JPH09126281A - Transmission belt - Google Patents
Transmission beltInfo
- Publication number
- JPH09126281A JPH09126281A JP7282319A JP28231995A JPH09126281A JP H09126281 A JPH09126281 A JP H09126281A JP 7282319 A JP7282319 A JP 7282319A JP 28231995 A JP28231995 A JP 28231995A JP H09126281 A JPH09126281 A JP H09126281A
- Authority
- JP
- Japan
- Prior art keywords
- glass fiber
- cord
- belt
- glass
- pitch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Moulding By Coating Moulds (AREA)
- Belt Conveyors (AREA)
- Reinforced Plastic Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は伝動ベルトに関す
る。TECHNICAL FIELD The present invention relates to a transmission belt.
【0002】[0002]
【従来の技術】従来より、伝動ベルトにおいては、その
強度、強靭性あるいは寸法安定性等を向上させるため
に、ガラス繊維コードを抗張体として用いることが広く
行われている。2. Description of the Related Art Conventionally, in a transmission belt, a glass fiber cord is widely used as a tensile member in order to improve its strength, toughness, dimensional stability and the like.
【0003】しかし、伝動ベルトは、繰り返して受ける
屈曲応力によって疲労を生じ、その性能が低下するとい
う問題がある。そこで、特開平4−50144号公報、
特開平4−50237号公報に記載されているように、
ガラス繊維として高強力ガラスを用いることが提案され
ている。However, the transmission belt suffers from fatigue due to repeated bending stress, resulting in deterioration of its performance. Therefore, Japanese Patent Laid-Open No. 4-50144 / 1992,
As described in JP-A-4-50237,
It has been proposed to use high strength glass as the glass fiber.
【0004】[0004]
【発明が解決しようとする課題】ところが、高強力ガラ
ス繊維は従来のEガラス繊維に比較して脆いという性質
がある。従って、この高強力ガラス繊維をベルトの心線
として用いても、該ベルトの耐屈曲疲労性の向上には限
界がある。特に、近年の自動車の駆動系は小プーリ化の
傾向にあるが、伝動ベルト生ずる屈曲応力はプーリが小
径になるほど高くなる。従って、このような駆動系にお
いて、その伝動ベルトの抗張体に上記高強力ガラス繊維
コードを用いても、期待する耐屈曲疲労性が得られな
い。However, the high-strength glass fiber has a property of being brittle as compared with the conventional E glass fiber. Therefore, even if this high-strength glass fiber is used as the core wire of the belt, there is a limit in improving the bending fatigue resistance of the belt. In particular, the drive system of automobiles in recent years tends to have smaller pulleys, but the bending stress generated in the transmission belt increases as the diameter of the pulley becomes smaller. Therefore, in such a drive system, even if the above-mentioned high-strength glass fiber cord is used for the tensile body of the transmission belt, the expected bending fatigue resistance cannot be obtained.
【0005】すなわち、本発明の課題は、所要強力を確
保しつつ小プーリ駆動系で使用しても耐屈曲疲労性に優
れる伝動ベルトを得ることにある。That is, an object of the present invention is to obtain a transmission belt which is excellent in bending fatigue resistance even when used in a small pulley drive system while ensuring required strength.
【0006】[0006]
【課題を解決するための手段】上記課題に対して、ガラ
ス繊維コードをピッチがベルト幅方向に進むようにスパ
イラルに設けてなる抗張体を有する伝動ベルトにおい
て、本発明では、Eガラスが靭性面において高強力ガラ
スより優れるという知見に基づき、ベルト抗張体を構成
するガラス繊維をEガラスとした。In order to solve the above-mentioned problems, a transmission belt having a tensile body in which glass fiber cords are spirally provided so that the pitch advances in the belt width direction, in the present invention, the E glass is tough. On the basis of the finding that it is superior to high-strength glass in terms of surface, the glass fiber constituting the belt tensile body was designated as E glass.
