JPH0912652A - Thermally reversible hydrogel material and its production - Google Patents

Thermally reversible hydrogel material and its production

Info

Publication number
JPH0912652A
JPH0912652A JP18790395A JP18790395A JPH0912652A JP H0912652 A JPH0912652 A JP H0912652A JP 18790395 A JP18790395 A JP 18790395A JP 18790395 A JP18790395 A JP 18790395A JP H0912652 A JPH0912652 A JP H0912652A
Authority
JP
Japan
Prior art keywords
water
polymer
graft copolymer
aqueous solution
cloud point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18790395A
Other languages
Japanese (ja)
Inventor
Zenichi Ogita
善一 荻田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP18790395A priority Critical patent/JPH0912652A/en
Publication of JPH0912652A publication Critical patent/JPH0912652A/en
Pending legal-status Critical Current

Links

Landscapes

  • Macromonomer-Based Addition Polymer (AREA)
  • Medicinal Preparation (AREA)
  • Cosmetics (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

PURPOSE: To obtain a novel thermally reversible hydrogel which is excellent in uniformity in compsn.. stability of qualities such as sol-gel transition point, etc.. does not cause chemical cross-linking and well follows the movement of a living body or the deformation of a wound in the course of healing, is not broken and hence not taken into a tissue, is not dissolved in an exuding liq., and is useful as a biocompatible material, etc. CONSTITUTION: This material is a graft copolymer which is formed by grafting a water-sol. polymer onto the main chain comprising a polymer of which the aq. soln. has a cloud point. The copolymer has a mol.wt. of 100,000 or higher and is produced by copolymerizing a water-sol. polymer having one polymerizable functional group introduced thereinto and a monomer which gives a polymer of which the aq. soln. has a cloud point while satisfactorily controlling the physical properties and the insolubilization by cross-linking during production.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、熱可逆性ハイドロゲ
ル材料とその製造法に関するものである。さらに詳しく
は、この発明は、ゲル中に多量の水を保持するハイドロ
ゲル材料として、物質の分離材、医療用具、医薬品、農
薬、化粧品などに有用な、温度の変化により、可逆的に
ゲル化する熱可逆性ハイドロゲル材料とその製造法に関
するものである。
FIELD OF THE INVENTION The present invention relates to a thermoreversible hydrogel material and a method for producing the same. More specifically, the present invention is a hydrogel material that retains a large amount of water in a gel, which is useful as a material separating material, medical devices, pharmaceuticals, agricultural chemicals, cosmetics, etc., and reversibly gels due to a change in temperature. The present invention relates to a thermoreversible hydrogel material and a method for producing the same.

【0002】[0002]

【従来の技術とその課題】水溶性高分子の中には、その
水溶液が熱可逆的にハイドロゲルを形成するものがある
ことが知られており、これらは、物質の分離材や医薬、
化粧品等の分野において産業的に利用されてもいる。タ
ンパク質であるゼラチンや、多糖類である寒天がその代
表であって、これらの水溶液は冷却により流動性を失な
ってゼリー状のハイドロゲルとなり、加熱によって再び
水溶液に戻る熱可逆ゾル−ゲル転移を示すことがよく知
られている。また、これとは逆に加熱によってハイドロ
ゲルとなるものとしては、多糖類誘導体であるメチルセ
ルロースの水溶液がある。しかしながら、これらの系に
共通する問題点として、これらの水溶性高分子がいずれ
も天然の材料を素材としているため、品質の安定性確保
が困難であることや、ゾル−ゲル転移温度の制御が困難
であること、ゲル化温度に達してからゲル化するまでに
長時間を要することなどが挙げられる。
BACKGROUND OF THE INVENTION Among water-soluble polymers, it is known that an aqueous solution thereof forms a hydrogel in a reversible manner.
It is also used industrially in the field of cosmetics and the like. Typical examples are gelatin, which is a protein, and agar, which is a polysaccharide, and these aqueous solutions lose their fluidity upon cooling to become jelly-like hydrogels, which undergo a thermoreversible sol-gel transition that returns to the aqueous solution by heating. It is well known to show. On the contrary, as a material that becomes a hydrogel by heating, there is an aqueous solution of methylcellulose which is a polysaccharide derivative. However, as a problem common to these systems, since all of these water-soluble polymers are made of natural materials, it is difficult to secure quality stability and control of the sol-gel transition temperature is difficult. It is difficult, and it takes a long time to reach the gelation temperature and then to gel.

【0003】一方、非イオン性界面活性剤の中にも、そ
の水溶液が熱可逆的にハイドロゲルを形成するものがあ
ることが知られている。たとえばポリプロピレンオキサ
イドの両端にポリエチレンオキサイドが結合した、商品
名プロニックF−127(旭電化工業(株)製)の高濃
度水溶液は約20℃以上でハイドロゲルとなり、それ以
下の温度で水溶液となることが知られている(たとえ
ば、International Journal of Pharmaceutics, 12, 1
47−152(1982) )。しかしながら、この材料の場合に
は、約20wt%以上の高濃度でしかハイドロゲルとな
らず、ハイドロゲル中の含水率が低いという問題があっ
た。また、約20wt%以上の高濃度でゲル化温度以上
に保持しても、さらに水を加えるとゲルが溶解してしま
うという問題もあった。たとえばこのゲルを創傷被覆材
として使用した場合には、創傷面から分泌される滲出液
によってこのハイドロゲルは溶解してしまうという重大
な欠点につながる。そして、この材料の場合には、比較
的分子量が低いため、約20wt%以上の高濃度水溶液
は非常に高い浸透圧を示し、細胞膜等も容易に透過する
ので、細胞や生物、生体を対象とする用途には不都合を
生じる場合があった。
On the other hand, it is known that some nonionic surfactants form an aqueous solution thereof in a thermoreversible hydrogel. For example, a high-concentration aqueous solution of trade name Pronic F-127 (manufactured by Asahi Denka Kogyo Co., Ltd.) in which polyethylene oxide is bonded to both ends of polypropylene oxide becomes a hydrogel at about 20 ° C. or higher, and becomes an aqueous solution at a temperature lower than that. Are known (for example, International Journal of Pharmaceutics, 12 , 1
47-152 (1982)). However, in the case of this material, there is a problem that the hydrogel forms a hydrogel only at a high concentration of about 20 wt% or more, and the water content in the hydrogel is low. Further, even if the gelation temperature is maintained above the gelation temperature at a high concentration of about 20 wt% or more, there is a problem that the gel will be dissolved by further adding water. For example, when this gel is used as a wound dressing, the hydrogel is seriously dissolved by the exudate secreted from the wound surface. Since this material has a relatively low molecular weight, a high-concentration aqueous solution of about 20 wt% or more exhibits a very high osmotic pressure and easily permeates cell membranes, etc. In some cases, there is a problem in the use.

【0004】さらにまた、熱可逆性ハイドロゲル材料と
してポリ−Nイソプロピルアクリルアミドとポリエチレ
ンオキシドの結合体が知られているが、その製造工程
で、両高分子中に複数の反応活性な官能基を導入してい
るため、結合反応の際に化学架橋が生じて不溶化する危
険性が高く、製造が困難であるばかりではなく、得られ
るハイドロゲルの物性を制御することは非常に困難であ
った。
Furthermore, as a thermoreversible hydrogel material, a conjugate of poly-N-isopropylacrylamide and polyethylene oxide is known. In the manufacturing process, a plurality of reactive functional groups are introduced into both polymers. Therefore, there is a high risk of insolubilization due to chemical cross-linking during the binding reaction, which is not only difficult to manufacture, but it is also very difficult to control the physical properties of the resulting hydrogel.

