JPH09126987A - Particle image analyzer - Google Patents

Particle image analyzer

Info

Publication number
JPH09126987A
JPH09126987A JP28010995A JP28010995A JPH09126987A JP H09126987 A JPH09126987 A JP H09126987A JP 28010995 A JP28010995 A JP 28010995A JP 28010995 A JP28010995 A JP 28010995A JP H09126987 A JPH09126987 A JP H09126987A
Authority
JP
Japan
Prior art keywords
particle
particle image
area
image
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28010995A
Other languages
Japanese (ja)
Inventor
Hakuo Owada
伯男 大和田
Hidenori Asai
英規 浅井
Masaaki Odakura
政明 小田倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP28010995A priority Critical patent/JPH09126987A/en
Publication of JPH09126987A publication Critical patent/JPH09126987A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To attempt to improve the analyzing accuracy of a column and the like containing particles therein by adopting a constitution to simultaneously calculate the morphological feature amounts of the particle image area and particle internal structure area by a feature amount calculator by providing a ternary processor and a particle image labeling processor. SOLUTION: The stroboscopic light 11 of a microscope light source is lit, and projected to the particles in a flow cell 8 via a condenser lens 12. The transmitted image of the particle is introduced from an objective 13 to a TV camera 15, and transduced into an electric signal. The particle image is image- processed and feature-extracted by a feature extractor 16. Eventually, the particles in the sample are automatically sorted by a particle analyzer 17 by using the particle feature amounts. A central control unit 9 controls the entire apparatus, calculates the data and judges the analyzed result. The data necessary for the measurement is sent from an external data unit 3. A feature amount calculator 20 simultaneously calculates the morphological feature amounts of the area and the peripheral length at the respective labels, and stores them in a feature amount memory.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は粒子画像解析装置、
特に流体中に含まれる粒子の画像を生成し、その画像デ
ータをもとに粒子の分類を行う粒子画像解析装置に関す
る。
TECHNICAL FIELD The present invention relates to a particle image analysis device,
In particular, the present invention relates to a particle image analyzer that generates an image of particles contained in a fluid and classifies the particles based on the image data.

【0002】[0002]

【従来の技術】従来の特開平1−242961 号公報に示され
たような細胞画像処理装置では、粒子全体の形態学的特
徴量のみしか算出されないため、粒子の内部構造が重要
である白血球,尿沈渣中に含まれる白血球円柱等の内部
に粒子を含む円柱類の内部構造を表す形態学的特徴量が
算出されないため分析精度向上が図れていない。
2. Description of the Related Art In a conventional cell image processing apparatus such as that disclosed in Japanese Patent Laid-Open No. 1-242961, only white blood cells, whose internal structure is important, calculate only the morphological features of the whole particle. The analysis accuracy cannot be improved because the morphological feature amount representing the internal structure of the cylinders containing particles inside the white blood cell cylinders and the like contained in the urine sediment is not calculated.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術では、二
値化処理,粒子識別番号算出処理,形態学的特徴量算出
処理を直列処理で行おうとすると、処理時間がかかるた
めリアルタイム処理が行えず、また、リアルタイムで粒
子内の構造の形態学的特徴量を算出しようとした場合、
複数の二値化処理部,複数の粒子識別番号算出部,複数
の形態学的特徴量算出部が必要になり、実装面積,コス
ト面で粒子内の構造の形態学的特徴量を採用することが
できず、粒子の内部構造が重要である白血球,尿沈渣中
に含まれる白血球円柱等の内部に粒子を含む円柱類の内
部構造を表す形態学的特徴量が算出されないため分析精
度向上が図れないという課題があった。
In the above-mentioned prior art, when the binarization process, the particle identification number calculation process, and the morphological feature amount calculation process are performed in series, it takes a long time to perform real-time processing. , If you try to calculate the morphological features of the structure inside the particle in real time,
A plurality of binarization processing units, a plurality of particle identification number calculation units, and a plurality of morphological feature amount calculation units are required, and the morphological feature amount of the structure inside the particles is adopted in terms of mounting area and cost. Therefore, the accuracy of analysis can be improved because the morphological feature quantity that represents the internal structure of the cylinders containing particles inside the white blood cells and the leukocyte cylinders contained in the urine sediment where the internal structure of the particles is important cannot be calculated. There was a problem that there was not.