【0007】また、ベルトの強力と耐屈曲疲労性とのバ
ランスをとるべく、上記コード断面におけるガラス繊維
の占有面積Aを0.25mm2 以上、0.36mm2 以
下とした。この範囲とすることにより、耐屈曲疲労性を
損なうこと無く、ベルト所要強力を確保することができ
る。すなわち、上記占有面積Aが0.25mm2 未満で
は、ベルトの所要強力を得ることが難しくなり、上記占
有面積Aが0.36mm2 を越えると、当該コードがプ
ーリによって曲げられた際に該コード表面に発生する歪
み(伸び)をガラス繊維が許容することが難しくなり、
疲労し易くなる。このため、上記占有面積Aを上記範囲
に設定しているものである。Further, in order to balance the strength of the belt and the flex fatigue resistance, the occupied area A of the glass fiber in the cord cross section is set to 0.25 mm 2 or more and 0.36 mm 2 or less. Within this range, the required belt strength can be ensured without impairing bending fatigue resistance. That is, if the occupied area A is less than 0.25 mm 2 , it is difficult to obtain the required strength of the belt, and if the occupied area A exceeds 0.36 mm 2 , the cord is bent when it is bent by the pulley. It becomes difficult for the glass fiber to tolerate the strain (elongation) generated on the surface,
It is easy to get tired. Therefore, the occupied area A is set in the above range.
【0008】また、占有面積Aに関する上記範囲は、コ
ードのピッチPが占有面積Aの1/2乗の1.9〜2.3
倍(1.9×A1/2 ≦P≦2.3×A1/2 )であるとき
に、抗張体とベルト本体ゴムとの接着性を確保しなが
ら、ベルトの所要強力を得る上で有効になる。すなわ
ち、コードピッチPが上記範囲の下限よりも小さい場合
には、相隣るコード間のベルト本体ゴムの介在量が少な
くなって該ベルト本体ゴムとコードの接着性が低下し、
上記コードピッチPが上記範囲の上限を越える場合には
ベルトに所要強力を与えることができなくなる。In the above range of the occupied area A, the cord pitch P is 1.9 to 2.3 which is the 1/2 power of the occupied area A.
When it is twice (1.9 × A 1/2 ≦ P ≦ 2.3 × A 1/2 ), it is possible to obtain the required strength of the belt while securing the adhesiveness between the tension body and the rubber of the belt body. It becomes effective in. That is, when the cord pitch P is smaller than the lower limit of the above range, the amount of interposition of the belt body rubber between the adjacent cords is reduced, and the adhesiveness between the belt body rubber and the cord is lowered.
If the cord pitch P exceeds the upper limit of the above range, the belt cannot be given the required strength.
【0009】また、上記ガラス繊維コードは、下撚り糸
を複数本引き揃えて当該下撚りとは逆方向に上撚りしさ
らにゴム糊に浸漬し引き上げて加熱処理してなるもので
あり、上記下撚り糸が、ガラス繊維束を複数本引き揃え
てレゾルシン・ホルマリンの初期縮合物とラテックスと
の混合物を主成分とする接着処理液に浸漬し引き上げて
加熱処理してから下撚りしてなるものであることが、耐
屈曲疲労性、ベルト本体ゴムとの接着性の観点から好適
である。The glass fiber cord is obtained by aligning a plurality of ply-twisted yarns, ply-twisting them in the opposite direction to the ply-twisted yarn, dipping them in a rubber paste, pulling them up and heat-treating them. However, a plurality of glass fiber bundles should be aligned and dipped in an adhesive treatment liquid containing a mixture of the initial condensate of resorcin / formalin and latex as the main component, pulled up, heat treated, and then twisted. However, it is preferable from the viewpoint of bending fatigue resistance and adhesiveness with the belt body rubber.
【0010】上記下撚り糸は400〜600本程度のガ
ラス繊維によって構成し、上記上撚り糸は10〜15本
程度の下撚り糸によって構成することが、ガラス繊維コ
ードの剛性が高くなるのを避け屈曲性を向上させる観点
から好適である。The lower twisted yarn is composed of about 400 to 600 glass fibers, and the upper twisted yarn is composed of about 10 to 15 lower twisted yarns, so that the rigidity of the glass fiber cord is prevented from increasing. From the viewpoint of improving
【0011】上記RFLのラテックスとしては、特に限
定されるものではないが、スチレン−ブタジエン−ビニ
ルピリジン三元共重合体、クロロスルフォン化ポリエチ
レン、ニトリルゴム、水素化ニトリルゴム、エピクロル
ヒドリン、SBR、クロロプレンゴム、塩素化ブタジエ
ン、オレフィン−ビニルエステル共重合体、天然ゴム等
を単独で又はこれらを混合して使用することができる。The latex of the RFL is not particularly limited, but is a styrene-butadiene-vinylpyridine terpolymer, chlorosulfonated polyethylene, nitrile rubber, hydrogenated nitrile rubber, epichlorohydrin, SBR, chloroprene rubber. , Chlorinated butadiene, olefin-vinyl ester copolymer, natural rubber and the like can be used alone or in combination.