【0005】同様に三官能性のポリエチレンオキシドと
ポリプロピレンオキシド、もしくは逆に三官能性のポリ
プロピレンオキシドとポリエチレンオキシドとの結合体
も熱可逆性ハイドロゲルとして提案されてもいるが、こ
のものも、製造時に化学架橋が生じ、上記と同様の欠点
が避けられないものであった。さらに、このような化学
架橋は、架橋重合体がゾル−ゲル転移温度以上の状態、
すなわちゲル状態で分子間の運動性を制約するために、
生体の複雑な動きあるいは治癒過程における創傷の変形
などの追従性が著しく阻害されると同時に、化学架橋に
起因する脆性破壊により組織中にこのゲルの断片が取り
込まれるなどの重大な問題が考えられる。
Similarly, a conjugate of trifunctional polyethylene oxide and polypropylene oxide, or conversely, a trifunctional polypropylene oxide and polyethylene oxide has been proposed as a thermoreversible hydrogel, which is also manufactured. At times, chemical cross-linking occurred, and the same drawbacks as above were unavoidable. Furthermore, such chemical cross-linking is a state in which the cross-linked polymer has a sol-gel transition temperature or higher,
That is, in order to restrict the mobility between molecules in the gel state,
The ability to follow complicated movements of the living body or deformation of the wound during the healing process is significantly impaired, and at the same time, serious problems such as the incorporation of this gel fragment into the tissue due to brittle fracture due to chemical crosslinking are considered. .

【0006】そこで、この発明は、上記の通りの従来の
熱可逆性ハイドロゲル材料の問題点を解決し、品質の安
定性、ゾル−ゲル転移温度の制御性、ゲル化の効率性に
優れていることはもちろんのこと、含水率を高くするこ
とができ、生体への適合性に優れ、かつ化学架橋が存在
しないため、柔軟で、複雑形状や変形への追従性にも優
れ、先にものべた生体の動きおよび創傷の治癒過程にお
ける変形性にも追従できると同時に、脆性破壊による組
織中への取り込みが阻止され、滲出液にも溶解せず、安
定な新しい熱可逆性ハイドロゲル材料とその製造法を提
供することにある。
Therefore, the present invention solves the problems of the conventional thermoreversible hydrogel materials as described above, and is excellent in stability of quality, controllability of sol-gel transition temperature and efficiency of gelation. Of course, it is possible to increase the water content, it has excellent compatibility with living organisms, and because it does not have chemical crosslinks, it is flexible and has excellent conformability to complex shapes and deformation. A stable new thermoreversible hydrogel material that can follow the movement of a solid body and deformability in wound healing process, at the same time is prevented from being taken up into tissues by brittle fracture, does not dissolve in exudate, and is stable To provide a manufacturing method.

【0007】[0007]

【課題を解決するための手段】この発明は、上記の課題
を解決するものとして、水溶液が曇点を有する高分子か
らなる主鎖に、水溶性高分子を側鎖として結合したグラ
フト共重合体であって、このグラフト共重合体は、分子
量が10万以上であることを特徴とする熱可逆性ハイド
ロゲル材料を提供する。さらにまたこの発明は、上記熱
可逆性ハイドロゲル材料を構成するグラフト共重合体
を、水溶性高分子鎖中に1個の重合性官能基を導入し、
その水溶液が曇点を有する高分子を構成する単量体と共
重合させて得ることを特徴とする熱可逆性ハイドロゲル
材料の製造法をも提供する。 さらに詳しく説明する
と、まず、この発明で規定するところのグラフト共重合
体とは、幹となる線状重合体(主鎖)に任意の重合体の
枝(側鎖)を結合させた高分子化合物を意味しており、
この発明のグラフト共重合体は主鎖が曇点を有する高分
子であって、側鎖が水溶性高分子からなることを特徴と
し、かつ、必須としている。
In order to solve the above-mentioned problems, the present invention is a graft copolymer in which a water-soluble polymer is bonded as a side chain to a main chain of a polymer whose aqueous solution has a cloud point. The graft copolymer provides a thermoreversible hydrogel material having a molecular weight of 100,000 or more. Furthermore, this invention introduces one polymerizable functional group into the water-soluble polymer chain of the graft copolymer constituting the thermoreversible hydrogel material,
Also provided is a method for producing a thermoreversible hydrogel material, which is obtained by copolymerizing the aqueous solution with a monomer constituting a polymer having a cloud point. More specifically, first, the graft copolymer as defined in the present invention is a polymer compound in which a linear polymer (main chain) serving as a trunk is bound with an arbitrary polymer branch (side chain). Means
The graft copolymer of the present invention is a polymer having a cloud point in its main chain and a water-soluble polymer in its side chain, and is essential.

【0008】このような構造のグラフト共重合体からな
る特定の熱可逆性ハイドロゲル材料はこの発明によって
はじめて提供されるものである。そして、曇点とは、透
明な高分子水溶液(濃度1wt%)を徐徐に加熱した
時、はじめて白濁を生じる温度を意味しており、この発
明においては、特に限定されるものではないが、この曇
点が0℃〜90℃、さらには0℃〜40℃であることが
望ましい。すなわち、その水溶液が曇点を有する高分子
は曇点以下の温度では水に溶解するが、曇点以上の温度
では非水溶性となり水から析出する。その水溶液が曇点
をを有する高分子としては、ポリ−N−イソプロピルア
クリルアミド、ポリ−N−n−プロピルアクリルアミ
ド、ポリ−N−シクロプロピルアクリルアミド、ポリ−
N,N−ジエチルアクリルアミド、ポリ−N−アクリロ
イルピペリジン、ポリ−N−アクリロイルピロリジン、
ポリ−N,N−エチルメチルアクリルアミドなどのポリ
N置換アクリルアミド誘導体、ポリ−N−イソプロピル
メタアクリルアミド、ポリ−N−シクロプロピルメタア
クリルアミドなどのポリN置換メタアクリルアミド誘導
体、ポリビニルメチルエーテル、ポリビニルアルコール
部分酢化物などが挙げられる。
The specific thermoreversible hydrogel material comprising the graft copolymer having such a structure is first provided by the present invention. The cloud point means a temperature at which a transparent polymer aqueous solution (concentration: 1 wt%) gradually becomes cloudy when gradually heated, and is not particularly limited in the present invention, The cloud point is preferably 0 ° C to 90 ° C, more preferably 0 ° C to 40 ° C. That is, a polymer whose aqueous solution has a cloud point dissolves in water at a temperature below the cloud point, but becomes insoluble in water at a temperature above the cloud point and precipitates from water. Examples of the polymer whose aqueous solution has a cloud point include poly-N-isopropylacrylamide, poly-Nn-propylacrylamide, poly-N-cyclopropylacrylamide, poly-
N, N-diethyl acrylamide, poly-N-acryloyl piperidine, poly-N-acryloyl pyrrolidine,
Poly-N-substituted acrylamide derivatives such as poly-N, N-ethylmethylacrylamide, poly-N-isopropylmethacrylamide, poly-N-substituted methacrylamide derivatives such as poly-N-cyclopropylmethacrylamide, polyvinyl methyl ether, polyvinyl alcohol partial vinegar And the like.