【0004】本発明の目的は、リアルタイム処理で、安
価にかつ実装面積の少ない、粒子の内部構造の形態学的
特徴量を算出するための手段を設け、粒子の内部構造が
重要である白血球,尿沈渣中に含まれる白血球円柱等の
内部に粒子を含む円柱類の、分析精度向上を図ることに
ある。
An object of the present invention is to provide a means for calculating the morphological characteristic amount of the internal structure of particles, which is inexpensive and has a small mounting area, in real time processing. It is intended to improve the accuracy of analysis of cylinders containing particles inside white blood cell cylinders and the like contained in urine sediment.

【0005】[0005]

【課題を解決するための手段】本発明では、粒子内部構
造領域の形態学的特徴量を算出するために、観察対象領
域を背景領域,粒子画像領域,粒子内部構造領域の三つ
の光強度分布領域に分割する三値化処理部を設け、粒子
画像識別番号に粒子内部構造領域か否かを区別する構造
識別フラグを付加する機能を有した粒子画像ラベリング
処理部を設け、粒子対象識別フラグの付加された粒子画
像識別番号毎に、粒子画像領域と粒子内部構造領域の形
態学的特徴量を同時に算出する特徴量算出部を設ける。
According to the present invention, in order to calculate a morphological feature amount of a grain internal structure region, an observation target region is divided into three light intensity distributions of a background region, a particle image region, and a grain internal structure region. A ternarization processing unit that divides the area is provided, and a particle image labeling processing unit that has a function of adding a structure identification flag for distinguishing whether or not the particle image is a particle internal structure area to the particle image identification number is provided. A feature amount calculation unit that simultaneously calculates the morphological feature amounts of the particle image region and the particle internal structure region is provided for each added particle image identification number.

【0006】本発明によれば、三値化処理部で観察対象
領域を背景領域,粒子画像領域,粒子内部構造領域の三
つの光強度分布領域に分割され、粒子画像ラベリング処
理部では、二値化処理部で算出されたデータをもとに粒
子画像識別番号に粒子内部構造領域か否かを区別する構
造識別フラグが付加されるため、特徴量算出部で粒子画
像領域と粒子内部構造領域の形態学的特徴量が同時に算
出でき、リアルタイム処理で、安価にかつ実装面積が少
ない構成で、粒子の内部構造が重要である白血球,尿沈
渣中に含まれる白血球円柱等の内部に粒子を含む円柱類
の分析精度向上が図れる。
According to the present invention, the observation area is divided into three light intensity distribution areas of the background area, the particle image area, and the particle internal structure area by the ternarization processing unit, and the binary image processing unit divides the binary image by the binary image processing unit. Since the structure identification flag for distinguishing whether or not it is the particle internal structure region is added to the particle image identification number based on the data calculated by the crystallization processing unit, the feature amount calculation unit distinguishes between the particle image region and the particle internal structure region. Morphological features can be calculated at the same time, real-time processing, inexpensive and small mounting area, the internal structure of the particles is important. The column containing the particles inside the leukocyte, the leukocyte column contained in the urine sediment, etc. It is possible to improve the analysis accuracy of classes.

【0007】[0007]

【発明の実施の形態】本発明の全体構成について、図1
を使って説明する。
FIG. 1 is a block diagram showing the overall configuration of the present invention.
I will explain using.

