JPH09125969A - Variable intake device - Google Patents

Variable intake device

Info

Publication number
JPH09125969A
JPH09125969A JP7287565A JP28756595A JPH09125969A JP H09125969 A JPH09125969 A JP H09125969A JP 7287565 A JP7287565 A JP 7287565A JP 28756595 A JP28756595 A JP 28756595A JP H09125969 A JPH09125969 A JP H09125969A
Authority
JP
Japan
Prior art keywords
intake
intake pipe
movable
fixed
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7287565A
Other languages
Japanese (ja)
Other versions
JP3106936B2 (en
Inventor
Masahiro Fujimoto
昌弘 藤本
Hirobumi Azuma
博文 東
Shiro Kumagai
司郎 熊谷
Hideo Nakai
英夫 中井
Hiroyuki Kiuchi
裕之 木内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Mitsubishi Automotive Engineering Co Ltd
Original Assignee
Mitsubishi Motors Corp
Mitsubishi Automotive Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp, Mitsubishi Automotive Engineering Co Ltd filed Critical Mitsubishi Motors Corp
Priority to JP07287565A priority Critical patent/JP3106936B2/en
Publication of JPH09125969A publication Critical patent/JPH09125969A/en
Application granted granted Critical
Publication of JP3106936B2 publication Critical patent/JP3106936B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Characterised By The Charging Evacuation (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance the controllability of engine speed, particularly responsiveness when the engine is in the low speed range, or the like, by reducing relatively the volume of a downstream side intake passage connected to the downstream side of the upstream side intake introducing part of the intake system of the engine. SOLUTION: This variable intake device includes a fixed intake pipe 43 communicated with a combustion chamber; a movable intake pipe 42 which is fitted to the pipe 43 and is continuously movable between a longest intake passage position P1 where its length overlapping with the fixed intake pipe is shortest and a shortest intake passage position P0 where the length is longest; an upstream side intake introducing part which is connected to the upstream end of the movable intake pipe 42 when the movable intake pipe 42 is at the longest intake passage position P1 and to which intake is guided via an air cleaner; and casing members 40, 39 which, when the movable intake pipe 42 is at the longest intake passage position P1, accommodate the movable intake pipe 42 and connect the upstream side intake introducing part to the fixed intake pipe 43 and whose inner surfaces are shaped to extend along a track on which the movable intake pipe 42 moves.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、エンジンの吸気系に配
備される可変吸気装置、特に吸気系の吸気路構成部材内
に固定吸気管と可動吸気管の互いの重合量を可変させて
実質的な吸気分岐路の長さを可変させる可変吸気装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a variable intake system provided in an intake system of an engine, and more particularly, to a fixed intake pipe and a movable intake pipe by varying the amount of superposition of the fixed intake pipe and the movable intake pipe. The present invention relates to a variable intake device that changes the length of a typical intake branch passage.

【0002】[0002]

【従来の技術】内燃機関の吸気系はエンジンの吸気ポー
トにエアクリーナ側の吸気口からの吸気を流入させるも
のであり、通常、エアクリーナ、吸気管、吸気量を調整
するスロットル弁を備えたスロットルボディー、他気筒
の吸気脈動を干渉するサージタンク、吸気を各気筒に分
岐する吸気多岐管等の吸気系構成部材を順次連結するこ
とによって構成されている。これら各吸気系構成部材は
順次互いに連結されることによって吸気路長が決定さ
れ、通常、その長さは一定と成る。
2. Description of the Related Art An intake system of an internal combustion engine is designed to allow intake air from an intake port on the air cleaner side to flow into an intake port of the engine. Usually, the throttle body is provided with an air cleaner, an intake pipe, and a throttle valve for adjusting the intake amount. , A surge tank that interferes with intake pulsation of other cylinders, and an intake system constituent member such as an intake manifold that branches intake air into each cylinder are sequentially connected. The intake path length is determined by sequentially connecting the respective intake system constituent members to each other, and the length is usually constant.

【0003】ところで、エンジンは、エンジン回転数及
び吸気管の長さに応じて体積効率が変化することが知ら
れ、これは吸気管の脈動効果及び慣性効果によるものと
見做されている。ここで、脈動効果は吸気弁の開弁時点
で吸気ポートに生じる負圧波がこの吸気ポートと吸気管
の大気圧相当部側との間を往復動した後に正圧波として
戻ってくることにより生じるものであり、慣性効果は吸
気管内気柱の流動により示される慣性により生じるもの
である。いずれもシリンダへの吸気の押し込み作用を期
待出来、これによって体積効率を向上させることが可能
である。
By the way, it is known that the volumetric efficiency of an engine changes depending on the engine speed and the length of the intake pipe, which is considered to be due to the pulsation effect and the inertial effect of the intake pipe. Here, the pulsating effect is caused by the fact that the negative pressure wave generated in the intake port at the time of opening the intake valve reciprocates between this intake port and the atmospheric pressure equivalent part side of the intake pipe and then returns as a positive pressure wave. The inertial effect is caused by the inertia shown by the flow of the air column in the intake pipe. In either case, it is possible to expect the action of pushing the intake air into the cylinder, which can improve the volumetric efficiency.

【0004】更に、多気筒エンジンでは、各気筒の吸気
路間で吸気干渉が生じる可能性があり、これを防止すべ
く、各気筒の吸気路は大容量のサージタンク等に達する
まで互いに分岐形成されている。ここで吸気干渉とは、
吸気弁の開放時に生じた負の圧力波が吸気路を通り、吸
気弁が閉鎖直前にある別の気筒の吸気ポートに達して、
その気筒の体積効率を低減させてしまう現象である。こ
のように、エンジンの吸気系の設定に当たっては、吸気
干渉の防止、エンジン体積効率の向上に適した吸気管路
が設定され、特に、吸気脈動を積極的に利用可能な吸気
管路可変機構が提案されている。
Further, in a multi-cylinder engine, intake interference may occur between the intake passages of each cylinder, and in order to prevent this, the intake passages of each cylinder are branched from each other until reaching a large capacity surge tank or the like. Has been done. Here, intake interference is
A negative pressure wave generated when the intake valve opens opens through the intake passage and reaches the intake port of another cylinder just before the intake valve closes,
This is a phenomenon that reduces the volumetric efficiency of the cylinder. As described above, when setting the intake system of the engine, an intake pipe line suitable for preventing intake interference and improving engine volume efficiency is set, and in particular, an intake pipe line variable mechanism that can positively use intake pulsation is provided. Proposed.

【0005】例えば、図17に示す内燃機関の吸気装置
が知られている。ここでのエンジンの吸気路構成部材
は、各気筒より延出する各吸気ポート1と、これらの先
端の吸気多岐管2と、これら吸気多岐管2の上側に一体
的に形成されるハウジング3と、ハウジング内で回動す
る半円筒状のロータ4とを備える。ハウジング3は上下
壁301,303と、上壁301より延出する吸入管3
02と、両側壁304,305とを備える。ここで、ロ
ータ4の外壁面と側壁305上に形成される複数の凹溝
305aとで複数の可変分岐路rが形成され、各可変分
岐路rの上流端が各吸気ポート1と連通され、各可変分
岐路rの下流端がハウジング3の内室に連通する。
For example, an intake system for an internal combustion engine shown in FIG. 17 is known. The intake path constituent members of the engine here are the intake ports 1 extending from the respective cylinders, the intake manifolds 2 at their tips, and the housing 3 integrally formed on the upper side of the intake manifolds 2. , A semi-cylindrical rotor 4 that rotates in the housing. The housing 3 includes upper and lower walls 301 and 303, and a suction pipe 3 extending from the upper wall 301.
02 and both side walls 304 and 305. Here, a plurality of variable branch passages r are formed by the outer wall surface of the rotor 4 and a plurality of recessed grooves 305a formed on the side wall 305, and the upstream end of each variable branch passage r communicates with each intake port 1, The downstream end of each variable branch path r communicates with the inner chamber of the housing 3.