【0009】上記のポリN置換(メタ)アクリルアミド
誘導体の曇点は、他の単量体とのランダム共重合体によ
って調節でき、親水性単量体との共重合によって曇点が
上昇、疎水性単量体との共重合によって曇点が低下す
る。ここで親水性単量体としてはたとえば、N−ビニル
ピロリドン、アクリルアミド、アクリル酸など、疎水性
単量体としては例えば、n−ブチルメタクリレート、ア
クリロニトリル、スチレンなどを挙げることができる。
The cloud point of the above poly-N-substituted (meth) acrylamide derivative can be adjusted by a random copolymer with another monomer, and the cloud point is increased by the copolymerization with a hydrophilic monomer, and the hydrophobicity is increased. Copolymerization with the monomer lowers the cloud point. Here, examples of the hydrophilic monomer include N-vinylpyrrolidone, acrylamide, and acrylic acid, and examples of the hydrophobic monomer include n-butyl methacrylate, acrylonitrile, and styrene.

【0010】また、この発明における水溶性高分子とし
ては、たとえば、ポリエチレンオキサイド等のポリアル
キレンオキサイド類、ポリN−ビニルピロリドン、ポリ
アクリルアミド、ポリビニルアルコール、メチルセルロ
ース、デキストラン、ポリビニルピリジン、ポリメタア
クリルアミド、ポリN−メチルアクリルアミド等のポリ
N置換アクリルアミド誘導体、ポリヒドロキシメチルア
クリレート、ポリアクリル酸、ポリメタクリル酸、ポリ
ビニルスルホン酸、ポリスチレンスルホン酸およびそれ
らの塩、ポリN,N−ジメチルアミノエチルメタクリレ
ート、ポリN,N−ジエチルアミノエチルメタクリレー
ト、ポリN,N−ジメチルアミノプロピルアクリルアミ
ドおよびそれらの塩などが挙げられる。
Examples of the water-soluble polymer in the present invention include polyalkylene oxides such as polyethylene oxide, poly N-vinylpyrrolidone, polyacrylamide, polyvinyl alcohol, methyl cellulose, dextran, polyvinyl pyridine, polymethacrylamide, poly Poly N-substituted acrylamide derivatives such as N-methyl acrylamide, polyhydroxymethyl acrylate, polyacrylic acid, polymethacrylic acid, polyvinyl sulfonic acid, polystyrene sulfonic acid and salts thereof, poly N, N-dimethylaminoethyl methacrylate, poly N, Examples thereof include N-diethylaminoethyl methacrylate, poly N, N-dimethylaminopropyl acrylamide and salts thereof.

【0011】そして、上記のこの発明のグラフト共重合
体については、その分子量が10万以上であることを必
須としてもいる。ここで分子量10万以上のグラフト共
重合体とは、主鎖の曇点以下の温度においてその水溶液
を分画分子量10万の限外濾過膜(アミコン社製YM1
00)を用いて限外濾過した時、濾過されないものをい
う。
It is also essential that the above-mentioned graft copolymer of the present invention has a molecular weight of 100,000 or more. Here, the graft copolymer having a molecular weight of 100,000 or more means an ultrafiltration membrane (YM1 manufactured by Amicon Co., Ltd.) having a molecular weight of 100,000, which is obtained by fractionating the aqueous solution thereof at a temperature below the cloud point of the main chain.
00) refers to those that are not filtered when ultrafiltered.

【0012】なお、グラフト共重合体中の水溶性高分子
側鎖は、その平均重合度は10以上であることが好まし
い。その平均重合度が10未満の場合には、水中で水和
した水溶性高分子の立体障害効果(体積排除効果)が不
十分となり、主鎖の曇点以上の温度における主鎖間の凝
集を有効に抑制できないため、系全体が巨視的な相分離
(著しいゲルのシネレシス)を起こし、安定なハイドロ
ゲルが得られにくくなる。一方、水溶性高分子側鎖の平
均重合度が1000を越える場合、水中で水和した水溶
性高分子の立体障害効果が過剰となり、主鎖の曇点以上
の温度における主鎖間の凝集を阻害するため、安定なハ
イドロゲルが得られにくくなる。従って、水溶性高分子
側鎖の平均重合度の好ましい範囲は10〜1000であ
る。
The average degree of polymerization of the water-soluble polymer side chain in the graft copolymer is preferably 10 or more. If the average degree of polymerization is less than 10, the steric hindrance effect (volume exclusion effect) of the water-soluble polymer hydrated in water becomes insufficient, and aggregation between the main chains at temperatures above the cloud point of the main chain occurs. Since it cannot be suppressed effectively, the entire system undergoes macroscopic phase separation (prominent gel syneresis), and it becomes difficult to obtain a stable hydrogel. On the other hand, when the average degree of polymerization of the side chains of the water-soluble polymer exceeds 1,000, the steric hindrance effect of the water-soluble polymer hydrated in water becomes excessive, resulting in aggregation between main chains at temperatures above the cloud point of the main chains. Since it inhibits, it becomes difficult to obtain a stable hydrogel. Therefore, the preferable range of the average degree of polymerization of the water-soluble polymer side chain is 10 to 1,000.

【0013】また、グラフト共重合体中の側鎖の割合に
ついては、10重量%以上とするのが好ましい。これが
10重量%未満の場合には、主鎖の曇点以上の温度にお
ける主鎖間の凝集力が強すぎるために、ゲルの著しいシ
ネレシス現象が生起して安定なハイドロゲルが得られ
ず、側鎖の割合が90重量%を越える場合、主鎖の曇点
以上の温度における主鎖間の凝集力が不十分なためにハ
イドロゲルとならない傾向にある。従って、上記グラフ
ト共重合体中の好ましい側鎖の割合は10重量%〜90
重量%の範囲である。
The proportion of side chains in the graft copolymer is preferably 10% by weight or more. If the amount is less than 10% by weight, the cohesive force between the main chains at a temperature above the cloud point of the main chain is too strong, so that a remarkable syneresis phenomenon of the gel occurs and a stable hydrogel cannot be obtained. When the chain proportion exceeds 90% by weight, the cohesive force between the main chains at a temperature above the cloud point of the main chains is insufficient, so that a hydrogel tends not to be formed. Therefore, the preferable proportion of side chains in the graft copolymer is from 10% by weight to 90% by weight.
% By weight.

【0014】次に、この発明の製造法について説明する
と、一般にグラフト共重合体の合成法としては、1)重
合体の連鎖移動反応を利用する方法、2)幹重合体に遊
離基に分裂し得る官能基を導入し、そこから重合を開始
する方法、3)幹重合体からイオン重合を開始せしめる
方法などが知られている。この発明のグラフト共重合体
をこれらの方法によって得ることもできるが、側鎖の重
合度を制御するという観点からは、水溶性高分子鎖中に
1個の重合性官能基を予め導入し、その水溶液が曇点を
有する高分子を構成する単量体と水中で共重合させて得
ることが、得られたグラフト共重合体の物性の良好な制
御および製造時の架橋形成の制御という点で有利でもあ
る。
Next, the production method of the present invention will be described. Generally, as a method for synthesizing a graft copolymer, 1) a method utilizing a chain transfer reaction of a polymer, 2) a free radical is split into a trunk polymer. Known methods include introducing a functional group to be obtained and initiating polymerization from the functional group, 3) initiating ionic polymerization from a trunk polymer. The graft copolymer of the present invention can also be obtained by these methods, but from the viewpoint of controlling the degree of polymerization of side chains, one polymerizable functional group is previously introduced into the water-soluble polymer chain, Obtaining the aqueous solution by copolymerizing with a monomer that constitutes a polymer having a cloud point in water provides good control of the physical properties of the obtained graft copolymer and control of cross-link formation during production. It is also an advantage.