【0008】図において、1は測定サンプル試料、2は
サンプル吸引部である。4はフロー系制御部、5は測定
サンプル吐出部を表す。7はシース液、6はシース液シ
リンジ、8はフローセルを表す。9は中央制御部、10
はストロボランプ駆動部、11はストロボランプ、12
はコンデンサレンズを示す。13は対物レンズ、15は
TVカメラ、16は特徴抽出回路、17は粒子分析部で
ある。14は出力部、3は外部データ部である。
In the figure, 1 is a sample to be measured and 2 is a sample suction part. Reference numeral 4 represents a flow system control unit, and 5 represents a measurement sample discharge unit. 7 is a sheath liquid, 6 is a sheath liquid syringe, and 8 is a flow cell. 9 is a central control unit, 10
Is a strobe lamp drive unit, 11 is a strobe lamp, 12
Indicates a condenser lens. Reference numeral 13 is an objective lens, 15 is a TV camera, 16 is a feature extraction circuit, and 17 is a particle analysis unit. Reference numeral 14 is an output unit, and 3 is an external data unit.

【0009】よく撹拌された測定サンプル試料1は、サ
ンプル吸引部2により吸引され、測定サンプル吐出部5
によりフローセル8の上部から押し出される。測定サン
プル試料を吐出すると同時に、シース液7がシース液シ
リンジ6を介して同じくフローセル8に押し出される。
その結果、測定サンプル試料はシース液によって包み込
まれる流れとなって、フローセル8の中心を流れを乱す
ことなく流れ下る。
The well-stirred measurement sample 1 is sucked by the sample suction unit 2, and the measurement sample discharge unit 5
Is extruded from the upper part of the flow cell 8. Simultaneously with discharging the measurement sample, the sheath liquid 7 is also pushed out to the flow cell 8 via the sheath liquid syringe 6.
As a result, the measurement sample becomes a flow wrapped in the sheath liquid, and flows down through the center of the flow cell 8 without disturbing the flow.

【0010】粒子静止画像はフローセル8の所定の位置
で行われる。顕微鏡光源であるストロボライト11を点
灯させ、コンデンサレンズ12を介して、フローセル8
中の粒子に照射される。粒子の透過画像は、対物レンズ
13を通って、TVカメラ15の撮像面に投影され、電
気信号に変換される。
The particle still image is taken at a predetermined position of the flow cell 8. The strobe light 11, which is a microscope light source, is turned on, and the flow cell 8 is passed through the condenser lens 12.
The particles inside are irradiated. The transmission image of the particles passes through the objective lens 13 and is projected on the image pickup surface of the TV camera 15 to be converted into an electric signal.

【0011】撮像された粒子画像は、特徴抽出回路16
で画像処理、及び特徴抽出処理をうけ、最後に、これら
粒子特徴量を使って粒子分析部17でサンプル試料中の
粒子の自動分類が行われる。中央制御部9は装置全体の
制御,データ計算,分析結果の判定を行う。外部データ
部3からは、測定に必要なデータが送られてくる。
The picked-up particle image has a feature extraction circuit 16
Then, the image processing and the feature extraction processing are performed, and finally, the particle analysis unit 17 automatically classifies the particles in the sample using these particle feature amounts. The central control unit 9 controls the entire apparatus, calculates data, and determines the analysis result. Data required for measurement is sent from the external data unit 3.

【0012】図1を用いて粒子静止画像の撮影について
説明する。
Capture of a particle still image will be described with reference to FIG.

【0013】フローセル8中を測定粒子である測定サン
プルが流れると、顕微鏡光源であるストロボランプ11
を点灯させ、コンデンサレンズ12を介して、フローセ
ル8中の粒子に照射される。粒子の透過画像は、対物レ
ンズ13を通って、TVカメラ15の撮像面に投影さ
れ、電気信号に変換される。
When a measurement sample, which is a measurement particle, flows through the flow cell 8, a strobe lamp 11 as a microscope light source is used.
Is lit, and the particles in the flow cell 8 are irradiated through the condenser lens 12. The transmission image of the particles passes through the objective lens 13 and is projected on the image pickup surface of the TV camera 15 to be converted into an electric signal.

【0014】以上の操作を測定時間繰り返し、測定サン
プル全部の処理が終わるまで静止粒子画像が集められ
る。
The above operation is repeated for the measurement time, and static particle images are collected until the processing of all the measurement samples is completed.