【0012】また、ゴム糊の主成分たるゴム材としては
特に限定されるものではないが、ベルト本体ゴムとの接
着性を考慮すると、塩化ゴム、ポリ塩化ビニル、クロロ
プレンゴム、クロロスルホン化ポリエチレン等のハロゲ
ン含有物が好ましい。上記ゴム材等を溶解させるための
溶剤としては、特に限定されるものではないが、一般に
はベンゼン、トルエン、キシレン等の芳香族炭化水素、
エーテル類、トリクロロエチレン等のハロゲン化脂肪族
炭化水素等が好適に用いられる。The rubber material as the main component of the rubber paste is not particularly limited, but in consideration of the adhesiveness to the belt body rubber, chlorinated rubber, polyvinyl chloride, chloroprene rubber, chlorosulfonated polyethylene, etc. The halogen-containing substances of are preferred. The solvent for dissolving the rubber material and the like is not particularly limited, but generally, benzene, toluene, aromatic hydrocarbons such as xylene,
Halogenated aliphatic hydrocarbons such as ethers and trichlorethylene are preferably used.
【0013】[0013]
<伝動ベルトの構造>図1に示す本発明に係る歯付ベル
ト10において、11はベルト長さ方向(同図の左右方
向)に延びる断面矩形状の背ゴム、12は背ゴム1の内
周側(同図では下面側)にベルト長さ方向に所定ピッチ
間隔をおいて設けられた歯ゴム、13は背ゴム11と歯
ゴム12との間に設けられた抗張体としてのガラス繊維
コード、14は歯面側を覆う歯布である。上記ガラス繊
維コード13はベルト幅方向にピッチが進むようにスパ
イラル状に設けられている。<Structure of Transmission Belt> In the toothed belt 10 according to the present invention shown in FIG. 1, 11 is a back rubber having a rectangular cross-section extending in the belt length direction (left and right direction in the figure), and 12 is an inner circumference of the back rubber 1. Side (lower surface side in the figure), a tooth rubber provided at a predetermined pitch interval in the belt length direction, and 13 is a glass fiber cord as a tensile body provided between the back rubber 11 and the tooth rubber 12. , 14 are tooth cloths covering the tooth surface side. The glass fiber cord 13 is provided in a spiral shape so that the pitch advances in the belt width direction.
【0014】上記背ゴム11及び歯ゴム12は、水素化
ニトリルゴムを主原料とするゴム組成物によって形成さ
れている。上記歯布14は、ベルト幅方向に延びるよう
配置される糸には工業用6,6 ナイロン糸を、またベルト
長さ方向に延びるように配置される糸には工業用6,6 ナ
イロンのウーリー加工糸をそれぞれ使用したものであ
る。The back rubber 11 and the tooth rubber 12 are formed of a rubber composition containing hydrogenated nitrile rubber as a main raw material. The above-mentioned tooth cloth 14 is made of industrial 6,6 nylon yarn for the yarn arranged to extend in the belt width direction and industrial 6,6 nylon woolie for the yarn arranged to extend in the belt length direction. Each of the processed yarns is used.
【0015】上記歯付ベルト10は一般的な圧入法によ
って成形されており、その歯数は113、歯ゴム12、
12、…のピッチは8mm、ベルト幅は20mmになさ
れている。また、各歯ゴム12は、ベルト長さ方向にお
いて互いに対向する側面が縦断面円弧状に膨らんでい
る。The toothed belt 10 is formed by a general press-fitting method, and the number of teeth thereof is 113, the tooth rubber 12,
The pitch of 12, ... Is 8 mm and the belt width is 20 mm. Further, in each tooth rubber 12, side surfaces facing each other in the belt length direction bulge in an arc shape in a vertical cross section.
【0016】<抗張体のガラス種とベルトの強力・耐屈
曲疲労性との関係> −実施例1− 上記ガラス繊維コード13は、図2に示すように、複数
本の下撚り糸22を引き揃えて下撚りとは逆方向に上撚
りしてなるものであり、コード表面にはゴム皮膜が形成
されている。下撚り糸22は、多数のガラス繊維21を
集束してなるガラス繊維束の複数本を引き揃えてRFL
処理を施してから下撚りされたものである。<Relationship between Tensile Glass Type and Strength / Flexural Fatigue Resistance of Belt> -Example 1- As shown in FIG. 2, the glass fiber cord 13 has a plurality of lower twisted yarns 22. They are aligned and twisted in the opposite direction to the lower twist, and a rubber film is formed on the cord surface. The lower twisted yarn 22 is formed by aligning a plurality of glass fiber bundles formed by bundling a large number of glass fibers 21 and RFLing them.
It is twisted after being processed.