【0015】ここで水溶性高分子鎖中に導入される重合
性官能基の数は1個であることが必要で、複数の重合性
官能基が導入されるとその後の曇点を有する高分子を構
成する単量体との共重合において、いかなる溶媒にも不
溶の化学架橋ゲルが生成し、熱可逆性ハイドロゲル材料
となる水溶性のグラフト共重合体が得られなくなる。水
溶性高分子鎖中に重合性官能基1個を導入するには、た
とえば水溶性高分子を与える単量体を重合させる際に連
鎖移動剤を用いて、直接あるいは間接的に重合性官能基
を高分子鎖片末端に導入することができる。
Here, the number of the polymerizable functional groups introduced into the water-soluble polymer chain needs to be one, and when a plurality of polymerizable functional groups are introduced, the polymer having a cloud point after that is introduced. In the copolymerization with the monomer constituting the above, a chemically crosslinked gel insoluble in any solvent is produced, and a water-soluble graft copolymer to be a thermoreversible hydrogel material cannot be obtained. In order to introduce one polymerizable functional group into the water-soluble polymer chain, for example, a chain transfer agent is used when polymerizing a monomer that gives a water-soluble polymer, and the polymerizable functional group is directly or indirectly used. Can be introduced at one end of the polymer chain.

【0016】重合性官能基1個を分子内または末端に結
合した水溶性高分子とその水溶液が曇点を有する高分子
を構成する単量体との共重合反応を水中で行うことによ
り、この発明に必須の高重合度のグラフト共重合体を得
ることができる。これは水の連鎖移動係数が極めて小さ
いためである。
By carrying out a copolymerization reaction in water of a water-soluble polymer having one polymerizable functional group bonded in the molecule or at its terminal and a monomer of which the aqueous solution has a cloud point, It is possible to obtain a graft copolymer having a high degree of polymerization, which is essential to the invention. This is because the chain transfer coefficient of water is extremely small.

【0017】[0017]

【作用】以上の通り、この発明の熱可逆性ハイドロゲル
材料は、特定のグラフト共重合体からなるものであっ
て、この熱可逆ハイドロゲル材料は、低温では流動性の
ある水溶液、高温では流動性を失ってハイドロゲルとな
る熱可逆ゾル−ゲル転移を示す。そのメカニズムは以下
のように推定される。すなわち、グラフト共重合体主鎖
の曇点以下の温度では、主鎖、側鎖ともに水溶性である
ので完全に水に溶解する。しかし、この水溶液の温度を
主鎖の曇点以上に昇温すると、該主鎖が非水溶性となっ
て凝集し分子間会合が起こる。一方、グラフト共重合体
側鎖は主鎖の曇点以上においても水溶性を保つので、主
鎖間の凝集が巨視的な相分離に至ることを防止し、安定
なハイドロゲルが形成される。
As described above, the thermoreversible hydrogel material of the present invention is composed of a specific graft copolymer, and the thermoreversible hydrogel material is an aqueous solution which is fluid at low temperature and fluid at high temperature. It exhibits a thermoreversible sol-gel transition which loses its properties and becomes a hydrogel. The mechanism is presumed as follows. That is, at a temperature below the cloud point of the main chain of the graft copolymer, both the main chain and the side chains are water-soluble, so that they are completely dissolved in water. However, when the temperature of this aqueous solution is raised above the cloud point of the main chain, the main chain becomes water-insoluble and aggregates, resulting in intermolecular association. On the other hand, the side chains of the graft copolymer remain water-soluble even at the cloud point of the main chain or higher, so that aggregation between the main chains is prevented from leading to macroscopic phase separation, and a stable hydrogel is formed.

【0018】そして、この発明の熱可逆性ハイドロゲル
材料は、上記の特有の構成からなるグラフト共重合体で
あることによって、従来のもののように、化学架橋が生
じることがないため、その製造工程において不溶性する
ことはなく、実際の利用時にも柔軟で複雑形状や変形へ
の追従性に優れたものとなる。この発明の熱可逆性ハイ
ドロゲル材料は、このような優れた特性から、医療、医
薬への応用が特に期待されるものでもある。すなわちた
とえば創傷被覆材として利用する場合には、従来のよう
な分子内化学架橋が生じないため、ゲルは疎水結合とい
う物理的架橋のみによって形成され、その架橋の結合エ
ネルギーおよび寿命は化学架橋に比べて充分に小さく、
生理的条件下でその架橋の形成を制御することができ
る。このため、この発明の熱可逆性ハイドロゲル材料
は、複雑な生体形状への適応性(密着性)、柔軟な生体
組織との物理的マッチング、生体の動きおよび創傷面の
変形への追従性、脆性破壊による生体組織への取り込み
の阻止および創傷面からの滲出液に溶解することなく、
安定でさらに病変組織等の排出という生体との適合性が
極めて優れている。
Since the thermoreversible hydrogel material of the present invention is a graft copolymer having the above-mentioned unique constitution, chemical crosslinking does not occur unlike conventional ones, and therefore, the manufacturing process thereof. It does not become insoluble in, and is flexible even in actual use and has excellent conformability to complex shapes and deformation. The thermoreversible hydrogel material of the present invention is particularly expected to be applied to medicine and medicine due to such excellent properties. In other words, when used as a wound dressing, for example, gels are formed only by physical crosslinks called hydrophobic bonds because conventional intramolecular chemical crosslinks do not occur, and the bond energy and life of the crosslinks are higher than those of chemical crosslinks. Small enough
The formation of the crosslinks can be controlled under physiological conditions. Therefore, the thermoreversible hydrogel material of the present invention has adaptability (adhesion) to a complicated living body shape, physical matching with a flexible living tissue, followability to movement of a living body and deformation of a wound surface, Without blocking the uptake into living tissue by brittle fracture and dissolving in exudate from the wound surface,
It is stable and excels in compatibility with living organisms such as discharging of diseased tissue.

【0019】[0019]

【実施例】以下、実施例を示し、さらに詳しくこの発明
について説明する。もちろん、この発明は以下の例によ
って何ら限定されるものではない。実施例1 片末端をメタクリル酸エステルとしたポリエチレンオキ
サイド〔NKエステルM−900G(平均重合度9
0)、新中村化学工業(株)製〕40gおよびN−イソ
プロピルアクリルアミド20gを蒸留水3000mlに
溶解し、窒素置換後、過硫酸アンモニウム1gおよびテ
トラメチルエチレンジアミン5mlを加え、室温窒素雰
囲気下、終夜反応させた。反応液を分画分子量10万の
限外濾過膜(アミコン社製YM100)を用いて限外濾
過により精製し、濾過されないものを回収して凍結乾燥
し、ポリ−N−イソプロピルアクリルアミド主鎖にポリ
エチレンオキサイド側鎖を結合した分子量10万以上の
グラフト共重合体55gを得た。核磁気共鳴スペクトル
および元素分析の解析結果から、このグラフト共重合体
中のポリエチレンオキサイド側鎖の割合は66重量%で
あった。
The present invention will be described below in more detail with reference to examples. Of course, the present invention is not limited to the following examples. Example 1 Polyethylene oxide having methacrylic acid ester at one end [NK ester M-900G (average degree of polymerization: 9
0), manufactured by Shin-Nakamura Chemical Co., Ltd.] 40 g and N-isopropylacrylamide 20 g are dissolved in 3000 ml of distilled water, and after nitrogen substitution, 1 g of ammonium persulfate and 5 ml of tetramethylethylenediamine are added, and the mixture is reacted overnight under a nitrogen atmosphere at room temperature. It was The reaction solution was purified by ultrafiltration using an ultrafiltration membrane with a molecular weight cutoff of 100,000 (YM100 manufactured by Amicon), and the non-filtered product was recovered and freeze-dried to give poly-N-isopropylacrylamide main chain with polyethylene. 55 g of a graft copolymer having an oxide side chain and having a molecular weight of 100,000 or more was obtained. From the analysis results of the nuclear magnetic resonance spectrum and the elemental analysis, the proportion of polyethylene oxide side chains in this graft copolymer was 66% by weight.