【0015】図1により粒子画像自動分類について説明
する。
The automatic classification of particle images will be described with reference to FIG.

【0016】撮像された粒子画像は、特徴抽出回路16
で画像処理、及び特徴抽出処理を行い、最後に、これら
粒子特徴量を使って粒子分析部17で粒子成分の自動分
類が行われ、最終的な検査結果は中央制御部9で纏めら
れる。
The picked-up particle image has a feature extraction circuit 16
The image processing and the feature extraction processing are performed in step (4), and finally, the particle analysis unit 17 performs automatic classification of the particle components using these particle feature amounts, and the final inspection result is collected by the central control unit 9.

【0017】画像処理では、1枚1枚の粒子静止画像毎
にリアルタイムで画像処理する。画像処理の内容は、二
値化処理,ラベリング処理,粒子特徴演算等の処理が特
徴抽出回路16で高速に実行される。つぎに、得られた
各粒子毎の複数の特徴量を組み合わせ、粒子分析部17
でパターン認識処理を実行する。測定時間中に撮像され
た全粒子についてパターン認識処理され、粒子分類処理
が終了すると、これら分類結果をもとに、中央制御部9
で測定サンプル中の粒子濃度に換算して分類結果が集計
される。
In the image processing, image processing is performed in real time for each particle still image. Regarding the contents of the image processing, the binarization processing, the labeling processing, the particle characteristic calculation and the like are executed at high speed by the characteristic extraction circuit 16. Next, the plurality of obtained feature amounts of each particle are combined and the particle analysis unit 17
The pattern recognition process is executed with. When the pattern recognition processing is performed on all particles imaged during the measurement time and the particle classification processing is completed, the central control unit 9 based on these classification results.
The conversion result is converted into the particle concentration in the measurement sample, and the classification results are totaled.

【0018】粒子分類結果は、出力部14に出力され
る。また、外部で測定した結果を、本装置の測定条件に
反映させる場合には、外部データ部3を介して中央制御
部9に送られる。
The particle classification result is output to the output unit 14. When the result of the external measurement is reflected in the measurement condition of the apparatus, it is sent to the central control unit 9 via the external data unit 3.

【0019】図2,図3を用いて、粒子中に内部構造を
持つ画像の三値化処理のフローを説明する。図2は、内
部構造の重要な白血球細胞画像であり、細胞質の中に核
が存在している。背景と細胞質とを区別するためのしき
い値をThl,背景,細胞質と核を区別するための濃度
しきい値をTHhとし、これらのしきい値で画像データ
を二値化した細胞質,核の領域の二値化データを示した
ものである。図3は、図2の白血球画像のラベル画像を
示したものである。ラベル画像は粒子解析を行う基本的
な処理であり、複数の粒子が存在した場合に必要な粒子
の識別番号を構成画素に割り当てた画像であり、特徴量
はこのラベル毎に算出される。細胞質の二値化データ中
には核の領域も含まれており、この二値化データに対し
て粒子のラベル画像の作成を行う。核の二値化データを
構造識別フラグとして使用し、“1”をラベルデータ
“A”に付加する。白血球の周囲にある背景のラベルデ
ータはL=“0 0”,細胞質は核の二値化データが無
いのでL=“0 A”,核の領域は構造識別フラグが設
定されL=“1 A"となっている。本例では構造識別フ
ラグを最上位ビットに付加したが、任意のビットに付加
しても実現できる。
A flow of ternarization processing of an image having an internal structure in a particle will be described with reference to FIGS. 2 and 3. FIG. 2 is a white blood cell image of which the internal structure is important, in which the nucleus is present in the cytoplasm. The threshold for distinguishing the background from the cytoplasm is Thl, the density threshold for distinguishing the background and the cytoplasm from the nucleus is THh, and the threshold of the cytoplasm and the nucleus obtained by binarizing the image data with these thresholds. It shows the binarized data of the region. FIG. 3 shows a label image of the white blood cell image of FIG. The label image is a basic process for performing particle analysis, and is an image in which the identification numbers of particles required when a plurality of particles are present are assigned to the constituent pixels, and the feature amount is calculated for each label. The nuclear region is also included in the binarized data of the cytoplasm, and the label image of the particle is created for this binarized data. The binarized data of the nucleus is used as a structure identification flag, and "1" is added to the label data "A". The background label data around the white blood cells is L = “0 0”, the cytoplasm has no binarization data of the nucleus, so L = “0 A”, and the region of the nucleus has the structure identification flag set L = “1 A”. "Is. In this example, the structure identification flag is added to the most significant bit, but it can be realized by adding it to any bit.

