマンスペクトル分析法で測定した酸素及
び二酸化炭素のチャートを例示する。
FIG. 4 illustrates a chart of oxygen and carbon dioxide measured by a vibrational Raman spectrum analysis method.

フロントページの続き (72)発明者 山中 茂 神奈川県川崎市川崎区鈴木町1−1 味の 素株式会社中央研究所内Front Page Continuation (72) Inventor Shigeru Yamanaka 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa Ajinomoto Co., Inc. Central Research Laboratory

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 密封材料をその密封容器を開封すること
なくそのまま振動ラマンスペクトル分析に付して密封容
器内のガス組成を非破壊的に測定することを特徴とする
密封材料の非破壊的検査法。
1. A nondestructive inspection of a sealing material, characterized by subjecting the sealing material to a vibrational Raman spectrum analysis as it is without opening the sealing container to nondestructively measure a gas composition in the sealing container. Law.
【請求項2】 密封容器による乱反射に由来する妨害光
を遮断すべく、光源波長を透過しない材質からなる、入
射光入り口、透過光出口及びラマン散乱光取り出し口を
有する容器に該密封保存容器を収納して、並びに/或い
は、該妨害光のみを遮断する又は検出光波長近辺のみを
透過するフィルターを光路に使用して振動ラマンスペク
トル分析を行うことを特徴とする請求項1記載の方法。
2. A container having an incident light inlet, a transmitted light outlet, and a Raman scattered light extraction port, which is made of a material that does not transmit a light source wavelength, in order to block disturbing light originating from irregular reflection by the hermetically sealed container, the hermetically sealed storage container The method according to claim 1, wherein the vibration Raman spectrum analysis is carried out by housing and / or using a filter for blocking only the interfering light or transmitting only in the vicinity of the detection light wavelength in the optical path.
【請求項3】 酸素、窒素、二酸化炭素、一酸化炭素、
二酸化硫黄、硫化水素、メタン、水素等の個々の気体、
又は全てを同時に、又は任意に組み合わせて振動ラマン
スペクトル分析法により測定することを特徴とする請求
項1及び2のいずれかに記載の方法。
3. Oxygen, nitrogen, carbon dioxide, carbon monoxide,
Individual gases such as sulfur dioxide, hydrogen sulfide, methane and hydrogen,
The method according to any one of claims 1 and 2, wherein all or all of them are measured simultaneously or in any combination by a vibrational Raman spectrum analysis method.
【請求項4】 密封材料が容器入りの、食品、ガス置換
食品、市販の水、飲料、医薬品、化粧品等であることを
特徴とする請求項1〜3のいずれかに記載の方法。
4. The method according to any one of claims 1 to 3, wherein the sealing material is a food product, a gas-substituted food product, commercially available water, a beverage, a pharmaceutical product, a cosmetic product, etc., contained in a container.
【請求項5】 請求項1〜4のいずれかに記載の方法に
より密封材料をその密封容器を開封することなくそのま
ま振動ラマンスペクトル分析に付して密封容器内のガス
組成を非破壊的に測定し、併せて 1H−NMRにより非
破壊的に密封固体材料中の水分を測定し、両側定値に基
いて製品検査を行なうことを特徴とする非破壊的製品検
査法。
5. The method according to any one of claims 1 to 4, wherein the sealing material is directly subjected to vibrational Raman spectrum analysis without opening the sealed container to nondestructively measure the gas composition in the sealed container. In addition, a nondestructive product inspection method characterized by nondestructively measuring water in a sealed solid material by 1 H-NMR and performing product inspection based on a fixed value on both sides.
【請求項6】 密封容器中の水素を回転ラマンスペクト
ルにより測定することを特徴とする請求項1〜5のいず
れかに記載の方法。
6. The method according to claim 1, wherein hydrogen in the sealed container is measured by rotational Raman spectrum.
JP28359095A 1995-10-31 1995-10-31 Nondestructive inspection method for sealed material Pending JPH09127001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28359095A JPH09127001A (en) 1995-10-31 1995-10-31 Nondestructive inspection method for sealed material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28359095A JPH09127001A (en) 1995-10-31 1995-10-31 Nondestructive inspection method for sealed material

Publications (1)

Publication Number Publication Date
JPH09127001A true JPH09127001A (en) 1997-05-16

Family

ID=17667485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28359095A Pending JPH09127001A (en) 1995-10-31 1995-10-31 Nondestructive inspection method for sealed material

Country Status (1)

Country Link
JP (1) JPH09127001A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004522960A (en) * 2001-02-02 2004-07-29 ブリストル−マイヤーズ・スクイブ・ファーマ・カンパニー Apparatus and method for online monitoring of fluorinated material in vial headspace
US7067323B2 (en) * 2003-10-15 2006-06-27 Lighthouse Instruments, Llc System and method for automated headspace analysis
WO2008062185A1 (en) * 2006-11-24 2008-05-29 The Science And Technology Facilities Council Raman detection of container contents
US7911604B2 (en) 2005-11-25 2011-03-22 The Science And Technology Facilities Council Security screening using raman analysis
CN103278491A (en) * 2009-11-25 2013-09-04 欧普图斯(苏州)光学纳米科技有限公司 Nano-structure-based spectrum detecting method for detecting chemical and biochemical impurities
JP2015144607A (en) * 2008-10-31 2015-08-13 ビオメリュー・インコーポレイテッド Method for separation, characterization and/or identification of microorganisms using raman spectroscopy