【0020】上記のグラフト共重合体5gを蒸留水95
gに溶解し、5重量%の水溶液とした。この水溶液は3
5℃以下では完全に透明で流動性の高い水溶液である
が、35℃以上の温度では流動性を失い、わずかに白濁
した含水率95重量%の安定なハイドロゲルとなった。
このハイドロゲルを冷却すると、35℃でもとの透明な
水溶液にもどった。この変化は、可逆的に繰り返し観測
された。また、このゲルを40℃で多量の水中に投入し
たが、溶解しなかった。実施例2 片末端をメタクリル酸エステルとしたポリエチレンオキ
サイド〔NKエステルM−900G(平均重合度9
0)、新中村化学工業(株)製〕20gおよびN−n−
プロピルアクリルアミド20gを蒸留水2000mlに
溶解し、窒素置換後、過硫酸アンモニウム1gおよびテ
トラメチルエチレンジアミン5mlを加え、室温窒素雰
囲気下、終夜反応させた。反応液を分画分子量10万の
限外濾過膜(アミコン社製YM100)を用いて限外濾
過により精製し、濾過されないものを回収して凍結乾燥
し、ポリ−N−n−プロピルアクリルアミド主鎖にポリ
エチレンオキサイド側鎖を結合した分子量10万以上の
グラフト共重合体37gを得た。核磁気共鳴スペクトル
および元素分析の解析結果から、このグラフト共重合体
中のポリエチレンオキサイド側鎖の割合は50重量%で
あった。
5 g of the above graft copolymer was added to distilled water 95
g to give a 5% by weight aqueous solution. This aqueous solution is 3
At 5 ° C or lower, the aqueous solution was completely transparent and had high fluidity, but at temperatures of 35 ° C or higher, it lost fluidity and became a slightly turbid, stable hydrogel with a water content of 95% by weight.
When the hydrogel was cooled, it returned to a clear aqueous solution at 35 ° C. This change was repeatedly observed reversibly. Further, this gel was put into a large amount of water at 40 ° C., but it did not dissolve. Example 2 Polyethylene oxide having methacrylic acid ester at one end [NK ester M-900G (average degree of polymerization: 9
0), manufactured by Shin-Nakamura Chemical Co., Ltd.] 20 g and N-n-
20 g of propylacrylamide was dissolved in 2000 ml of distilled water and, after purging with nitrogen, 1 g of ammonium persulfate and 5 ml of tetramethylethylenediamine were added and reacted overnight under a nitrogen atmosphere at room temperature. The reaction solution was purified by ultrafiltration using an ultrafiltration membrane with a molecular weight cutoff of 100,000 (YM100 manufactured by Amicon), and the unfiltered product was recovered and freeze-dried to obtain a poly-N-n-propylacrylamide main chain. 37 g of a graft copolymer having a molecular weight of 100,000 or more in which polyethylene oxide side chains were bound to was obtained. From the analysis results of the nuclear magnetic resonance spectrum and the elemental analysis, the proportion of polyethylene oxide side chains in this graft copolymer was 50% by weight.

【0021】上記のグラフト共重合体5gを蒸留水95
gに氷冷下で溶解し、5重量%の水溶液とした。この水
溶液は25℃以下では完全に透明で流動性のある高い水
溶液であるが、25℃以上の温度では流動性を失い、わ
ずかに白濁した含水率95重量%の安定なハイドロゲル
となった。このハイドロゲルを冷却すると、25℃でも
との透明な水溶液にもどった。この変化は、可逆的に繰
り返し観測された。実施例3 片末端をメタクリル酸エステルとしたポリエチレンオキ
サイド〔NKエステルM−230G(平均重合度2
3)、新中村化学工業(株)製〕40gおよびN−n−
プロピルアクリルアミド20gを蒸留水3000mlに
溶解し、窒素置換後、過硫酸アンモニウム1gおよびテ
トラメチルエチレンジアミン5mlを加え、室温窒素雰
囲気下、終夜反応させた。反応液を分画分子量10万の
限外濾過膜(アミコン社製YM100)を用いて限外濾
過により精製し、濾過されないものを回収して凍結乾燥
し、ポリ−N−n−プロピルアクリルアミド主鎖にポリ
エチレンオキサイド側鎖を結合した分子量10万以上の
グラフト共重合体55gを得た。核磁気共鳴スペクトル
および元素分析の解析結果から、このグラフト共重合体
中のポリエチレンオキサイド側鎖の割合は66重量%で
あった。
5 g of the above graft copolymer was added to distilled water 95
g under ice-cooling to give a 5% by weight aqueous solution. This aqueous solution was a completely transparent and highly fluid aqueous solution at 25 ° C or lower, but lost the fluidity at a temperature of 25 ° C or higher, and became a slightly turbid and stable hydrogel with a water content of 95% by weight. When this hydrogel was cooled, it returned to its original clear aqueous solution at 25 ° C. This change was repeatedly observed reversibly. Example 3 Polyethylene oxide having methacrylic acid ester at one end [NK ester M-230G (average degree of polymerization: 2
3), manufactured by Shin-Nakamura Chemical Co., Ltd.] 40 g and N-n-
20 g of propylacrylamide was dissolved in 3000 ml of distilled water and, after purging with nitrogen, 1 g of ammonium persulfate and 5 ml of tetramethylethylenediamine were added, and the mixture was reacted overnight under a nitrogen atmosphere at room temperature. The reaction solution was purified by ultrafiltration using an ultrafiltration membrane with a molecular weight cutoff of 100,000 (YM100 manufactured by Amicon), and the unfiltered product was recovered and freeze-dried to obtain a poly-N-n-propylacrylamide main chain. 55 g of a graft copolymer having a molecular weight of 100,000 or more in which polyethylene oxide side chains are bound to was obtained. From the analysis results of the nuclear magnetic resonance spectrum and the elemental analysis, the proportion of polyethylene oxide side chains in this graft copolymer was 66% by weight.