【0006】ここで、上壁301より所定量下方の平板
状壁306にロータ4が当接する際、吸入管302より
の空気は上壁301と平板状壁306とで挟持する空間
部を通過した上で凹溝303aとロータ4の外壁面によ
り形成された各可変分岐路rに分岐して流入し、各吸気
多岐管2及び各吸気ポート1に向かう。このような図1
7に示す内燃機関の吸気装置の場合、図示しないアクチ
ュエータに直結のアクチュエータ軸401によりロータ
4が駆動され、実質的な吸気分岐路の長さが可変制御さ
れる。
Here, when the rotor 4 contacts the flat wall 306 below the upper wall 301 by a predetermined amount, the air from the suction pipe 302 passes through the space sandwiched between the upper wall 301 and the flat wall 306. The variable branch passages r formed by the concave groove 303a and the outer wall surface of the rotor 4 branch off and flow into the intake manifolds 2 and the intake ports 1. Figure 1
In the case of the intake device for an internal combustion engine shown in FIG. 7, the rotor 4 is driven by an actuator shaft 401 directly connected to an actuator (not shown), and the substantial length of the intake branch passage is variably controlled.

【0007】特にエンジンが中高回転域にあると、ロー
タ4のエッジ部401が上壁303の端部である最短吸
気通路位置P0に保持され、実質的な吸気分岐路長を最
短である固定吸気路長L1と吸気ポート1の長さの加算
値とし、中高回転域での吸気慣性作用を確保できる。一
方、エンジンが低回転域にあると、図示しないアクチュ
エータによりロータ4のエッジ部401が平板状壁30
6に当接する最長吸気通路位置P1に保持され、実質的
な吸気分岐路の長さを(L1+L2)と吸気ポート1の
長さの加算値として低回転域での吸気慣性作用を確保で
きる。なお、このような吸気路可変機構を備えた吸気装
置が、特開昭60−19914号公報に開示される。更
に、複数の可変分岐路が互いに完全に独立した複数の可
動吸気管(図18には1つのみ示した)を備えるエンジ
ンの可変吸気装置が本発明者による特願平7−1431
18号の明細書及び図面に開示される。
In particular, when the engine is in the middle-high rotation range, the edge portion 401 of the rotor 4 is held at the shortest intake passage position P0 which is the end portion of the upper wall 303, and the fixed intake air whose actual intake branch passage length is the shortest. By setting the addition value of the path length L1 and the length of the intake port 1, it is possible to secure the intake inertia action in the middle and high speed regions. On the other hand, when the engine is in the low rotation range, the edge portion 401 of the rotor 4 is moved by the actuator (not shown) so that the flat wall 30
6 is held at the longest intake passage position P1 that abuts 6, and the intake inertia action in the low rotation range can be ensured by setting the substantial intake branch passage length (L1 + L2) and the intake port 1 length as an addition value. An intake device provided with such an intake passage variable mechanism is disclosed in Japanese Patent Laid-Open No. 60-91414. Furthermore, a variable intake system for an engine provided with a plurality of movable intake pipes (only one is shown in FIG. 18) in which a plurality of variable branch passages are completely independent from each other is disclosed in Japanese Patent Application No. 7-1431 of the present inventor.
No. 18 specification and drawings.

【0008】このエンジンの可変吸気装置は、図18に
示すように、吸気系の上流からの吸気をサージタンク5
に吸入し、このサージタンク5の側壁に一体結合された
蓋形ケーシング6とこれに一体結合される半円形ケーシ
ング12とで形成される収容室10の内部に収容する可
動吸気管7及び固定吸気管8に吸気を流入させる。更
に、固定吸気管8に流入した吸気を固定吸気管8下流に
一体結合された吸気多岐管9を経て各吸気ポート(図示
せず)に流入させている。ここで可変吸気装置は、固定
吸気管8を蓋形ケーシング6に固定し、可動吸気管7を
アーム701を介し蓋形ケーシング6に枢支された駆動
軸11に一体結合する。各可動吸気管7の円弧中心は駆
動軸11の中心に一致する。このため、駆動軸11を中
心に可動吸気管7が揺動した場合に可動吸気管7の内壁
と固定吸気管8の外壁とは干渉せず揺動出来る。
As shown in FIG. 18, the variable intake system for this engine uses the surge tank 5 to intake the intake air from the upstream side of the intake system.
A movable intake pipe 7 and a fixed intake pipe which are housed in a housing chamber 10 formed by a lid-shaped casing 6 integrally connected to the side wall of the surge tank 5 and a semicircular casing 12 integrally connected to the surge tank 5. Intake air is introduced into the pipe 8. Further, the intake air that has flowed into the fixed intake pipe 8 is allowed to flow into each intake port (not shown) via the intake manifold 9 that is integrally connected downstream of the fixed intake pipe 8. Here, in the variable intake system, the fixed intake pipe 8 is fixed to the lid-shaped casing 6, and the movable intake pipe 7 is integrally coupled to the drive shaft 11 pivotally supported by the lid-shaped casing 6 via the arm 701. The arc center of each movable intake pipe 7 coincides with the center of the drive shaft 11. Therefore, when the movable intake pipe 7 swings around the drive shaft 11, the inner wall of the movable intake pipe 7 and the outer wall of the fixed intake pipe 8 can swing without interfering with each other.

【0009】ここでも可動吸気管7を固定吸気管8に完
全に重合させた最短吸気通路位置P0に保持し、可動吸
気管7及び固定吸気管8の先端開口701に吸気を流入
させた場合に、収容室10内での吸気分岐路長を最も短
いL1に保持でき、エンジンの中高回転域における吸気
慣性作用を確保できる。更に、可動吸気管7を固定吸気
管8より最大突出させ、サージタンク5より可動吸気管
7の先端開口701に吸気を流入させた場合に、収容室
10内での吸気分岐路長を最も長い(L1+L2)に保
持でき、エンジンの低回転域(アイドル時等)における
吸気慣性作用を確保できる。
Also here, when the movable intake pipe 7 is held at the shortest intake passage position P0 where the fixed intake pipe 8 is completely overlapped, and the intake air is introduced into the tip openings 701 of the movable intake pipe 7 and the fixed intake pipe 8. The length of the intake branch passage in the accommodation chamber 10 can be maintained at the shortest length L1, and the intake inertia action in the middle-high speed region of the engine can be secured. Further, when the movable intake pipe 7 is projected to the maximum from the fixed intake pipe 8 and the intake air is made to flow into the tip opening 701 of the movable intake pipe 7 from the surge tank 5, the intake branch path length in the accommodation chamber 10 is the longest. It can be maintained at (L1 + L2), and the intake inertia action in the low engine speed range (when idling, etc.) can be secured.

【0010】[0010]

【発明が解決しようとする課題】ところで、図17や特
開昭60−19914号公報に開示されるエンジンの吸
気装置では、エンジンが低回転域にあるとロータ4のエ
ッジ部401が最長吸気通路位置P1に保持され、その
際、吸入管302の上流側のスロットル弁(図示せず)
の下流の容積として、ハウジング3の側壁304とロー
タ4と上壁303及び平板状部306とで囲まれる内室
の容積が加わる。同様に、図18に示した本出願人によ
る先行技術のエンジンの可変吸気装置では、エンジンが
低回転域にあり最長吸気通路位置P1に可動吸気管7が
保持されると、その際のスロットル弁下流の容積とし
て、サージタンク5に連通すると共に蓋形ケーシング6
の低壁601と半円形ケーシング12の内壁面121と
で囲まれる収容室10の容積が加わる。
By the way, in the engine intake system disclosed in FIG. 17 and Japanese Patent Laid-Open No. 60-19914, the edge portion 401 of the rotor 4 causes the longest intake passage when the engine is in the low speed region. A throttle valve (not shown) on the upstream side of the suction pipe 302, which is held in the position P1
The volume of the inner chamber surrounded by the side wall 304 of the housing 3, the rotor 4, the upper wall 303, and the flat plate portion 306 is added as the downstream volume of the above. Similarly, in the variable intake system for the engine of the prior art by the applicant shown in FIG. 18, when the engine is in the low speed range and the movable intake pipe 7 is held at the longest intake passage position P1, the throttle valve at that time is held. As a downstream volume, it communicates with the surge tank 5 and also has a lid-shaped casing 6
The volume of the storage chamber 10 surrounded by the low wall 601 and the inner wall surface 121 of the semicircular casing 12 is added.