【0017】上記ガラス繊維コード13の製法を具体的
に説明する。上記ガラス繊維21には靭性に優れるEガ
ラス(無アルカリガラス)が用いられており、該ガラス
繊維21の直径は7μmである。このガラス繊維21を
200本集束し、さらに該ガラス繊維束3本を引き揃え
て濃度20重量%のVp−SBR系RFL処理液に浸漬
し引き上げて240℃で1分間の熱処理を行った後、こ
れに2.0回/インチの下撚りを施して下撚り糸22と
した。上記RFL処理液は、ラテックスとしてVp−S
BR(ビニルピリジン−スチレン−ブタジエン三元共重
合体)を採用したものである。従って、各下撚り糸22
のガラス繊維21間及びガラス繊維束間には上記RFL
処理液のゴム分が介在し、また、下撚り糸22の表面も
該ゴム分で覆われている。A method of manufacturing the glass fiber cord 13 will be specifically described. E glass (alkali-free glass) having excellent toughness is used for the glass fiber 21, and the diameter of the glass fiber 21 is 7 μm. After 200 glass fibers 21 were bundled together, 3 glass fiber bundles were aligned and immersed in a Vp-SBR RFL treatment liquid having a concentration of 20% by weight, pulled up, and heat-treated at 240 ° C. for 1 minute. This was twisted 2.0 times / inch to obtain a lower twisted yarn 22. The RFL treatment liquid is Vp-S as latex.
BR (vinyl pyridine-styrene-butadiene terpolymer) is adopted. Therefore, each ply yarn 22
RFL between the glass fibers 21 and between the glass fiber bundles
The rubber component of the treatment liquid is present, and the surface of the lower twisted yarn 22 is also covered with the rubber component.
【0018】そして、上記下撚り糸22を11本集めて
引き揃え、2.0回/インチの上撚りを施した。得られ
たガラスコードをクロロスルフォン化ポリエチレンを主
成分とするゴム糊の20重量%溶液に浸漬し、150℃
の雰囲気で1分間乾燥させた。この結果、当該ガラス繊
維コード13の断面におけるガラス繊維の占有面積Aは
0.2540mm2 となっている。そうして、このガラ
繊維コード13を抗張体用いて上記歯付ベルトを作成し
た。ベルト内部におけるコードのピッチは、2.3×A
1/2 (A:コード断面におけるガラス繊維の占有面積)
に設定している。Then, 11 of the lower twisted yarns 22 were collected and aligned, and were twisted 2.0 times / inch. The obtained glass cord is dipped in a 20% by weight solution of a rubber paste containing chlorosulfonated polyethylene as a main component, and the temperature is 150 ° C.
And dried for 1 minute. As a result, the occupied area A of the glass fiber in the cross section of the glass fiber cord 13 is 0.2540 mm 2 . Then, the toothed belt was prepared by using the glass fiber cord 13 as a tension member. The cord pitch inside the belt is 2.3 x A
1/2 (A: Glass fiber occupied area in the cord cross section)
Is set to
【0019】−比較例1− ガラス繊維として直径7μmの高強力ガラス繊維を用い
て、上記実施例1と同じ条件及び方法によってガラス繊
維コードを作成し、これを抗張体として実施例1と同じ
コードピッチで同様の歯付ベルトを作成した。-Comparative Example 1-A high-strength glass fiber having a diameter of 7 μm was used as a glass fiber, and a glass fiber cord was prepared under the same conditions and methods as those in Example 1 described above. A similar toothed belt was created with a cord pitch.
【0020】(屈曲疲労試験)上記実施例1及び比較例
1の各歯付ベルトの屈曲疲労性を調べるために、図3に
示すベルト走行試験機を用いた。この試験機には、4つ
の大プーリ31、31、…が同図の上下左右に配置され
ており、各々、相隣る大プーリ31、31、…間には小
プーリ32がそれぞれ配置されてなっている。そして、
これらプーリ31、32に歯付ベルトAを巻き付け、ウ
エイト33にて歯付ベルトAに80kgfの負荷をかけ
た状態で大プーリ31を5500rpmの回転速度で回
転させ、歯付ベルトに小プーリ32によって1×108
回の屈曲刺激を与えた後の該ベルトの絶対残存強力及び
残存強力率を測定した。なお、小プーリの径は24、2
8、32、36、40mmと変量した。試験結果は、表
1に示されている。また、小プーリ径とベルト残存強力
率との関係については図4に、小プーリ径とベルト残存
強力との関係については図5に示されている。(Bending Fatigue Test) In order to examine the bending fatigue of each toothed belt of Example 1 and Comparative Example 1, a belt running tester shown in FIG. 3 was used. In this tester, four large pulleys 31, 31, ... Are arranged in the upper, lower, left and right directions in the figure, and a small pulley 32 is arranged between the large pulleys 31, 31 ,. Has become. And
The toothed belt A is wound around these pulleys 31 and 32, and the large pulley 31 is rotated at a rotation speed of 5500 rpm while the weight 33 applies a load of 80 kgf to the toothed belt A. 1 x 10 8
The absolute residual strength and the residual strength ratio of the belt after applying the flexion stimulus twice were measured. The diameter of the small pulley is 24, 2
The variables were 8, 32, 36 and 40 mm. The test results are shown in Table 1. The relationship between the small pulley diameter and the residual belt strength is shown in FIG. 4, and the relationship between the small pulley diameter and the residual belt strength is shown in FIG.