【0022】上記のグラフト共重合体5gを蒸留水95
gに氷冷下で溶解し、5重量%の水溶液とした。この水
溶液は25℃以下では完全に透明で流動性の高い水溶液
であるが、25℃以上の温度では流動性を失い、わずか
に白濁した含水率95重量%の安定なハイドロゲルとな
った。このハイドロゲルを冷却すると、25℃でもとの
透明な水溶液にもどった。この変化は、可逆的に繰り返
し観測された。また、このゲルを30℃で多量の水中に
投入したが、溶解しなかった。実施例4 片末端をメタクリル酸エステルとしたポリエチレンオキ
サイド(ブレンマーPME−4000(平均重合度9
8)、日本油脂(株)製)75gおよびN−イソプロピ
ルアクリルアミド117g、n−ブチルメタクリレート
8gをベンゼン1000mlに溶解、窒素置換後、2,
2’−アゾビスイソブチロニトリル3gを加え、窒素雰
囲気下、60℃で5時間反応させた。反応液にクロロホ
ルム1000mlを加えて希釈し、この溶液をヘキサン
10lに加えて沈澱を生成させ、この沈澱を乾燥後、蒸
留水4lに溶解させた。この水溶液を分画分子量10万
の限外濾過膜(アミコン社製YM100)を用いて限外
濾過により精製、濾過されないものを回収して凍結乾燥
し、ポリ−N−イソプロピルアクリルアミド−n−ブチ
ルメタクリレート主鎖にポリエチレンオキサイド側鎖を
結合した分子量10万以上のグラフト共重合体170g
を得た。核磁気共鳴スペクトルおよび元素分析の解析結
果からこのグラフト共重合体中のポリエチレンオキサイ
ド側鎖の割合は66重量%であった。
5 g of the above graft copolymer was added to distilled water 95
g under ice-cooling to give a 5% by weight aqueous solution. This aqueous solution was completely transparent and highly fluid at 25 ° C. or lower, but lost its fluidity at temperatures of 25 ° C. or higher, and became a slightly turbid and stable hydrogel with a water content of 95% by weight. When this hydrogel was cooled, it returned to its original clear aqueous solution at 25 ° C. This change was repeatedly observed reversibly. Further, this gel was put into a large amount of water at 30 ° C., but it did not dissolve. Example 4 Polyethylene oxide (Blemmer PME-4000 (average degree of polymerization 9
8), manufactured by Nippon Oil & Fats Co., Ltd.), N-isopropylacrylamide 117 g, and n-butyl methacrylate 8 g were dissolved in benzene 1000 ml, and after nitrogen substitution, 2,
3 g of 2'-azobisisobutyronitrile was added, and the mixture was reacted at 60 ° C for 5 hours in a nitrogen atmosphere. The reaction solution was diluted with 1000 ml of chloroform, and the solution was added to 10 l of hexane to form a precipitate. The precipitate was dried and then dissolved in 4 l of distilled water. This aqueous solution was purified by ultrafiltration using an ultrafiltration membrane with a molecular weight cutoff of 100,000 (YM100 manufactured by Amicon). Those that were not filtered were collected and freeze-dried to obtain poly-N-isopropylacrylamide-n-butyl methacrylate. 170 g of a graft copolymer having a polyethylene oxide side chain bonded to the main chain and a molecular weight of 100,000 or more
I got From the analysis results of nuclear magnetic resonance spectrum and elemental analysis, the proportion of polyethylene oxide side chains in this graft copolymer was 66% by weight.

【0023】上記グラフト共重合体5gを蒸留水95g
に氷冷下で溶解し、5重量%の水溶液とした。この水溶
液は20℃以下では完全に透明で流動性の高い水溶液で
あるが、20℃以上の温度では流動性を失い、わずかに
白濁した含水率95重量%の安定なハイドロゲルとなっ
た。このハイドロゲルを冷却すると、20℃でもとの透
明な水溶液にもどった。この変化は、可逆的に繰り返し
観測された。また、このゲルを25℃で多量の水中に投
入したが、溶解しなかった。実施例5 N−ビニルピロリドン22.6gをベンゼン800ml
に溶解し、2−メルカプトエチルアミン6.2g、2,
2’−アゾビスイソブチロニトリル1.6gを加え、6
0℃で8時間反応させた。溶媒を減圧留去して100m
lまで濃縮し、ジエチルエーテル2000mlに加えて
沈澱を析出させた。該沈澱を真空乾燥後、蒸留水200
mlに溶解し、分画分子量3000の限外濾過膜(アミ
コン社製YM3)を用いて限外濾過し、次いで濾液を分
画分子量1000の限外濾過膜(アミコン社製YM1)
を用いて限外濾過により精製し、濾過されないものを回
収して凍結乾燥し、分子量1000〜3000の片末端
に1級アミノ基を有するポリ−N−ビニルピロリドン1
0gを得た。トリニトロベンゼンスルホン酸を用いた1
級アミンの定量により、数平均重合度を求めたところ、
約20であった。
5 g of the above graft copolymer was added to 95 g of distilled water.
Was dissolved under ice-cooling into a 5% by weight aqueous solution. This aqueous solution was completely transparent and highly fluid at 20 ° C. or lower, but lost its fluidity at temperatures of 20 ° C. or higher, and became a slightly turbid and stable hydrogel with a water content of 95% by weight. When this hydrogel was cooled, it returned to a clear aqueous solution at 20 ° C. This change was repeatedly observed reversibly. Further, this gel was put into a large amount of water at 25 ° C., but it did not dissolve. Example 5 22.6 g of N-vinylpyrrolidone and 800 ml of benzene
Dissolved in 6.2 g of 2-mercaptoethylamine, 2,
1.6 g of 2'-azobisisobutyronitrile was added, and 6
The reaction was carried out at 0 ° C for 8 hours. The solvent was distilled off under reduced pressure to 100 m
The mixture was concentrated to 1 and added to 2000 ml of diethyl ether to precipitate. The precipitate was dried under vacuum and distilled water 200
It is dissolved in ml and ultrafiltered using an ultrafiltration membrane with a molecular weight cutoff of 3000 (YM3 manufactured by Amicon), and then the filtrate is an ultrafiltration membrane with a molecular weight cutoff of 1000 (YM1 manufactured by Amicon).
Was purified by ultrafiltration, and what was not filtered was collected and freeze-dried to give poly-N-vinylpyrrolidone 1 having a molecular weight of 1000 to 3000 and having a primary amino group at one end.
0 g was obtained. 1 using trinitrobenzene sulfonic acid
When the number average degree of polymerization was determined by quantifying the primary amine,
It was about 20.

【0024】この片末端に1級アミノ基を有するポリ−
N−ビニルピロリドン10gを四塩化炭素50mlに溶
解し、アクリル酸クロライド(国産化学(株)製)0.
46g、トリエチルアミン0.69mlを加え、室温で
終夜反応させた。濾過後、溶媒を減圧留去して片末端に
重合性官能基を導入したポリ−N−ビニルピロリドンの
モノアクリルアミドを得た。
This poly- having a primary amino group at one end
10 g of N-vinylpyrrolidone was dissolved in 50 ml of carbon tetrachloride, and acrylic acid chloride (manufactured by Kokusan Kagaku Co., Ltd.)
46 g and triethylamine 0.69 ml were added, and the mixture was reacted overnight at room temperature. After filtration, the solvent was distilled off under reduced pressure to obtain poly-N-vinylpyrrolidone monoacrylamide having a polymerizable functional group introduced at one end.