【0011】このようにいずれの従来装置でも、エンジ
ンが低回転域にあって最長吸気通路位置P1に可動吸気
管7が保持される際に、スロットル弁下流の容積が比較
的大きくなる。このため、いずれの従来装置の場合にお
いても、エンジン始動時にスロットル弁下流に堆積して
いた空気が燃焼室側に過度に流入し易く、エンジン回転
数が過度に上昇するという問題がある。更に、始動後に
あっても、スロット弁下流の容積が大きいため、スロッ
トル弁や吸気絞り手段の切り換え時における応答性が比
較的低く、アイドリング又は低回転域での制御性が低い
という問題がある。
As described above, in any of the conventional devices, the volume downstream of the throttle valve becomes relatively large when the movable intake pipe 7 is held at the longest intake passage position P1 in the low speed region of the engine. Therefore, in the case of any of the conventional devices, there is a problem that the air accumulated on the downstream side of the throttle valve at the time of engine start tends to excessively flow into the combustion chamber side, and the engine speed excessively increases. Further, even after the start, since the volume downstream of the slot valve is large, there is a problem that the responsiveness at the time of switching the throttle valve and the intake throttle means is relatively low, and the controllability in the idling or low rotation range is low.

【0012】本発明の目的は、可動吸気管を最長吸気通
路位置に保持するような運転域、例えば低回転域で、吸
気系の上流側吸気導入部に連結される下流側吸気路の容
積を比較的低減させ、エンジン回転の制御性、特に応答
性を向上させることにある。
An object of the present invention is to reduce the volume of the downstream side intake passage connected to the upstream side intake introducing portion of the intake system in an operating range where the movable intake pipe is held at the longest intake passage position, for example, a low rotation range. The purpose of this is to make it relatively low and improve the controllability of engine rotation, especially the responsiveness.

【0013】[0013]

【課題を解決するための手段】上述の目的を達成するた
めに、請求項1の発明は、エンジン燃焼室に連通する固
定吸気管と、同固定吸気管の上流端に嵌合して吸気通路
の少なくとも一部を形成すると共に上記固定吸気管との
重合長さが最短となる最長吸気通路位置と上記重合長さ
が最長となる最短吸気通路位置との間で連続的に移動し
うる可動吸気管と、上記可動吸気管の上流側位置に位置
して絞り弁が介装されるとともに、エアクリーナを介し
て吸気が導かれる上流側吸気導入部と、上記可動吸気管
が少なくとも最長吸気通路位置にあるときに同可動吸気
管を収容して上記上流側吸気導入部と上記固定吸気管を
気密に接続するとともに上記可動吸気管の移動する軌跡
に沿う内面形状を有するケーシング部材と、を備えたこ
とを特徴とする。
In order to achieve the above-mentioned object, the invention of claim 1 is such that a fixed intake pipe communicating with an engine combustion chamber and an intake passage fitted to an upstream end of the fixed intake pipe. Of at least a part of the movable intake air which forms at least a part thereof and is continuously movable between the longest intake passage position where the overlap length with the fixed intake pipe is the shortest and the shortest intake passage position where the overlap length is the longest. Pipe, an upstream intake port for introducing intake air through an air cleaner, and a movable intake pipe located at an upstream side position of the movable intake pipe, and the movable intake pipe at least at the longest intake passage position. And a casing member that accommodates the movable intake pipe at a certain time to airtightly connect the upstream intake introduction portion and the fixed intake pipe and has an inner surface shape along a locus along which the movable intake pipe moves. Is characterized by.

【0014】請求項2の発明は、請求項1記載の可変吸
気装置において、上記固定吸気管が可動吸気管の内側に
嵌合するとともに上記固定吸気管と上記可動吸気管の重
合長さが最長となる最短吸気通路位置のときに上記可動
吸気管を内側に収容するケーシング部材を備えたことを
特徴とする。
According to a second aspect of the present invention, in the variable intake system according to the first aspect, the fixed intake pipe is fitted inside the movable intake pipe, and the overlap length of the fixed intake pipe and the movable intake pipe is the longest. And a casing member for accommodating the movable intake pipe inside at the shortest intake passage position.

【0015】請求項3の発明は、請求項1または請求項
2記載の可変吸気装置において、上記固定吸気管と上記
可動吸気管は共通の中心点を有する円弧上に形成される
とともに上記可動吸気管はアーム部材に支持されるとと
もに上記中心点を含む揺動軸線を中心に揺動するように
構成され、上記ケーシング部材は上記アーム部材を収容
する収容室を持つことを特徴とする。
According to a third aspect of the present invention, in the variable intake system according to the first or second aspect, the fixed intake pipe and the movable intake pipe are formed on an arc having a common center point and the movable intake pipe is formed. The pipe is configured to be supported by the arm member and swing about a swing axis including the center point, and the casing member has a storage chamber for storing the arm member.

【0016】請求項4の発明は、請求項3記載の可変吸
気装置において、上記エンジンが複数気筒を有し上記可
動吸気管は各気筒に対応してシリンダー方向に並列に配
置され互いに固着されているとともにシリンダ側方向両
端にそれぞれ上記アーム部材が固着されていることを特
徴とする。
According to a fourth aspect of the present invention, in the variable intake system according to the third aspect, the engine has a plurality of cylinders, and the movable intake pipes are arranged in parallel in the cylinder direction corresponding to each cylinder and fixed to each other. The arm members are fixed to both ends in the cylinder side direction.

【0017】請求項5の発明は、請求項4記載の可変吸
気装置において、上記アーム部材は揺動軸線上に位置す
るとともに駆動機構に接続されて上記アーム部材は塾部
材に固着され上記軸部材は上記アーム部材と一体に回動
することを特徴とする。
According to a fifth aspect of the present invention, in the variable intake system according to the fourth aspect, the arm member is located on the swing axis and is connected to a drive mechanism so that the arm member is fixed to the crawler member. Is rotated integrally with the arm member.

【0018】請求項6の発明は、請求項5記載の可変吸
気装置において、上記ケーシング部材は、上記アーム部
材間の上記軸部材を収容すべく軸に沿って伸びる軸収容
部を持っていることを特徴とする。
According to a sixth aspect of the present invention, in the variable intake system according to the fifth aspect, the casing member has a shaft accommodating portion extending along an axis for accommodating the shaft member between the arm members. Is characterized by.

【0019】[0019]

【実施例】図1乃至図3には本発明の一実施例としての
可変吸気装置を示した。この可変吸気装置は、直列4気
筒エンジン(以後単にエンジンと記す)30に装着され
る。ここで、エンジン30はそのシリンダヘッド31の
左右壁に吸気多岐管32及び図示しない排気多岐管を一
体結合している。吸気多岐管32の各先端は樹脂性の第
1固定吸気管43及び同じく樹脂性の可動吸気管42を
収容する吸気路長可変機構A、第2固定吸気管33を経
て、サージタンク34に順次連結されている。
1 to 3 show a variable intake system as one embodiment of the present invention. This variable intake system is installed in an in-line four-cylinder engine (hereinafter simply referred to as engine) 30. Here, the engine 30 has an intake manifold 32 and an exhaust manifold (not shown) integrally connected to the left and right walls of its cylinder head 31. Each tip of the intake manifold 32 passes through the first fixed intake pipe 43 made of resin and the variable intake path length mechanism A for accommodating the movable intake pipe 42 made of resin, and the second fixed intake pipe 33 to the surge tank 34 in order. It is connected.

【0020】図1、図2に示すように、サージタンク3
4はその上部に吸入口341を形成され、その吸入口3
41にはスロットルボディー35及び吸気管36を介し
エアクリーナ37が連通されている。サージタンク34
は上流部の側壁に吸入口341を形成され、図2、図3
に示すように、吸入口341より離れるにしたがって凸
量を低下させる傾斜凸部342を備え、下流側には4つ
の開口343を形成され、これら開口には各第2固定吸
気管33が延出形成される。この第2固定吸気管33は
その先端が吸気路長可変機構Aの蓋型ケーシング40内
の吸入口401に連結する。スロットルボディー35は
アルミダイキャスト製の筒状体であり、その内部に吸気
量を可変調整するスロットル弁38が配設される。
As shown in FIGS. 1 and 2, the surge tank 3
4 has an intake port 341 formed in the upper part thereof, and the intake port 3
An air cleaner 37 is connected to 41 via a throttle body 35 and an intake pipe 36. Surge tank 34
Has an intake port 341 formed in the side wall of the upstream portion.
As shown in FIG. 4, the inclined convex portion 342 that reduces the convex amount with increasing distance from the suction port 341 is provided, and four openings 343 are formed on the downstream side, and the second fixed intake pipes 33 extend to these openings. It is formed. The tip of the second fixed intake pipe 33 is connected to the intake port 401 in the lid-type casing 40 of the intake path length varying mechanism A. The throttle body 35 is a cylindrical body made of aluminum die-cast, and a throttle valve 38 for variably adjusting the intake air amount is arranged inside thereof.