【0020】図4は、三値化処理部18とラベリング処
理部19,特徴量算出部20,特徴量メモリ20,分類
処理部17とからなる画像処理回路の構成例を示す。三
値化処理は二値化処理Aと二値化処理Bとからなり、二
値化処理AにThlを設定し細胞質の二値化を行い、二
値化処理BにTHhを設定し核の領域の二値化を行っ
て、背景,細胞質,核の三値化処理を行う。二値化処理
Aの出力は粒子識別番号算出部で粒子の識別番号が算出
され、二値化処理Bの出力は粒子識別番号処理に必要な
時間だけ遅らせるシフトレジスタを通り、粒子識別番号
に付加され、ラベル画像が生成される。特徴量算出部2
0では、各ラベル毎に面積,周囲長等の形態学的特徴量
が同時に算出され、特徴量メモリに格納される。
FIG. 4 shows an example of the configuration of an image processing circuit including a ternarization processing unit 18, a labeling processing unit 19, a feature amount calculation unit 20, a feature amount memory 20, and a classification processing unit 17. The ternarization process consists of a binarization process A and a binarization process B. The binarization process A is set to Thl to perform binarization of the cytoplasm, and the binarization process B is set to THh to set the nucleus The region is binarized and the background, cytoplasm, and nucleus are ternarized. The output of the binarization process A has the particle identification number calculated by the particle identification number calculation unit, and the output of the binarization process B is added to the particle identification number through a shift register that delays the time required for the particle identification number process. Then, the label image is generated. Feature amount calculation unit 2
In 0, the morphological feature amount such as the area and the perimeter is calculated at the same time for each label and stored in the feature amount memory.

【0021】分類処理部17では、粒子識別番号が同一
であれば、細胞質と核が同じ粒子のものであると判断で
き、粒子内の構造の特徴量をも含めた解析が行え、粒子
の分類精度が向上出来る。
If the particle identification numbers are the same, the classification processing unit 17 can determine that the particles have the same cytoplasm and nuclei, and can perform analysis including the feature amount of the structure inside the particles, and classify the particles. The accuracy can be improved.

【0022】本実施例では、フロー式粒子解析装置の例
を示したが、スライドガラス上に試料を塗布したサンプ
ルの画像を解析する装置など、画像処理を用いて対象物
の解析を行う装置にも有効である。
In the present embodiment, an example of a flow type particle analysis apparatus is shown, but it is applicable to an apparatus that analyzes an object using image processing, such as an apparatus that analyzes an image of a sample in which a sample is applied on a slide glass. Is also effective.

【0023】また、本実施例では三値化処理を用いた処
理を記載したが、四値化以上の処理を加える事で更に内
部構造の特徴量が多く得られ、更に分類精度の向上が図
れる。
Further, although the processing using the ternarization processing is described in the present embodiment, by adding the processing of quaternarization or more, the feature quantity of the internal structure can be further increased, and the classification accuracy can be further improved. .

【0024】[0024]

【発明の効果】本発明によれば、粒子の内部構造領域を
区別するための二値化回路を付加し、このデータを粒子
識別番号に付加する処理部を設ける事で、リアルタイム
にかつ安価な構成で粒子内の粒子画像領域と内部構造領
域との形態学的特徴量が同時に算出でき、粒子内部構造
が重要である白血球,尿沈成分中の尿沈渣中に含まれる
白血球円柱等の内部に粒子を含む円柱類の分析精度向上
が図れる。
According to the present invention, a binarization circuit for distinguishing the internal structure region of a particle is added, and a processing unit for adding this data to a particle identification number is provided. The morphological features of the particle image area and the internal structure area in the particle can be calculated at the same time by the configuration, and the internal structure of the particle is important inside the white blood cells, the white blood cell casts contained in the urinary sediment in the urinary sediment component, etc. It is possible to improve the analysis accuracy of cylinders including particles.