【0021】[0021]
【表1】 [Table 1]
【0022】表1及び図4によれば、実施例1の方が比
較例1よりもベルト残存強力率が高い。特に小プーリの
径が小さくなるほどその差が大きくなっている。この結
果から、Eガラス繊維の方が高強力ガラス繊維よりも靭
性に優れていること、従って、駆動系のプーリが小径に
なるとEガラス繊維によるコードを抗張体に用いる方が
耐疲労性の向上に有利になることがわかる。According to Table 1 and FIG. 4, the belt residual strength ratio of Example 1 is higher than that of Comparative Example 1. In particular, the smaller the diameter of the small pulley, the larger the difference. From this result, it is found that the E glass fiber is superior in toughness to the high-strength glass fiber. Therefore, when the pulley of the drive system has a small diameter, it is more fatigue resistant to use the cord made of the E glass fiber for the tensile body. It turns out that it is advantageous for improvement.
【0023】また、表1及び図5によれば、小プーリの
径が大きい場合には比較例1の方がベルト残存強力が高
いが、その径が小さくなると実施例1の方がベルト残存
強力が高くなっている。従って、小プーリ駆動系ではE
ガラス繊維によるコードを用いる方がよりベルト走行後
の絶対強力においても有利であることがわかる。Further, according to Table 1 and FIG. 5, when the diameter of the small pulley is large, Comparative Example 1 has a higher residual belt strength, but when the diameter is smaller, Example 1 has a higher residual belt strength. Is high. Therefore, in the small pulley drive system, E
It can be seen that the use of the glass fiber cord is more advantageous in terms of the absolute strength after running the belt.
【0024】<抗張体のガラス繊維占有面積とベルトの
強力・耐屈曲疲労性との関係> −実施例2− 上撚りを加える下撚り糸の本数を13本とする他は実施
例1と同じ条件及び方法によってガラス繊維コードを作
成し、これを抗張体として実施例1と同じコードピッチ
で同様の歯付ベルトを作成した。<Relationship between glass fiber occupied area of tensile body and strength / bending fatigue resistance of belt> -Example 2-Same as Example 1 except that the number of ply-twisted yarns added with ply-twist is 13 A glass fiber cord was prepared according to the conditions and the method, and using this as a tensile body, the same toothed belt was prepared with the same cord pitch as in Example 1.
【0025】−実施例3− 使用するEガラス繊維の直径を9μmとし、下撚りを加
えるガラス繊維束の本数を2本とする他は実施例1と同
じ条件及び方法によってガラス繊維コードを作成し、こ
れを抗張体として実施例1と同じコードピッチで同様の
歯付ベルトを作成した。Example 3 A glass fiber cord was prepared by the same conditions and method as in Example 1 except that the diameter of the E glass fiber used was 9 μm, and the number of glass fiber bundles to which the pretwist was added was 2. Using this as a tensile body, a similar toothed belt was prepared with the same code pitch as in Example 1.
【0026】−実施例4− 上撚りを加える下撚り糸の本数を13本とする他は実施
例3と同じ条件及び方法によってガラス繊維コードを作
成し、これを抗張体として実施例1と同じコードピッチ
で同様の歯付ベルトを作成した。-Example 4-A glass fiber cord was prepared under the same conditions and methods as in Example 3 except that the number of ply-twisted yarns to which the ply-twist was added was 13, and the glass fiber cord was used as a tensile member and was the same as in Example 1. A similar toothed belt was created with a cord pitch.