【0021】なお、このスロットル弁38はリンク38
1を介し図示しないスロットルアクチュエータに連結さ
れている。ここで、エアクリーナ37、吸気管36、ス
ロットルボディー35、サージタンク34、第2固定吸
気管33から成る上流側吸気導入部と、これに、吸気路
長可変機構A、吸気多岐管32及び吸気ポート29等の
各吸気系構成部材が順次連結されることによってこのエ
ンジン30の吸気路全長である全吸気管長LI(図15
参照)が決定され、その長さは吸気路長可変機構Aでの
み可変調整される。図1乃至図3に示すように、吸気路
長可変機構Aは碗状の半円形ケーシング39及びこれに
一体結合された蓋状の蓋型ケーシング40とで外枠を形
成し、これらケーシング内に収容室41を密封する。半
円形ケーシング39は後述の可動吸気管42に干渉しな
いよう、碗状を成し、その周縁には蓋型ケーシング40
に重合し、ボルト止めされるフランジ391が形成され
る。
The throttle valve 38 is a link 38.
1 is connected to a throttle actuator (not shown). Here, the upstream side intake introducing portion including the air cleaner 37, the intake pipe 36, the throttle body 35, the surge tank 34, and the second fixed intake pipe 33, and the intake path length varying mechanism A, the intake manifold 32, and the intake port The total intake pipe length LI, which is the total intake path of the engine 30 (see FIG.
(See reference) is determined, and the length is variably adjusted only by the intake path length varying mechanism A. As shown in FIGS. 1 to 3, the intake path length varying mechanism A forms an outer frame with a bowl-shaped semicircular casing 39 and a lid-shaped lid-type casing 40 integrally connected to the bowl-shaped semi-circular casing 39. The accommodation chamber 41 is sealed. The semi-circular casing 39 has a bowl shape so as not to interfere with a movable intake pipe 42, which will be described later, and has a lid-type casing 40 around the periphery thereof.
To form a flange 391 which is superposed on and bolted to.

【0022】一方、図5に示すように、蓋型ケーシング
40は概略、中央突部402を備えた矩形皿状を成し、
その周縁には半円形ケーシング39に重合し、ボルト止
めされるフランジ403が形成される。蓋型ケーシング
40は上流側の側壁に吸入口401を4つ形成され、そ
の高さ方向(紙面上下方向)中間位置に可動吸気管42
を揺動させるアクチュエータ軸44が枢支され、下流側
の側壁に下流開口408を4つ形成される。蓋型ケーシ
ング40の各下流開口408には一体的に固定吸気管4
3が4本並設され、各固定吸気管43はその長手方向断
面形状を円弧状に形成され、その円弧中心はアクチュエ
ータ軸44の中心線L0に一致するように形成されてい
る。
On the other hand, as shown in FIG. 5, the lid-type casing 40 is generally in the shape of a rectangular dish having a central protrusion 402.
A flange 403 which overlaps with the semi-circular casing 39 and is bolted is formed on the periphery thereof. The lid-type casing 40 has four intake ports 401 formed on the upstream side wall, and the movable intake pipe 42 is provided at an intermediate position in the height direction (vertical direction of the drawing).
An actuator shaft 44 for swinging the shaft is pivotally supported, and four downstream openings 408 are formed in the side wall on the downstream side. The fixed intake pipe 4 is integrally formed at each downstream opening 408 of the lid-type casing 40.
Four of the fixed intake pipes 43 are arranged side by side, and each of the fixed intake pipes 43 is formed to have an arcuate cross-section in the longitudinal direction, and the arcuate center is formed to coincide with the center line L0 of the actuator shaft 44.

【0023】なお、収容室41の要部を成す湾曲空間4
11は蓋型ケーシング40の中央突部402と半円形ケ
ーシング39の内壁間に形成され、この湾曲空間411
内で固定吸気管43に外嵌する可動吸気管42が中心線
L0回りに回動出来る。特に、ここでは可動吸気管42
が中心線L0回りに回動する際に、蓋型ケーシング40
の中央突部402や半円形ケーシング39の内壁に干渉
しない範囲で湾曲空間411の容積が狭められ、即ち、
可動吸気管42の移動する軌跡に沿う内面形状を有する
ように形成され、これにより、スロットル弁38の下流
側の吸気路容積を低減させ、スロットル弁の開閉作動に
伴う、エンジン回転変動の応答性を改善させている。図
5に示すように、アクチュエータ軸44はその左右端を
ベアリング45を介し蓋型ケーシング40に枢着され、
左右端よりの2点に左右各2本のアーム27を一体結合
している。ここで、各気筒に対応した4つの可動吸気管
42はシリンダー方向に並列に配置され、互いに一体結
合され、このような4つの可動吸気管42の左右端部に
各2本のアーム27の回動端が一体結合される。
The curved space 4 forming the main part of the storage chamber 41
11 is formed between the central projection 402 of the lid-type casing 40 and the inner wall of the semi-circular casing 39, and the curved space 411.
The movable intake pipe 42 fitted inside the fixed intake pipe 43 can be rotated around the center line L0. In particular, here, the movable intake pipe 42
Is rotated around the center line L0, the lid-type casing 40
The volume of the curved space 411 is narrowed within a range where it does not interfere with the central protrusion 402 of the above and the inner wall of the semicircular casing 39, that is,
The movable intake pipe 42 is formed so as to have an inner surface shape along the moving trajectory of the movable intake pipe 42, thereby reducing the volume of the intake passage on the downstream side of the throttle valve 38, and responding to engine speed fluctuations associated with the opening / closing operation of the throttle valve. Is improving. As shown in FIG. 5, the actuator shaft 44 has its left and right ends pivotally attached to the lid-type casing 40 via bearings 45.
Two left and right arms 27 are integrally connected to two points from the left and right ends. Here, the four movable intake pipes 42 corresponding to each cylinder are arranged in parallel in the cylinder direction and are integrally coupled to each other, and the two movable arms 27 are respectively connected to the left and right ends of the four movable intake pipes 42. The moving ends are integrally connected.

【0024】ここで、蓋型ケーシング40はその中央突
部402の中央に横に長い軸収容部としての谷部404
を凹設し、この谷部404の低壁側にアクチュエータ軸
44を収容する。更に、中央突部402の左右端には直
立壁405がそれぞれ形成され、直立壁405と蓋型ケ
ーシング40の側壁406との間に縦溝407を形成し
ている。この縦溝407はアクチュエータ軸44回りに
回動する左右各2本のアーム27を干渉すること無く収
容できる。アクチュエータ軸44の一端には、吸気管長
可変用のアクチュエータである直流モータ28が図示し
ない減速機構を介し連結される。この直流モータ28は
可動吸気管42が固定吸気管43に対して摺動すべく、
コントローラ47に駆動される。コントローラ47は第
1固定吸気管43に外嵌された可動吸気管42を駆動
し、第1固定吸気管43が形成する第2通路R2の軸線
方向位置における所定の位置に可動吸気管42を保持す
べく駆動する。
Here, the lid-type casing 40 has a valley portion 404 as a laterally long shaft accommodating portion at the center of the central projecting portion 402.
Is recessed, and the actuator shaft 44 is housed on the lower wall side of the valley portion 404. Further, upright walls 405 are formed at the left and right ends of the central protrusion 402, and a vertical groove 407 is formed between the upright wall 405 and the side wall 406 of the lid-type casing 40. The vertical groove 407 can accommodate two left and right arms 27 that rotate around the actuator shaft 44 without interfering with each other. A direct-current motor 28, which is an actuator for varying the intake pipe length, is connected to one end of the actuator shaft 44 via a reduction mechanism (not shown). In this DC motor 28, the movable intake pipe 42 slides with respect to the fixed intake pipe 43,
It is driven by the controller 47. The controller 47 drives the movable intake pipe 42 fitted onto the first fixed intake pipe 43, and holds the movable intake pipe 42 at a predetermined position in the axial direction position of the second passage R2 formed by the first fixed intake pipe 43. Drive to do it.