【0025】このポリ−N−ビニルピロリドンのモノア
クリルアミド20gと、N−n−プロピルアクリルアミ
ド10gを蒸留水1500mlに氷冷下で溶解し、窒素
置換後、過硫酸アンモニウム0.3gおよびテトラメチ
ルエチレンジアミン200μlを加え、氷冷窒素雰囲気
下、終夜反応させた。反応液を分画分子量10万の限外
濾過膜(アミコン社製YM100)を用いて限外濾過に
より精製し、濾過されないものを回収して凍結乾燥し、
ポリ−N−n−プロピルアクリルアミド主鎖にポリ−N
−ビニルピロリドン側鎖を結合した分子量10万以上の
グラフト共重合体27gを得た。核磁気共鳴スペクトル
および元素分析の解析結果から、このグラフト共重合体
中のポリ−N−ビニルピロリドン側鎖の割合は66重量
%であった。
20 g of this mono-acrylamide of poly-N-vinylpyrrolidone and 10 g of Nn-propyl acrylamide were dissolved in 1500 ml of distilled water under ice cooling, and after nitrogen substitution, 0.3 g of ammonium persulfate and 200 μl of tetramethylethylenediamine were added. In addition, the mixture was reacted overnight under an ice-cold nitrogen atmosphere. The reaction solution is purified by ultrafiltration using an ultrafiltration membrane having a molecular weight cut off of 100,000 (YM100 manufactured by Amicon), and the unfiltered product is recovered and freeze-dried.
Poly-N-n-propylacrylamide Main chain of poly-N
-27 g of a graft copolymer having a side chain of vinylpyrrolidone and a molecular weight of 100,000 or more was obtained. From the analysis results of the nuclear magnetic resonance spectrum and the elemental analysis, the ratio of the poly-N-vinylpyrrolidone side chain in this graft copolymer was 66% by weight.

【0026】上記のグラフト共重合体5gを蒸留水95
gに氷冷下で溶解し、5重量%の水溶液とした。この水
溶液は25℃以下では完全に透明で流動性の高い水溶液
であるが、25℃以上の温度では流動性を失い、わずか
に白濁した含水率95重量%の安定なハイドロゲルとな
った。このハイドロゲルを冷却すると、25℃でもとの
透明な水溶液にもどった。この変化は、可逆的に繰り返
し観測された。また、このゲルを30℃で多量の水中に
投入したが、溶解しなかった。比較例1 両末端をメタクリル酸エステルとしたポリエチレンオキ
サイド〔NKエステル23G(平均重合度23)、新中
村化学工業(株)製〕40gおよびN−n−プロピルア
クリルアミド20gを蒸留水3000mlに溶解し、窒
素置換後、過硫酸アンモニウム1gおよびテトラメチル
エチレンジアミン5mlを加え、室温窒素雰囲気下で反
応させたところ、約1時間でいかなる溶媒にも不溶の化
学架橋ゲルとなってしまった。比較例2 片末端をメタクリル酸エステルとしたポリエチレンオキ
サイド〔NKエステルM−900G(平均重合度9
0)、新中村化学工業(株)製〕40gおよびN−イソ
プロピルアクリルアミド20gをクロロホルム3000
mlに溶解し、窒素置換後、2,2’−アゾビスイソブ
チロニトリル0.3gを加え、窒素雰囲気下、終夜沸点
還流反応させた。溶媒を減圧留去後、蒸留水1000m
lに溶解し、分画分子量10万の限外濾過膜(アミコン
社製YM100)を用いて限外濾過し、次いで濾液を分
画分子量3000の限外濾過膜(アミコン社製YM3)
を用いて限外濾過により精製し、濾過されないものを回
収して凍結乾燥して、ポリ−N−イソプロピルアクリル
アミド主鎖にポリエチレンオキサイド側鎖を結合した分
子量3000〜10万のグラフト共重合体50gを得
た。核磁気共鳴スペクトルおよび元素分析の解析結果か
ら、このグラフト共重合体中のポリエチレンオキサイド
側鎖の割合は66重量%であった。
5 g of the above graft copolymer was added to distilled water 95
g under ice-cooling to give a 5% by weight aqueous solution. This aqueous solution was completely transparent and highly fluid at 25 ° C. or lower, but lost its fluidity at temperatures of 25 ° C. or higher, and became a slightly turbid and stable hydrogel with a water content of 95% by weight. When this hydrogel was cooled, it returned to its original clear aqueous solution at 25 ° C. This change was repeatedly observed reversibly. Further, this gel was put into a large amount of water at 30 ° C., but it did not dissolve. Comparative Example 1 40 g of polyethylene oxide [NK ester 23G (average degree of polymerization 23), manufactured by Shin-Nakamura Chemical Co., Ltd.] having methacrylic acid ester at both ends and 20 g of Nn-propyl acrylamide were dissolved in 3000 ml of distilled water. After substituting with nitrogen, 1 g of ammonium persulfate and 5 ml of tetramethylethylenediamine were added and reacted at room temperature under a nitrogen atmosphere. As a result, a chemically crosslinked gel insoluble in any solvent was formed in about 1 hour. Comparative Example 2 Polyethylene oxide having methacrylic acid ester at one end [NK ester M-900G (average degree of polymerization: 9
0), manufactured by Shin-Nakamura Chemical Co., Ltd.] 40 g and N-isopropylacrylamide 20 g are added to chloroform 3000.
After dissolving in ml and substituting with nitrogen, 0.3 g of 2,2'-azobisisobutyronitrile was added, and the mixture was subjected to boiling point reflux reaction overnight under a nitrogen atmosphere. After distilling off the solvent under reduced pressure, distilled water 1000 m
dissolved in 1 and subjected to ultrafiltration using an ultrafiltration membrane having a molecular weight cutoff of 100,000 (YM100 manufactured by Amicon), and then the filtrate was subjected to an ultrafiltration membrane having a molecular weight cutoff of 3000 (YM3 manufactured by Amicon).
Was purified by ultrafiltration using, and the unfiltered product was recovered and freeze-dried to obtain 50 g of a graft copolymer having a molecular weight of 3000 to 100,000 in which a polyethylene oxide side chain was bonded to a poly-N-isopropylacrylamide main chain. Obtained. From the analysis results of the nuclear magnetic resonance spectrum and the elemental analysis, the proportion of polyethylene oxide side chains in this graft copolymer was 66% by weight.

【0027】上記のグラフト共重合体5gを蒸留水95
gに溶解し、5重量%の水溶液とした。この水溶液は5
0℃以上に昇温しても流動性の高い水溶液であり、ハイ
ドロゲルとはならなかった。
5 g of the above graft copolymer was added to distilled water 95
g to give a 5% by weight aqueous solution. This aqueous solution is 5
Even when the temperature was raised to 0 ° C. or higher, the aqueous solution had high fluidity and did not become a hydrogel.

【0028】[0028]

【発明の効果】以上詳しく説明した通り、この発明の熱
可逆性ハイドロゲル材料の水溶液は、特定の温度以下で
は水溶液、以上ではハイドロゲルとなる。このゲル化温
度は、グラフト共重合体中の側鎖となる高分子水溶液の
曇点に依存するので、この曇点を調節することで任意に
制御できる。この発明の熱可逆性ハイドロゲル材料は、
合成材料であるので天然材料に見られるような未知の不
純物を含まず、組成の均一性、性能の安定性を容易に保
証でき分子量の大きい高分子であるので毒性の心配がな
く、細胞や生物、生体を対象とする用途にも問題なく使
用できる。また、この発明の熱可逆性ハイドロゲル材料
からのハイドロゲルは、ゲル化温度以上に保持すれば、
さらに水を加えてもゲルが溶解してしまうという問題が
ないので、ゲルを水中に分散した状態での使用も可能で
ある。そして発明の熱可逆性ハイドロゲル材料の水溶液
は、10wt%以下の低濃度でもゲル化するのでハイド
ロゲルの含水率が高く、物質の分離や医薬品、農薬、化
粧品などに有効に利用される。そして、分子内化学架橋
が生じないため、柔軟で、複雑形状や変形への追従性に
優れ、生体適合材料等として極めて有益なものとなる。
As described above in detail, the aqueous solution of the thermoreversible hydrogel material of the present invention becomes an aqueous solution at a specific temperature or lower, and becomes a hydrogel at a specific temperature or higher. Since this gelling temperature depends on the cloud point of the aqueous polymer solution which becomes the side chain in the graft copolymer, it can be arbitrarily controlled by adjusting this cloud point. The thermoreversible hydrogel material of this invention is
As it is a synthetic material, it does not contain the unknown impurities found in natural materials, it can easily guarantee the uniformity of composition and stability of performance, and it is a polymer with a large molecular weight, so there is no worry of toxicity, and it can be used in cells and organisms. Also, it can be used without any problem in applications for living organisms. Further, the hydrogel from the thermoreversible hydrogel material of the present invention, if kept above the gelling temperature,
Since there is no problem that the gel dissolves even if water is further added, the gel can be used in a state of being dispersed in water. Since the aqueous solution of the thermoreversible hydrogel material of the present invention gels even at a low concentration of 10 wt% or less, the water content of the hydrogel is high, and the hydrogel material is effectively used for separation of substances, pharmaceuticals, agricultural chemicals, cosmetics and the like. In addition, since no intramolecular chemical cross-linking occurs, it is flexible and has excellent conformability to complex shapes and deformation, and is extremely useful as a biocompatible material or the like.