【図面の簡単な説明】[Brief description of the drawings]

【図1】フロー式粒子画像分析装置のブロック図。FIG. 1 is a block diagram of a flow-type particle image analyzer.

【図2】白血球画像例の説明図。FIG. 2 is an explanatory diagram of an example of a white blood cell image.

【図3】白血球のラベル画像例の説明図。FIG. 3 is an explanatory diagram of an example of a label image of white blood cells.

【図4】画像処理のブロック図。FIG. 4 is a block diagram of image processing.

【符号の説明】[Explanation of symbols]

16…特徴抽出回路、17…粒子分析部、18…三値化
処理部、19…ラベリング処理部、20…特徴量算出
部、21…特徴量メモリ。
16 ... Feature extraction circuit, 17 ... Particle analysis unit, 18 ... Ternary processing unit, 19 ... Labeling processing unit, 20 ... Feature amount calculation unit, 21 ... Feature amount memory.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】粒子を含む試料をシース液と共にフローセ
ルに流し、前記フローセル内の観察対象領域を光照射し
て、前記観察対象領域を流れる前記粒子の粒子画像を生
成し、前記粒子画像を解析して前記粒子を分類する粒子
画像解析装置において、 観察対象領域を背景領域,粒子画像領域,粒子内部構造
領域の三つの光強度分布領域に分割する三値化処理部を
有し、 粒子画像識別番号に粒子内部構造領域か否かを区別する
構造識別フラグを付加する機能を有した粒子画像ラベリ
ング処理部を有し、構造識別フラグの付加された粒子画
像識別番号毎に、細胞の形態学的特徴量を算出する特徴
量算出部で、粒子画像領域と粒子内部構造領域の形態学
的特徴量を算出することを特徴とする粒子画像分析装
置。
1. A sample containing particles is caused to flow together with a sheath liquid in a flow cell, and an observation target area in the flow cell is irradiated with light to generate a particle image of the particles flowing in the observation target area, and the particle image is analyzed. In the particle image analysis device for classifying the particles, the observation area is divided into three light intensity distribution areas, that is, a background area, a particle image area, and a particle internal structure area. It has a particle image labeling processing unit that has the function of adding a structure identification flag that distinguishes whether or not it is a particle internal structural region, and the morphology of the cell for each particle image identification number to which the structure identification flag is added. A particle image analysis device characterized in that a morphological characteristic amount of a particle image region and a particle internal structure region is calculated by a characteristic amount calculation unit for calculating a characteristic amount.
【請求項2】粒子を含む試料をスライドガラス上に塗布
し、スライドガラス上の観察対象領域を光照射して、前
記観察対象領域中の前期粒子の粒子画像を生成し、前記
粒子画像を解析して前記粒子を分類する粒子画像解析装
置において、 観察対象領域を背景領域,粒子画像領域,粒子内部構造
領域の三つの光強度分布領域に分割する三値化処理部を
有し、粒子画像識別番号に粒子内部構造領域か否かを区
別する構造識別フラグを付加する機能を有した粒子画像
ラベリング処理部を有し、構造識別フラグの付加された
粒子画像識別番号毎に、細胞の形態学的特徴量を算出す
る特徴量算出部で、粒子画像領域と粒子内部構造領域の
形態学的特徴量を算出することを特徴とする粒子画像分
析装置。
2. A sample containing particles is applied on a slide glass, and an observation target area on the slide glass is irradiated with light to generate a particle image of the early-stage particles in the observation target area, and the particle image is analyzed. In the particle image analysis apparatus for classifying the particles, the observation area is divided into three light intensity distribution areas, that is, a background area, a particle image area, and a particle internal structure area. It has a particle image labeling processing unit that has the function of adding a structure identification flag that distinguishes whether it is a particle internal structure region or not, and the morphology of the cell for each particle image identification number to which the structure identification flag is added. A particle image analysis device characterized in that a morphological characteristic amount of a particle image region and a particle internal structure region is calculated by a characteristic amount calculation unit for calculating a characteristic amount.
【請求項3】請求項2において、 観察対象領域を複数の光強度分布領域に分割する多値化
処理部を有し、粒子画像識別番号に粒子内部構造領域か
否かを区別する粒子対象識別フラグを付加する機能を有
した粒子画像識別番号算出部を有し、構造識別フラグの
付加された粒子画像識別番号毎に、細胞の形態学的特徴
量を算出する特徴量算出部で、粒子画像領域と粒子内部
構造領域の形態学的特徴量を算出する粒子画像分析装
置。
3. The particle object identification according to claim 2, further comprising a multi-value quantization processing section for dividing the observation object area into a plurality of light intensity distribution areas, and distinguishing whether the particle image identification number is a particle internal structure area or not. A particle image identification number calculation unit having a function of adding a flag, and a feature amount calculation unit that calculates a morphological feature amount of a cell for each particle image identification number to which a structure identification flag is added. A particle image analyzer for calculating morphological features of a region and a particle internal structure region.
JP28010995A 1995-10-27 1995-10-27 Particle image analyzer Pending JPH09126987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28010995A JPH09126987A (en) 1995-10-27 1995-10-27 Particle image analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28010995A JPH09126987A (en) 1995-10-27 1995-10-27 Particle image analyzer