【0025】ここで第1固定吸気管43はその先端開口
431を収容室41の高さ方向でのほぼ中間位置に配備
し、これによって、吸入口401より直接この先端開口
431に吸気を流入させた場合に、吸気管長可変機構A
内での吸気分岐路長を最も短いLAに保持でき、エンジ
ンの最大出力時における吸気脈動作用を確保できるよう
に設定される。一方、可動吸気管42は各第1固定吸気
管43に外嵌する内径で形成されると共に第2通路R2
に連通する第1通路R1を形成する。ここで各気筒に対
応してシリンダー方向に並列に配置され互いに固着され
ている4つの各可動吸気管42はその長手方向断面形状
を円弧状に形成され、その円弧中心はアクチュエータ軸
44の中心線L0に一致する。このため、アクチュエー
タ軸44を中心に4つの各可動吸気管42を同時に揺動
できる。
The tip end opening 431 of the first fixed intake pipe 43 is arranged at a substantially intermediate position in the height direction of the accommodation chamber 41, so that the intake air is directly introduced into the tip end opening 431 from the intake port 401. If the intake pipe length variable mechanism A
It is set so that the intake branch path length in the inside can be held at the shortest LA and the intake pulsation operation at the maximum output of the engine can be secured. On the other hand, the movable intake pipe 42 is formed to have an inner diameter that fits over each of the first fixed intake pipes 43 and the second passage R2.
To form a first passage R1. Here, each of the four movable intake pipes 42 arranged in parallel in the cylinder direction and fixed to each other corresponding to each cylinder is formed in an arc shape in its longitudinal cross-section, and the arc center is the center line of the actuator shaft 44. Match L0. Therefore, the four movable intake pipes 42 can be simultaneously swung about the actuator shaft 44.

【0026】図3に示すように、可動吸気管42は、こ
れが固定吸気管43より最大突出した最大吸気通路位置
P1(図3に実線で示す位置)において、可動吸気管4
2のファンネル状の先端開口部421に吸気を流入させ
た場合に、吸気管長可変機構A内での吸気分岐路長を最
も長いLA+LMに保持できる。ここで、蓋型ケーシン
グ40の吸入口401の内周壁には樹脂製の筒状シール
45が嵌着される。図14に示すように、筒状シール4
5は、吸入口401の内周壁の環状凹部40aに係止さ
れる環状突部451と、環状突部451の側壁に形成さ
れ第2固定吸気管33の先端部に対するシール性を確保
するためのシール突条452と、環状突部451と反対
側に延出する蛇腹部453と、蛇腹部453の先端より
シール中心軸線Ls(図14参照)の方向に伸びる筒状
の第1リップ454と、シール半径方向Bに伸びる第2
リップ455とを備える。しかも、このような筒状シー
ル45の第1及び第2リップ454,455は共にファ
ンネル状の先端開口421の内壁面に当接するように形
成されている。
As shown in FIG. 3, the movable intake pipe 42 has the maximum intake passage position P1 (the position shown by the solid line in FIG. 3) at which the movable intake pipe 42 protrudes the maximum from the fixed intake pipe 43.
When the intake air is made to flow into the funnel-shaped front end opening 421 of No. 2, the intake branch path length in the intake pipe length variable mechanism A can be held at the longest LA + LM. Here, a resin cylindrical seal 45 is fitted on the inner peripheral wall of the suction port 401 of the lid-type casing 40. As shown in FIG. 14, the tubular seal 4
Reference numeral 5 denotes an annular projection 451 that is locked in the annular recess 40a on the inner peripheral wall of the suction port 401, and a sealing property with respect to the tip of the second fixed intake pipe 33 that is formed on the side wall of the annular projection 451. A seal projection 452, a bellows portion 453 extending to the opposite side of the annular projection 451, a tubular first lip 454 extending from the tip of the bellows portion 453 in the direction of the seal center axis Ls (see FIG. 14), Second extending in the radial direction B of the seal
And a lip 455. Moreover, the first and second lips 454, 455 of the tubular seal 45 are formed so as to contact the inner wall surface of the funnel-shaped tip opening 421.

【0027】ここで可動吸気管のファンネル状の先端開
口部421は筒状シール45の第1及び第2リップ45
4,455との圧接状態が多少増減変位しても蛇腹部4
53が働き、第1及び第2リップ454,455と先端
開口部421が確実に当接できる。このため、アクチュ
エータ軸44と直流モータ28との間の回転駆動系内の
がたにより、先端開口部421に位置ずれが生じたとし
ても、そのがた分を蛇腹部453が吸収できる。しか
も、吸気管内圧が負圧化ではシール半径方向Bに伸びる
第2リップ455が先端開口部421に圧接し、逆に、
吸気管外部の収容室41側が負圧化した場合、シール中
心軸線Ls方向に伸びる筒状の第1リップ45が先端開
口部421に圧接でき吸気管内外のシール性を確保出来
る。可動吸気管42の後端には、図16に示すように凹
部423が形成され、同部にシールリング46が嵌着さ
れる。
The funnel-shaped front end opening 421 of the movable intake pipe is the first and second lips 45 of the tubular seal 45.
Even if the pressure contact state with 4,455 is slightly increased or decreased, the bellows part 4
53 works, and the first and second lips 454, 455 and the front end opening 421 can surely come into contact with each other. Therefore, even if the tip opening 421 is displaced due to rattling in the rotary drive system between the actuator shaft 44 and the DC motor 28, the bellows 453 can absorb the displacement. Moreover, when the internal pressure of the intake pipe becomes negative, the second lip 455 extending in the seal radial direction B comes into pressure contact with the tip opening 421, and conversely,
When the pressure in the accommodation chamber 41 side outside the intake pipe becomes negative, the cylindrical first lip 45 extending in the seal central axis Ls direction can be pressed against the tip opening 421 to ensure the sealing performance inside and outside the intake pipe. As shown in FIG. 16, a recess 423 is formed at the rear end of the movable intake pipe 42, and a seal ring 46 is fitted in the recess 423.

【0028】ここで、第1固定吸気管43の先端には環
状突出部432が形成され、この環状突出部432と摺
接面を成す小径部433との間の連設部分には小径部4
33から環状突出部432まで徐々に径が変化するテー
パ部434が設けられている。このため、弾性体のシー
ルリング32が他方の固定吸気管43の小径部433の
外周面とゆるく摺接でき、スムーズに摺動でき、摺動抵
抗を低減して可変吸気機構部の応答性を確保出来る。更
に、可動吸気管が最長吸気通路位置P1と成っている場
合にのみ、シールリング46は環状突出部432に気密
に当接でき、両吸気系管の隙間を確実にシールでき、低
回転域での吸気慣性効果を安定して得られる。更に、可
動吸気管42と固定吸気管43の互いの精度誤差を吸収
でき、短絡気流の発生による制御性の低下を防止できる
と共に。第1、第2吸気路管の組み付け精度が比較的低
くてもよく。コスト低減を図れる。
Here, an annular protruding portion 432 is formed at the tip of the first fixed intake pipe 43, and the small diameter portion 4 is connected to the annular protruding portion 432 and the small diameter portion 433 forming a sliding contact surface.
A tapered portion 434 whose diameter gradually changes from 33 to the annular protrusion 432 is provided. Therefore, the seal ring 32 of the elastic body can be slidably contacted with the outer peripheral surface of the small diameter portion 433 of the other fixed intake pipe 43 to smoothly slide, and the sliding resistance is reduced to improve the responsiveness of the variable intake mechanism portion. Can be secured. Further, only when the movable intake pipe is at the longest intake passage position P1, the seal ring 46 can come into air-tight contact with the annular protrusion 432, and the gap between both intake system pipes can be reliably sealed, so that the low rotational speed range is achieved. A stable intake inertia effect can be obtained. Further, the accuracy error between the movable intake pipe 42 and the fixed intake pipe 43 can be absorbed, and the deterioration of controllability due to the occurrence of a short-circuit airflow can be prevented. The assembling accuracy of the first and second intake passage pipes may be relatively low. Cost can be reduced.

【0029】上述の筒状シール45及びシールリング4
6は共に低摩擦係数の素材で成形されればよく、ここで
はNBR樹脂で形成される。なお、筒状シール45及び
シールリング46をその他低摩擦係数のテフロン樹脂や
金属で形成してもよい。このような可変吸気装置が駆動
した場合、エンジン30のアイドル運転時を含む低回転
域ではコントローラ47が直流モータ46を介し可動吸
気管42を回転軸44回りに駆動し、可動吸気管42を
最長吸気通路位置P1に移動する。
The above-mentioned cylindrical seal 45 and seal ring 4
6 may be made of a material having a low friction coefficient, and is made of NBR resin here. The tubular seal 45 and the seal ring 46 may be made of Teflon resin or metal having a low friction coefficient. When such a variable intake device is driven, the controller 47 drives the movable intake pipe 42 around the rotation axis 44 via the DC motor 46 in the low rotation range including the idle operation of the engine 30, so that the movable intake pipe 42 has the longest length. Move to the intake passage position P1.