【0027】−実施例5− 上撚りを加える下撚り糸の本数を14本とする他は実施
例3と同じ条件及び方法によってガラス繊維コードを作
成し、これを抗張体として実施例1と同じコードピッチ
で同様の歯付ベルトを作成した。-Example 5-A glass fiber cord was prepared under the same conditions and method as in Example 3 except that the number of lower twisted yarns to which the upper twist was added was 14, and the glass fiber cord was used as a tensile member and the same as in Example 1. A similar toothed belt was created with a cord pitch.
【0028】−実施例6− コードピッチを1.9×A1/2 とする他は実施例1と同
じ条件及び方法によって同様の歯付ベルトを作成した。Example 6 A toothed belt similar to Example 1 was prepared under the same conditions and method as in Example 1 except that the cord pitch was 1.9 × A 1/2 .
【0029】−比較例2− 下撚りを加えるガラス繊維束の本数を2本とする他は実
施例1と同じ条件及び方法によってガラス繊維コードを
作成し、これを抗張体として実施例1と同じコードピッ
チで同様の歯付ベルトを作成した。-Comparative Example 2-A glass fiber cord was prepared under the same conditions and methods as in Example 1 except that the number of glass fiber bundles to which the undertwist was added was set to 2, and the glass fiber cord was used as a tensile body in Example 1. A similar toothed belt was made with the same cord pitch.
【0030】−比較例3− 下撚りを加えるガラス繊維束の本数を2本とする他は実
施例2と同じ条件及び方法によってガラス繊維コードを
作成し、これを抗張体として実施例1と同じコードピッ
チで同様の歯付ベルトを作成した。Comparative Example 3 A glass fiber cord was prepared under the same conditions and method as in Example 2 except that the number of glass fiber bundles to which the lower twist was added was 2, and the glass fiber cord was used as a tensile body in Example 1. A similar toothed belt was made with the same cord pitch.
【0031】−比較例4− 使用するEガラス繊維の直径を9μmとする他は実施例
1と同じ条件及び方法によってガラス繊維コードを作成
し、これを抗張体として実施例1と同じコードピッチで
同様の歯付ベルトを作成した。Comparative Example 4 A glass fiber cord was prepared under the same conditions and methods as in Example 1 except that the diameter of the E glass fiber used was 9 μm, and the same cord pitch as in Example 1 was used as a tensile body. A similar toothed belt was created in.
【0032】−比較例5− 使用するEガラス繊維の直径を9μmとする他は実施例
2と同じ条件及び方法によってガラス繊維コードを作成
し、これを抗張体として実施例1と同じコードピッチで
同様の歯付ベルトを作成した。Comparative Example 5 A glass fiber cord was prepared under the same conditions and method as in Example 2 except that the E glass fiber used had a diameter of 9 μm, and the same cord pitch as in Example 1 was used as a tensile body. A similar toothed belt was created in.
【0033】(ベルト初期強力・屈曲疲労試験)上記実
施例1〜6及び比較例2〜5の各歯付ベルトについて、
各々のベルト初期強力を測定するとともに、図3に示す
走行試験機によって、先の屈曲疲労試験と同じ条件でベ
ルト残存強力率を調べた。但し、小プーリの径は28m
mとした。結果は表2に示されている。また、ガラス占
有面積Aとベルト残存強力率との関係については図6
に、ガラス占有面積Aとベルト初期強力との関係につい
ては図7にそれぞれ示されている。なお、図6及び図7
においては、コードピッチが他と異なる実施例6につい
てはプロットしていない。(Belt Initial Strength / Bending Fatigue Test) With respect to each toothed belt of Examples 1 to 6 and Comparative Examples 2 to 5,
The initial strength of each belt was measured, and the residual strength ratio of the belt was examined by the running tester shown in FIG. 3 under the same conditions as in the bending fatigue test. However, the diameter of the small pulley is 28 m
m. The results are shown in Table 2. 6 shows the relationship between the glass occupation area A and the belt residual strength.
The relationship between the glass occupation area A and the belt initial strength is shown in FIG. 6 and 7
In Example 6, no plot is made for Example 6 in which the code pitch is different from the others.
【0034】[0034]
【表2】 [Table 2]
【0035】表2及び図6によれば、ガラス占有面積A
が大きくなるに従ってベルト残存強力率が低下する傾向
にあり、特に該占有面積Aが0.36mm2 を越えると
ベルト残存強力率が大きく低下している。よって、上記
占有面積Aを0.36mm2以下とすることがベルトの
良好な耐屈曲疲労性を得る上で有利であることがわか
る。According to Table 2 and FIG. 6, the glass occupation area A
The belt residual strength ratio tends to decrease with increasing, and particularly when the occupied area A exceeds 0.36 mm 2 , the belt residual strength ratio greatly decreases. Therefore, it is understood that setting the occupied area A to 0.36 mm 2 or less is advantageous in obtaining good bending fatigue resistance of the belt.