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004522960A (en) * 2001-02-02 2004-07-29 ブリストル−マイヤーズ・スクイブ・ファーマ・カンパニー Apparatus and method for online monitoring of fluorinated material in vial headspace
US7067323B2 (en) * 2003-10-15 2006-06-27 Lighthouse Instruments, Llc System and method for automated headspace analysis
US7911604B2 (en) 2005-11-25 2011-03-22 The Science And Technology Facilities Council Security screening using raman analysis
US8085396B2 (en) 2006-04-05 2011-12-27 The Science And Technology Facilities Council Raman analysis
US8259902B2 (en) 2006-04-05 2012-09-04 The Science And Technology Facilities Council Raman analysis of tissue and/or calcifications
WO2008062185A1 (en) * 2006-11-24 2008-05-29 The Science And Technology Facilities Council Raman detection of container contents
GB2457212A (en) * 2006-11-24 2009-08-12 Stfc Science & Technology Raman detection of container contents
GB2457212B (en) * 2006-11-24 2011-05-04 Stfc Science & Technology Raman detection of container contents
US8248600B2 (en) 2006-11-24 2012-08-21 The Science And Technology Facilities Council Raman detection of container contents
JP2015144607A (en) * 2008-10-31 2015-08-13 ビオメリュー・インコーポレイテッド Method for separation, characterization and/or identification of microorganisms using raman spectroscopy
CN103278491A (en) * 2009-11-25 2013-09-04 欧普图斯(苏州)光学纳米科技有限公司 Nano-structure-based spectrum detecting method for detecting chemical and biochemical impurities
CN103278491B (en) * 2009-11-25 2017-07-07 欧普图斯(苏州)光学纳米科技有限公司 Chemicals and biological impurity are detected with the spectral method of detection based on nanostructured

Similar Documents

Publication Publication Date Title
US5155019A (en) Detection of the presence of biological activity in a sealed container utilizing infrared analysis of carbon dioxide and apparatus therefor
CN101793881B (en) Method for detecting biogenic amine in food
US9441260B2 (en) Method and system for real-time, non-invasive monitoring of a biological material in a sealed container
US5366873A (en) Device and method for use in detecting microorganisms in a sample
CA2731229A1 (en) Method for detection and characterization of a microorganism in a sample using time-dependent intrinsic fluorescence measurements
EP0104463A1 (en) Detection of the presence of biological activity utilizing infrared analysis
JPH09121889A (en) Nondestructive viability evaluation of tightly sealed and freeze-dried microorganism
JPH09127001A (en) Nondestructive inspection method for sealed material
FI79548C (en) FOERFARANDE FOER IDENTIFIERING AV MICROORGANISMER MEDELST INFRAROED ANALYSIS AV UTVECKLAD KOLDIOXID.
CN111122752B (en) Preparation method of tetrodotoxin component analysis standard substance
WINDHAM et al. Effect of Wheat Moisture Content on Hardness Scores Determined by Near-Infrared
Danilović et al. Determination of CO2 content in the headspace of spoiled yogurt packages
Chubchenko et al. Features of determining the isotope composition of carbon in gaseous, liquid, and solid media
EP3650551B1 (en) Method for isolating and analysing microorganisms contained in a sample
Drennen et al. Pharmaceutical applications of near-infrared spectrometry
US8535937B2 (en) Detection of microorganisms with a fluorescence-based device
Threlkeld Detection of microbial contamination utilizing an infrared CO2 analyzer
Nakamichi et al. Measurement of the concentrations of mannosyl erythritol lipid and soybean oil in the glycolipid fermentation process using near infrared spectroscopy
Alrasheedi Vibrational spectroscopic applications of Fourier transform infrared and Raman spectroscopy in biochemistry and microbiology
Cocola et al. Development and validation of a multi gas optical sensor for the meat industry
Brueckner et al. A Case Study with a TDLAS Based Semi-automated Media Fill Inspection Platform
Sydel Rapid detection of a microbe, especially for routine of Escherichia co/i in foods includes adding sample or sample suspension to three wells, on plate prepared by drying and immobilising fluorescent substrate
Kolesnov et al. EA-IRMS/SIRA Mass Spectrometry of Stable Carbon Isotopes 13 C/12 C in Dissolved Carbon Dioxide of Sparkling and Sparkling Pearl Wines
Kookarinrat et al. Development of a simple jam-jar apparatus for direct analysis of solid and liquid samples
KR100339819B1 (en) Fruits freshness measurable agent containing resazurin and method of fruits freshness measurement using the agent