【0030】この場合、可動吸気管42の先端開口42
2が筒状シール45に圧接し、シールリング46が可動
吸気管42と環状突出部432間を確実にシール出来、
収容室41側と吸気路内部との間をシール出来る。ここ
にエアクリーナ37乃至第2固定吸気管33から成る上
流側吸気導入部側より吸気を流入させた場合に、吸気管
長可変機構A内での吸気分岐路長を第1固定吸気路長さ
LAと可動吸気管長さLMの加算値(LA+LM)に保
持でき、しかも第2固定吸気管33の流路(図3にハッ
チングで示した)からなる第2固定吸気路長LBが連続
して加わることとなる(図4参照)。
In this case, the tip opening 42 of the movable intake pipe 42
2 is pressed against the tubular seal 45, and the seal ring 46 can reliably seal between the movable intake pipe 42 and the annular protruding portion 432.
It is possible to seal between the accommodation chamber 41 side and the inside of the intake passage. When the intake air is introduced from the upstream intake introduction portion side including the air cleaner 37 to the second fixed intake pipe 33, the intake branch path length in the intake pipe length variable mechanism A is defined as the first fixed intake path length LA. The second fixed intake passage length LB, which can be maintained at the addition value (LA + LM) of the movable intake pipe length LM, and which is formed by the flow passage of the second fixed intake pipe 33 (shown by hatching in FIG. 3) is continuously added. (See FIG. 4).

【0031】このため、図15に示すように、吸気多岐
管32及び吸気ポート29の吸気路長さをLPとする
と、エンジンの各気筒の実質的な吸気分岐路長LTは最
も長い、(LP+LA+LM+LB)と成り、この際、
エンジンのアイドル時等の低回転域における吸気慣性作
用を十分に確保できる。しかも、この時スロットル弁3
8の下流側の吸気路容積に収容室41の容積が含まれ
ず、スロットル弁の開閉作動に伴う、エンジン回転変動
の応答性を改善でき、低回転域でのエンジン回転を安定
化できる。
Therefore, as shown in FIG. 15, assuming that the intake path length of the intake manifold 32 and the intake port 29 is LP, the substantial intake branch path length L T of each cylinder of the engine is the longest. LP + LA + LM + LB), where
It is possible to sufficiently secure the intake inertia action in the low speed range such as when the engine is idle. Moreover, at this time, the throttle valve 3
Since the volume of the intake chamber on the downstream side of 8 does not include the volume of the accommodation chamber 41, the responsiveness of the engine rotation fluctuation due to the opening / closing operation of the throttle valve can be improved, and the engine rotation in the low rotation range can be stabilized.

【0032】一方、エンジンが高回転域に達すると、コ
ントローラ47が直流モータ28を介し可動吸気管42
をアクチュエータ軸44回りに駆動し、可動吸気管42
の先端開口422を最短吸気通路位置P0に移動する。
この高回転域でのエンジンの各気筒の実質的な吸気分岐
路長LTは(LP+LA)となり、最短長に保持され、
各吸気分岐路の圧力波は収容室41で反転し、エンジン
の最大出力時における吸気脈動作用を確保でき、出力向
上に寄与できる。なお、図15中、符号LIはエンジン
30の吸気路全長を示す。
On the other hand, when the engine reaches the high speed range, the controller 47 causes the movable intake pipe 42 to move through the DC motor 28.
Is driven around the actuator shaft 44 to move the movable intake pipe 42.
The front end opening 422 of the above is moved to the shortest intake passage position P0.
The substantial intake branch path length L T of each cylinder of the engine in this high rotation range is (LP + LA), and is maintained at the shortest length,
The pressure wave in each intake branch passage is inverted in the accommodation chamber 41, and it is possible to secure the intake pulsation operation at the maximum output of the engine and contribute to the output improvement. Note that, in FIG. 15, reference numeral LI indicates the entire intake passage of the engine 30.

【0033】以上のように、本発明の適用された図1の
可変吸気装置によれば、ケーシング部材40,39が可
動吸気管42の移動する軌跡に沿う内面形状を有するの
でケーシングの容積を比較的小さく出来、しかも、可動
吸気管42を最長吸気通路位置P1に保持するような運
転域、例えばエンジンがアイドル運転域等の低回転域に
あるとき、エアクリーナ37乃至第2固定吸気管33か
らなる上流側吸気導入部に連結される下流側吸気路の容
積を比較的低減でき、吸気量制御(スロットル弁38等
による制御)に伴うエンジン回転の応答性を向上させる
ことが出来、エンジン制御性が向上する。
As described above, according to the variable intake system of FIG. 1 to which the present invention is applied, since the casing members 40 and 39 have an inner surface shape along the locus along which the movable intake pipe 42 moves, the casing volumes are compared. The air cleaner 37 and the second fixed intake pipe 33 are provided when the operating range is such that the movable intake pipe 42 can be made smaller and the movable intake pipe 42 is kept at the longest intake passage position P1, for example, when the engine is in a low rotation range such as an idle operating range. It is possible to relatively reduce the volume of the downstream intake passage connected to the upstream intake introduction portion, improve the engine responsiveness associated with intake air amount control (control by the throttle valve 38, etc.), and improve engine controllability. improves.

【0034】特に、第1固定吸気管43が可動吸気管4
2の内側に嵌合するとともに固定吸気管と可動吸気管の
重合長さが最長となる最短吸気通路位置P0のときに可
動吸気管を内側に収容する蓋型ケーシング40及び半円
型ケーシング39等のケーシング部材を備えても良い。
この場合、最短吸気通路位置P0に可動吸気管42が位
置する時に、ケーシング部材40,39の内側で可動吸
気管42が上流側吸気導入部(サージタンク34側)と
気密に接続するので、最短吸気通路位置P0に可動吸気
管42が接する時とそうでない時の切り換え時の吸気路
の容積変化が比較的少なく、切り換え時のエンジン回転
の変動を比較的低減できる出来る。
In particular, the first fixed intake pipe 43 is the movable intake pipe 4
2 and the lid type casing 40 and the semicircular type casing 39 which accommodate the movable intake pipe inside when the fixed intake pipe and the movable intake pipe are at the shortest intake passage position P0 where the overlap length of the movable intake pipe is the longest. The casing member may be provided.
In this case, when the movable intake pipe 42 is located at the shortest intake passage position P0, the movable intake pipe 42 is airtightly connected to the upstream intake introduction portion (surge tank 34 side) inside the casing members 40 and 39, so The change in the volume of the intake passage at the time of switching between when the movable intake pipe 42 is in contact with the intake passage position P0 and when it is not is relatively small, and the fluctuation of the engine rotation at the time of switching can be relatively reduced.

【0035】特に、第1固定吸気管43と可動吸気管4
2は共通の中心点L0を有する円弧上に形成されると共
に可動吸気管42はアーム部材27に支持され、しかも
アーム部材27はケーシング部材の収容室41に収容さ
れた状態で中心点L0を中心に揺動しても良い。この場
合、第1固定吸気管43に対する可動吸気管42の揺動
時の干渉の調整が比較的容易となるという利点がある。
特に、エンジン30が複数気筒を有し、可動吸気管は各
気筒に対応してシリンダー方向に並列に配置され互いに
固着されているとともにシリンダ側方向両端にそれぞれ
アーム部材27が固着されていても良い。この場合、複
数気筒のエンジンであっても、各気筒に対応した各第1
固定吸気管43に対する各可動吸気管42の揺動時の干
渉の調整が比較的容易となるという利点がある。
In particular, the first fixed intake pipe 43 and the movable intake pipe 4
2 is formed on an arc having a common center point L0, the movable intake pipe 42 is supported by the arm member 27, and the arm member 27 is centered on the center point L0 while being housed in the housing chamber 41 of the casing member. You may swing to. In this case, there is an advantage that it is relatively easy to adjust the interference when the movable intake pipe 42 swings with respect to the first fixed intake pipe 43.
In particular, the engine 30 may have a plurality of cylinders, the movable intake pipes may be arranged in parallel in the cylinder direction and fixed to each other, and the arm members 27 may be fixed to both ends in the cylinder side direction. . In this case, even if the engine has a plurality of cylinders, the first
There is an advantage that it is relatively easy to adjust interference when the movable intake pipes 42 swing with respect to the fixed intake pipe 43.