【0036】一方、表2及び図7によれば、ガラス占有
面積Aが大きくなるに従ってベルト初期強力が高くなっ
ているが、該占有面積Aが0.25mm2 未満では該初
期強力が1000kgf/20mm以下であり、伝動ベルトとし
ては強力不足になっている。よって、上記占有面積Aは
伝動ベルトの所要強力を得るために0.25mm2 以上
にすることが好適であることがわかる。On the other hand, according to Table 2 and FIG. 7, the belt initial strength increases as the glass occupying area A increases, but when the occupying area A is less than 0.25 mm 2 , the initial strength is 1000 kgf / 20 mm. Below, the strength of the power transmission belt is insufficient. Therefore, it is understood that the occupied area A is preferably 0.25 mm 2 or more in order to obtain the required strength of the transmission belt.
【0037】実施例1と実施例6とを比べると、両者は
コードピッチのみが互いに異なるものであるが、コード
ピッチが短い実施例6の方がベルト初期強力が高い。し
かし、コードピッチが長い実施例1でも高いベルト初期
強力が得られており、このことから、コードピッチを
2.3×A1/2 としても期待するベルト強力が得られる
ことがわかる。Comparing Examples 1 and 6 with each other, only the cord pitches of the two differ from each other, but Example 6 having a shorter cord pitch has a higher initial belt strength. However, high belt initial strength was also obtained in Example 1 having a long cord pitch, and it can be seen that the expected belt strength can be obtained even when the cord pitch is 2.3 × A 1/2 .
【0038】[0038]
【発明の効果】以上説明したように、本発明によれば、
ベルトの抗張体をEガラスによるガラス繊維コードで構
成し、該コード断面におけるガラス占有面積Aを0.2
5〜0.36mm2 とし、且つコードピッチを占有面積
Aの1/2 乗の1.9〜2.3倍としたから、プーリ径が
小さい場合においても伝動ベルトの所要強力を満足しつ
つその耐屈曲疲労性を高めることができる。As described above, according to the present invention,
The tensile member of the belt is composed of a glass fiber cord made of E glass, and the glass occupying area A in the cord cross section is 0.2.
Since the cord pitch is set to 5 to 0.36 mm 2 and the cord pitch is set to 1.9 to 2.3 times the occupying area A 1/2 power, the required strength of the transmission belt can be satisfied while the pulley diameter is small. Flexing fatigue resistance can be improved.
【図1】歯付ベルトの縦断面図。FIG. 1 is a vertical sectional view of a toothed belt.
【図2】実施例1のガラス繊維コード(抗張体)を示す
斜視図。FIG. 2 is a perspective view showing a glass fiber cord (tensile body) of Example 1.
【図3】ベルト屈曲疲労試験機の概略構成図。FIG. 3 is a schematic configuration diagram of a belt bending fatigue testing machine.
【図4】小プーリ径とベルト残存強力率との関係を示す
グラフ図。FIG. 4 is a graph showing the relationship between the small pulley diameter and the belt residual strength ratio.
【図5】小プーリ径とベルト残存強力との関係を示すグ
ラフ図。FIG. 5 is a graph showing the relationship between the small pulley diameter and the belt residual strength.
【図6】ガラス占有面積Aとベルト残存強力率との関係
を示すグラフ図。FIG. 6 is a graph showing the relationship between the glass occupation area A and the belt residual strength ratio.
【図7】ガラス占有面積Aとベルト初期強力との関係を
示すグラフ図。FIG. 7 is a graph showing the relationship between the glass occupation area A and the belt initial strength.
10 ベルト本体 11 背ゴム 12 歯ゴム 13 ガラス繊維コード(ベルト用抗張体) 14 歯布 21 ガラス繊維ト 22 下撚り糸 31 大プーリ 32 小プーリ 33 ウエイト A 歯付ベルト(供試ベルト) 10 Belt Main Body 11 Back Rubber 12 Tooth Rubber 13 Glass Fiber Cord (Belt Tensile Body) 14 Tooth Cloth 21 Glass Fiber To 22 Lower Twisted Thread 31 Large Pulley 32 Small Pulley 33 Weight A Toothed Belt (Test Belt)
Claims (2)
チがベルト幅方向に進むようにスパイラルに設けられて
なる伝動ベルトであって、 上記コードを構成するガラス繊維がEガラスであって該
コード断面におけるガラス繊維の占有面積Aが0.25
〜0.36mm2 であり、 上記コードのピッチが上記占有面積Aの1/2 乗の1.9
〜2.3倍であることを特徴とする伝動ベルト。1. A transmission belt comprising a glass fiber cord as a tensile member, which is spirally provided so that the pitch advances in the belt width direction, and the glass fiber constituting the cord is E glass. Occupied area A of the glass fiber in the cross section is 0.25
.About.0.36 mm 2 , and the pitch of the cords is ½ of the occupied area A to the power of 1.9.