Publications (1)

Publication Number Publication Date
JPH09126987A true JPH09126987A (en) 1997-05-16

Family

ID=17620454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28010995A Pending JPH09126987A (en) 1995-10-27 1995-10-27 Particle image analyzer

Country Status (1)

Country Link
JP (1) JPH09126987A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011004568A1 (en) * 2009-07-08 2011-01-13 株式会社ニコン Image processing method for observation of fertilized eggs, image processing program, image processing device, and method for producing fertilized eggs

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011004568A1 (en) * 2009-07-08 2011-01-13 株式会社ニコン Image processing method for observation of fertilized eggs, image processing program, image processing device, and method for producing fertilized eggs

Similar Documents

Publication Publication Date Title
JP6858243B2 (en) Systems, methods and equipment for identifying container caps for sample containers
JP6976257B2 (en) Methods and equipment for multi-view characterization
CN108603817B (en) Method and apparatus adapted to identify sample containers from multiple side views
JP6888770B2 (en) Methods and equipment for classifying artifacts in a sample
US6169816B1 (en) Identification of objects of interest using multiple illumination schemes and finding overlap of features in corresponding multiple images
US5457526A (en) Apparatus for analyzing particles in fluid samples
WO1997026617A1 (en) Classifying red blood cells using imaging techniques to analyze color and shape
JPH0991430A (en) Pattern recognition device
US8391608B2 (en) Method and apparatus for analyzing body fluids
Wang et al. Quick leukocyte nucleus segmentation in leukocyte counting
JP3050046B2 (en) Automatic particle classification system
KR20010017092A (en) Method for counting and analyzing morphology of blood cell automatically
JPH08210961A (en) Method and device for analyzing flow type particle image
JP2826448B2 (en) Flow type particle image analysis method and flow type particle image analysis device
JP2010151523A (en) Method and device for analyzing particle image
JP3653804B2 (en) Particle image region segmentation method and apparatus
JP3165309B2 (en) Particle image analyzer
JPH09126987A (en) Particle image analyzer
JPH04337460A (en) Device for analyzing cell in urine
JP3494559B2 (en) Flow type particle image analysis method and apparatus
JPH10302067A (en) Pattern recognition device
JP2015055481A (en) Image processing method for image obtained by capturing state of material components derived from urine specimen
JPH07286954A (en) Cell automatic classification device
JPH1090163A (en) Particle analyzer
JPS5830049B2 (en) Automatic reticulocyte measurement device