【0036】特に、アーム部材27は揺動軸線上(L0
上)に位置するとともに直流モータ28に接続され、ア
ーム部材27はアクチュエータ軸44に固着され、アク
チュエータ軸44はアーム部材と一体に回動するように
しても良い。この場合、直流モータ28に接続されたア
クチュエータ軸44と一体のアーム部材27が各気筒に
対応した各可動吸気管42を同時に揺動操作出来る。特
に、ケーシング部材40,39がアーム部材27間のア
クチュエータ軸44を収容すべく軸に沿って伸びる谷部
404を持っていても良い。この場合、過度に大きな空
間を排除して、アーム部材27間のアクチュエータ軸4
4を収容する谷部404が形成されることとなり、この
点でも収容室41の容積を比較的小さく出来、吸気系の
上流側吸気導入部に連結される下流側吸気路の容積を比
較的低減でき、吸気量制御に伴うエンジン回転の応答性
を向上させることが出来、エンジン制御性が向上する。
In particular, the arm member 27 is on the swing axis (L0
The arm member 27 may be located on the upper side and connected to the DC motor 28, the arm member 27 may be fixed to the actuator shaft 44, and the actuator shaft 44 may rotate integrally with the arm member. In this case, the arm member 27 integrated with the actuator shaft 44 connected to the DC motor 28 can simultaneously swing the movable intake pipes 42 corresponding to the cylinders. In particular, the casing members 40, 39 may have valleys 404 extending along the axis to accommodate the actuator shaft 44 between the arm members 27. In this case, the actuator shaft 4 between the arm members 27 is excluded by eliminating an excessively large space.
4 is formed, the volume of the storage chamber 41 can be made relatively small also in this respect, and the volume of the downstream intake passage connected to the upstream intake introduction portion of the intake system can be relatively reduced. Therefore, it is possible to improve the responsiveness of the engine rotation due to the intake air amount control, and the engine controllability is improved.

【0037】[0037]

【発明の効果】エンジン燃焼室に連通する固定吸気管に
嵌合すると共に、最長吸気通路位置と最短吸気通路位置
との間で連続的に移動しうる可動吸気管と、エアクリー
ナを介して吸気が導かれる上流側吸気導入部と、可動吸
気管を収容して上流側吸気導入部と固定吸気管を気密に
接続するケーシング部材とを備え、可動吸気管が固定吸
気管との重合長さが最短となる最長吸気通路位置のとき
に、上流側吸気導入部と可動吸気管と固定吸気管とを気
密に接続する。
EFFECTS OF THE INVENTION A movable intake pipe fitted to a fixed intake pipe communicating with an engine combustion chamber and capable of continuously moving between a longest intake passage position and a shortest intake passage position, and intake air through an air cleaner. The movable intake pipe has a shortest overlap length with the fixed intake pipe, and includes an upstream intake air introduction part to be guided and a casing member that accommodates the movable intake pipe and airtightly connects the upstream intake air intake part and the fixed intake pipe. At the longest intake passage position, the upstream intake passage, the movable intake pipe, and the fixed intake pipe are airtightly connected.

【0038】このため、ケーシング部材が可動吸気管の
移動する軌跡に沿う内面形状を有するのでケーシングの
容積を比較的小さく出来、しかも、可動吸気管を最長吸
気通路位置に保持するような運転域、例えばエンジンが
アイドル運転域等の低回転域にあるとき、吸気系の上流
側吸気導入部に連結される下流側吸気路の容積を比較的
低減でき、吸気量制御に伴うエンジン回転の応答性を向
上させることが出来、エンジン制御性が向上する。
Therefore, since the casing member has an inner surface shape along the locus along which the movable intake pipe moves, the volume of the casing can be made relatively small, and the operating range in which the movable intake pipe is held at the longest intake passage position, For example, when the engine is in a low rotation range such as an idle operation range, the volume of the downstream intake passage connected to the upstream intake introduction section of the intake system can be relatively reduced, and the response of the engine rotation accompanying the intake amount control can be reduced. It is possible to improve the engine controllability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例としての可変吸気装置の部分
切欠概略側断面図である。
FIG. 1 is a partially cutaway schematic side sectional view of a variable intake device according to an embodiment of the present invention.

【図2】図1の可変吸気装置の部分切欠概略平断面図で
ある。
2 is a partially cutaway schematic plan sectional view of the variable intake device in FIG. 1. FIG.

【図3】図1の可変吸気装置内の吸気路長可変機構の拡
大切欠断面図である。
FIG. 3 is an enlarged cutaway sectional view of a variable intake path length mechanism in the variable intake device of FIG.

【図4】図1の可変吸気装置内の吸気路長可変機構の作
動特性説明線図である。
FIG. 4 is an operation characteristic explanatory diagram of an intake path length varying mechanism in the variable intake device of FIG.

【図5】図1の可変吸気装置内の吸気管長可変機構の蓋
型ケーシングの拡大平面図である。
5 is an enlarged plan view of a lid-type casing of the variable intake pipe length mechanism in the variable intake device of FIG. 1. FIG.

【図6】図5の可変吸気装置内の吸気管長可変機構の蓋
型ケーシングの側面図である。
6 is a side view of a lid-type casing of the variable intake pipe length mechanism in the variable intake device of FIG.

【図7】図6の矢視E方向における蓋型ケーシングの側
面図である。
7 is a side view of the lid-type casing in the direction of arrow E in FIG.

【図8】図6の矢視F方向における蓋型ケーシングの側
面図である。
8 is a side view of the lid-type casing in the direction of arrow F in FIG.

【図9】図5のD−D線断面図である。FIG. 9 is a sectional view taken along line DD of FIG. 5;

【図10】図5のB−B線断面図である。10 is a sectional view taken along line BB of FIG.

【図11】図5のA−A線断面図である。11 is a cross-sectional view taken along the line AA of FIG.

【図12】図6のG−G線断面図である。12 is a sectional view taken along line GG of FIG.

【図13】図5のC−C線断面図である。13 is a cross-sectional view taken along the line CC of FIG.

【図14】図1の可変吸気装置の吸気管長可変機構内の
筒状シールの拡大断面図である。
FIG. 14 is an enlarged cross-sectional view of a tubular seal in the variable intake pipe length mechanism of the variable intake device in FIG.

【図15】図1の可変吸気装置の吸気路の切り換え作動
を説明する概略図である。
FIG. 15 is a schematic diagram for explaining the switching operation of the intake passage of the variable intake device of FIG.

【図16】図1の可変吸気装置の吸気管長可変機構内の
第1固定吸気管と可動吸気管とのシール部分の拡大断面
図である。
16 is an enlarged cross-sectional view of a seal portion between a first fixed intake pipe and a movable intake pipe in the intake pipe length varying mechanism of the variable intake device in FIG.

【図17】従来のエンジンの可変吸気装置の要部断面図
である。
FIG. 17 is a sectional view of a main part of a conventional variable intake system for an engine.

【図18】従来の他のエンジンの可変吸気装置の要部断
面図である。
FIG. 18 is a sectional view of a main part of another conventional variable intake system for an engine.