A transmission belt characterized by being ~ 2.3 times.
おいて、 上記ガラス繊維コードが、下撚り糸を複数本引き揃えて
当該下撚りとは逆方向に上撚りしさらにゴム糊に浸漬し
引き上げて加熱処理してなるものであり、上記下撚り糸
が、ガラス繊維束を複数本引き揃えてレゾルシン・ホル
マリンの初期縮合物とラテックスとの混合物を主成分と
する接着処理液に浸漬し引き上げて加熱処理してから下
撚りしてなるものであることを特徴とする伝動ベルト。2. The transmission belt according to claim 1, wherein the glass fiber cord has a plurality of ply-twisted yarns aligned with each other, ply-twisted in a direction opposite to the ply-twisted yarn, and further dipped in a rubber paste to be pulled up. The above-mentioned twisted yarn is prepared by aligning a plurality of glass fiber bundles, immersing them in an adhesive treatment liquid containing a mixture of an initial condensate of resorcin / formalin and latex as a main component, and pulling it up to perform heat treatment. A transmission belt, which is characterized by being twisted underneath.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7282319A JP2869029B2 (en) | 1995-10-31 | 1995-10-31 | Transmission belt |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7282319A JP2869029B2 (en) | 1995-10-31 | 1995-10-31 | Transmission belt |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09126281A true JPH09126281A (en) | 1997-05-13 |
JP2869029B2 JP2869029B2 (en) | 1999-03-10 |
Family
ID=17650868
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7282319A Expired - Fee Related JP2869029B2 (en) | 1995-10-31 | 1995-10-31 | Transmission belt |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2869029B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999061816A1 (en) * | 1998-05-22 | 1999-12-02 | Bando Chemical Industries, Ltd. | Tension member for belt and belt manufactured using the same |
JP2007309523A (en) * | 2002-04-25 | 2007-11-29 | Mitsuboshi Belting Ltd | Toothed belt |
-
1995
- 1995-10-31 JP JP7282319A patent/JP2869029B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999061816A1 (en) * | 1998-05-22 | 1999-12-02 | Bando Chemical Industries, Ltd. | Tension member for belt and belt manufactured using the same |
JP2007309523A (en) * | 2002-04-25 | 2007-11-29 | Mitsuboshi Belting Ltd | Toothed belt |
Also Published As
Publication number | Publication date |
---|---|
JP2869029B2 (en) | 1999-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4018460B2 (en) | Rubber reinforcing cord and rubber product containing the same | |
JPH06307500A (en) | Toothed belt | |
JPH06337037A (en) | Aramid fiber code and power transmission belt using the same | |
JP3007371B2 (en) | Fiber reinforced rubber products | |
JPH0544131A (en) | Aramid yarn cord and belt for power transmission using the same cord | |
JP2869025B2 (en) | Tensile body and belt for belt | |
US5624515A (en) | Method of producing short fibers | |
JPH09126281A (en) | Transmission belt | |
JPH0835540A (en) | Toothed belt | |
JP2786777B2 (en) | Power transmission belt | |
JPH10141445A (en) | Tensile body for belt and transmission belt | |
JPH0156297B2 (en) | ||
JPH048947A (en) | Toothed belt | |
JPH11336847A (en) | Tension body for transmission belt and transmission belt | |
JP2918826B2 (en) | Method of manufacturing tensile body for belt | |
JPH09210139A (en) | Driving belt | |
JP6945323B2 (en) | Extra-thick dip cord and its manufacturing method | |
JP2005024075A (en) | Toothed belt | |
JP2616855B2 (en) | Toothed belt | |
JPH08324737A (en) | Conveyor belt | |
JPH09126279A (en) | Tension member for belt and belt using the tension member | |
JP3677080B2 (en) | Tensile body for belt and power transmission belt using the same | |
JPH0526298A (en) | Belt for industrial use | |
JPS5915780Y2 (en) | toothed belt | |
JPH0967730A (en) | Aramid-based fiber twisted yarn and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19981208 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071225 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081225 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081225 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091225 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091225 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101225 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111225 Year of fee payment: 13 |
|
LAPS | Cancellation because of no payment of annual fees |