【0029】さらにまた、本発明の熱可逆性ハイドロゲ
ル材料の製造法は、その水溶液が曇点を有する高分子鎖
中に1個の重合性官能基を導入し、水溶性高分子を与え
る単量体と主として水中で共重合させてグラフト共重合
体を合成するものであるので、合成の過程で化学架橋ゲ
ルを生成するおそれがなく、物性の制御がし易く、大量
の有機溶媒を使用する必要もないので工業的生産に非常
に有利である。
Furthermore, in the method for producing the thermoreversible hydrogel material of the present invention, the aqueous solution thereof contains a single polymerizable functional group in the polymer chain having a cloud point to give a water-soluble polymer. Since a graft copolymer is synthesized by copolymerizing with a monomer mainly in water, there is no fear of forming a chemically crosslinked gel in the process of synthesis, it is easy to control the physical properties, and a large amount of organic solvent is used. Since it is not necessary, it is very advantageous for industrial production.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水溶液が曇点を有する高分子からなる主
鎖に、水溶性高分子を側鎖として結合したグラフト共重
合体であって、このグラフト共重合体は、分子量が10
万以上であることを特徴とする熱可逆性ハイドロゲル材
料。
1. A graft copolymer in which an aqueous solution is bound to a main chain of a polymer having a cloud point with a water-soluble polymer as a side chain, and the graft copolymer has a molecular weight of 10
Thermoreversible hydrogel material characterized by more than 10,000.
【請求項2】 請求項1の熱可逆性ハイドロゲル材料の
製造において、熱可逆性ハイドロゲル材料を構成するグ
ラフト共重合体を、1個の重合性官能基を導入した水溶
性高分子を水溶液が曇点を有する高分子を与える単量体
と共重合することにより、物性および製造時の架橋形成
による不溶化を制御して製造することを特徴とする熱可
逆性ハイドロゲル材料の製造法。
2. The method of producing the thermoreversible hydrogel material according to claim 1, wherein the graft copolymer constituting the thermoreversible hydrogel material is an aqueous solution of a water-soluble polymer having one polymerizable functional group introduced therein. A method for producing a thermoreversible hydrogel material, which comprises controlling the physical properties and insolubilization due to cross-link formation during production by copolymerizing with a monomer that gives a polymer having a cloud point.
JP18790395A 1995-06-30 1995-06-30 Thermally reversible hydrogel material and its production Pending JPH0912652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18790395A JPH0912652A (en) 1995-06-30 1995-06-30 Thermally reversible hydrogel material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18790395A JPH0912652A (en) 1995-06-30 1995-06-30 Thermally reversible hydrogel material and its production

Publications (1)

Publication Number Publication Date
JPH0912652A true JPH0912652A (en) 1997-01-14

Family

ID=16214223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18790395A Pending JPH0912652A (en) 1995-06-30 1995-06-30 Thermally reversible hydrogel material and its production

Country Status (1)

Country Link
JP (1) JPH0912652A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001081148A (en) * 1999-07-15 2001-03-27 Clariant Gmbh Water-soluble polymer and its use in cosmetic and medicament
JP2011026304A (en) * 2009-06-24 2011-02-10 Mitsubishi Chemicals Corp Copolymer for cosmetic, and composition for cosmetic containing the same
JP2012241188A (en) * 2011-05-24 2012-12-10 Senka Kk Temperature responsive polymer fine particle and method of producing dispersion of the same
JP2019110002A (en) * 2017-12-18 2019-07-04 荒川化学工業株式会社 Lithium ion battery aqueous binder solution, lithium ion battery electrode slurry, method for manufacturing the same, lithium ion battery electrode and lithium ion battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001081148A (en) * 1999-07-15 2001-03-27 Clariant Gmbh Water-soluble polymer and its use in cosmetic and medicament
JP2012057163A (en) * 1999-07-15 2012-03-22 Clariant Produkte (Deutschland) Gmbh Water-soluble polymer and its use
JP2011026304A (en) * 2009-06-24 2011-02-10 Mitsubishi Chemicals Corp Copolymer for cosmetic, and composition for cosmetic containing the same
JP2012241188A (en) * 2011-05-24 2012-12-10 Senka Kk Temperature responsive polymer fine particle and method of producing dispersion of the same
JP2019110002A (en) * 2017-12-18 2019-07-04 荒川化学工業株式会社 Lithium ion battery aqueous binder solution, lithium ion battery electrode slurry, method for manufacturing the same, lithium ion battery electrode and lithium ion battery

Similar Documents

Publication Publication Date Title
US4279795A (en) Hydrophilic-hydrophobic graft copolymers for self-reinforcing hydrogels
Ullah et al. Classification, processing and application of hydrogels: A review
US7988992B2 (en) Superporous hydrogels for heavy-duty applications
US4267295A (en) Polymeric compositions and hydrogels formed therefrom
EP0434438B1 (en) Hydrolytically degradable hydrophilic gels and the method for preparation thereof
US3931123A (en) Hydrophilic nitrite copolymers
US4379864A (en) Polymeric compositions and hydrogels formed therefrom
US20040224021A1 (en) Formation of strong superporous hydrogels
EP0263605B1 (en) Wound dressing
GB2149803A (en) Water-separating agent
JP2006523733A5 (en)
JPS60250014A (en) Resin for concentration
US4889530A (en) Wound dressing containing acrylate or methacrylate hydrogel polymer
JPS5833018B2 (en) Shinsuiseiji Yugotai Matrix Oyuusuru Ryousei Ion Kokantaino Seizouhouhou
CN113968984B (en) Preparation method of safe and long-acting multifunctional wound dressing
US4543371A (en) Polymeric compositions and hydrogels formed therefrom
JP3121660B2 (en) Thermoreversible hydrogel material
JPH0912652A (en) Thermally reversible hydrogel material and its production
JP3491917B2 (en) Thermoreversible hydrogel material
JPH0912651A (en) Thermally reversible hydrogel material and its production
JPH0910295A (en) Wound coating material
KR102521317B1 (en) Hydrogel composition having alginate coupled methacrylate and manufacturing method of hydrogel
JPS60250015A (en) Permselective resin
JPS599565B2 (en) Novel medical hydrogel
JPH07138553A (en) Stimulus-responsive material