【符号の説明】[Explanation of symbols]

28 直流モータ 30 エンジン 32 吸気多岐管 33 第2固定吸気管 34 サージタンク 35 スロットルボディー 37 エアクリーナ 39 半円形ケーシング 40 蓋型ケーシング 401 吸入口 402 中央突部 404 谷部 405 直立壁 406 側壁 407 縦溝 41 収容室 42 可動吸気管 421 先端開口部 43 第1固定吸気管 44 アクチュエータ軸 45 筒状シール 453 蛇腹部 454 第1リップ 455 第2リップ A 吸気管長可変機構 R1 固定吸気通路 R2 可動吸気通路 P0 最短吸気通路位置 P1 最長吸気通路位置 LP 吸気多岐管及び吸気ポートの吸気路長さ LA 第1固定吸気管長さ LB 第2固定吸気路長さ LM 可動吸気管長さ LT 吸気分岐路長28 DC motor 30 Engine 32 Intake manifold 33 Second fixed intake pipe 34 Surge tank 35 Throttle body 37 Air cleaner 39 Semi-circular casing 40 Lid casing 401 Intake port 402 Center protrusion 404 Valley 405 Upright wall 406 Side wall 407 Vertical groove 41 Storage chamber 42 Movable intake pipe 421 Tip opening 43 First fixed intake pipe 44 Actuator shaft 45 Cylindrical seal 453 Bellows 454 First lip 455 Second lip A Intake pipe length variable mechanism R1 Fixed intake passage R2 Movable intake passage P0 Shortest intake passage position P1 longest intake passage position LP intake passage length LA first stationary intake pipe length LB second stationary intake passage length LM movable intake pipe length L T branch intake passage length of the intake manifold and the intake port

───────────────────────────────────────────────────── フロントページの続き (72)発明者 熊谷 司郎 東京都港区芝五丁目33番8号・三菱自動車 工業株式会社内 (72)発明者 中井 英夫 東京都港区芝五丁目33番8号・三菱自動車 工業株式会社内 (72)発明者 木内 裕之 東京都太田区下丸子四丁目21番1号・三菱 自動車エンジニアリング株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shiro Kumagai 5-3-8 Shiba, Minato-ku, Tokyo, Mitsubishi Motors Corporation (72) Inventor Hideo Nakai 5-33-8 Shiba, Minato-ku, Tokyo・ Inside Mitsubishi Motors Corporation (72) Inventor Hiroyuki Kiuchi 4-21-1, Shimomaruko, Ota-ku, Tokyo ・ Inside Mitsubishi Motors Engineering Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】エンジン燃焼室に連通する固定吸気管と、
同固定吸気管の上流端に嵌合して吸気通路の少なくとも
一部を形成すると共に上記固定吸気管との重合長さが最
短となる最長吸気通路位置と上記重合長さが最長となる
最短吸気通路位置との間で連続的に移動しうる可動吸気
管と、上記可動吸気管の上流側位置に位置して絞り弁が
介装されるとともに、エアクリーナを介して吸気が導か
れる上流側吸気導入部と、上記可動吸気管が少なくとも
最長吸気通路位置にあるときに同可動吸気管を収容して
上記上流側吸気導入部と上記固定吸気管を気密に接続す
るとともに上記可動吸気管の移動する軌跡に沿う内面形
状を有するケーシング部材と、を備えたことを特徴とす
る可変吸気装置。
1. A fixed intake pipe communicating with an engine combustion chamber,
The fixed intake pipe is fitted to the upstream end to form at least a part of the intake passage, and the longest intake passage position where the overlap length with the fixed intake pipe is the shortest and the shortest intake pipe where the overlap length is the longest. A movable intake pipe that can be continuously moved to and from the passage position, and a throttle valve that is located at an upstream position of the movable intake pipe, and upstream intake air introduction that guides intake air through an air cleaner. Part and the movable intake pipe at least at the longest intake passage position, the movable intake pipe is accommodated to airtightly connect the upstream intake introduction part and the fixed intake pipe and the locus of movement of the movable intake pipe. And a casing member having an inner surface shape along the variable intake device.
【請求項2】請求項1記載の可変吸気装置において、上
記固定吸気管が可動吸気管の内側に嵌合するとともに上
記固定吸気管と上記可動吸気管の重合長さが最長となる
最短吸気通路位置のときに上記可動吸気管を内側に収容
するケーシング部材を備えたことを特徴とする可変吸気
装置。
2. The variable intake system according to claim 1, wherein the fixed intake pipe is fitted inside the movable intake pipe, and the fixed intake pipe and the movable intake pipe have a longest overlap length. A variable intake device comprising a casing member that accommodates the movable intake pipe inside when in the position.
【請求項3】請求項1または請求項2記載の可変吸気装
置において、上記固定吸気管と上記可動吸気管は共通の
中心点を有する円弧上に形成されるとともに上記可動吸
気管はアーム部材に支持されるとともに上記中心点を含
む揺動軸線を中心に揺動するように構成され、上記ケー
シング部材は上記アーム部材を収容する収容室を持つこ
とを特徴とする可変吸気装置。
3. The variable intake system according to claim 1 or 2, wherein the fixed intake pipe and the movable intake pipe are formed on an arc having a common center point, and the movable intake pipe is an arm member. A variable intake device, which is configured to be supported and swing about a swing axis including the center point, and wherein the casing member has a storage chamber for storing the arm member.
【請求項4】請求項3記載の可変吸気装置において、上
記エンジンが複数気筒を有し、上記可動吸気管は各気筒
に対応してシリンダー方向に並列に配置され互いに固着
されているとともにシリンダ側方向両端にそれぞれ上記
アーム部材が固着されていることを特徴とする可動吸気
装置。
4. The variable intake system according to claim 3, wherein the engine has a plurality of cylinders, and the movable intake pipes are arranged in parallel in the cylinder direction so as to correspond to the respective cylinders and fixed to each other. A movable intake device, wherein the arm members are fixed to both ends in the direction.
【請求項5】請求項4記載の可変吸気装置において、上
記アーム部材は揺動軸線上に位置するとともに駆動機構
に接続され、上記アーム部材は軸部材に固着され、上記
軸部材は上記アーム部材と一体に回動することを特徴と
する可変吸気装置。
5. The variable intake system according to claim 4, wherein the arm member is located on a swing axis and is connected to a drive mechanism, the arm member is fixed to the shaft member, and the shaft member is the arm member. A variable intake device that rotates together with the variable intake device.
【請求項6】請求項5記載の可変吸気装置において、上
記ケーシング部材は、上記アーム部材間の上記軸部材を
収容すべく軸に沿って伸びる軸収容部を持っていること
を特徴とする可変吸気装置。
6. The variable intake system according to claim 5, wherein the casing member has a shaft accommodating portion extending along an axis for accommodating the shaft member between the arm members. Inhaler.
JP07287565A 1995-11-06 1995-11-06 Variable intake device Expired - Fee Related JP3106936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07287565A JP3106936B2 (en) 1995-11-06 1995-11-06 Variable intake device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07287565A JP3106936B2 (en) 1995-11-06 1995-11-06 Variable intake device

Publications (2)

Publication Number Publication Date
JPH09125969A true JPH09125969A (en) 1997-05-13
JP3106936B2 JP3106936B2 (en) 2000-11-06

Family

ID=17718992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07287565A Expired - Fee Related JP3106936B2 (en) 1995-11-06 1995-11-06 Variable intake device

Country Status (1)

Country Link
JP (1) JP3106936B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7210444B2 (en) 2002-05-17 2007-05-01 Brp-Rotax Gmbh & Co. Kg Variable air intake pipe length
CN104481757A (en) * 2014-12-04 2015-04-01 桑元俊 Pneumatic actuator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7210444B2 (en) 2002-05-17 2007-05-01 Brp-Rotax Gmbh & Co. Kg Variable air intake pipe length
CN104481757A (en) * 2014-12-04 2015-04-01 桑元俊 Pneumatic actuator

Also Published As

Publication number Publication date
JP3106936B2 (en) 2000-11-06

Similar Documents

Publication Publication Date Title
JP4508453B2 (en) Variable intake system for multi-cylinder internal combustion engine
US6073601A (en) Internal combustion engine air intake manifold with a retractable element having an acoustic bore
JP3235436B2 (en) Variable intake system for engine
JPH0730703B2 (en) Engine exhaust control device
US6435152B1 (en) Induction device for an internal combustion engine
JPH09125969A (en) Variable intake device
US4756284A (en) Intake system for internal combustion engine
JP5049829B2 (en) Intake device for internal combustion engine
JP2004516424A (en) Flap valve
KR100546749B1 (en) Modular bypass system for supercharger
JP2002349396A (en) Bypass intake air amount control device
JPH08338251A (en) Inlet pipe length variable mechanism
JP3265950B2 (en) Engine intake system
JPS60216029A (en) Suction apparatus for engine
JP2701206B2 (en) Exhaust control device
JPH02291422A (en) Intake system for internal combustion engine
JPS6135709Y2 (en)
JP2009162071A (en) Intake manifold device for internal combustion engine
JPS60224923A (en) Suction system for engine
JPS60228723A (en) Intake device of engine
JPS628344Y2 (en)
JPS6146178Y2 (en)
JPS60216064A (en) Intake unit for multi-cylinder engine
JPH10280982A (en) Intake device for internal combustion engine
JPS62271926A (en) Exhaust timing control device for two-cycle engine

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000808

LAPS Cancellation because of no payment of annual fees