JPH09124570A - Glucoside derivative for enzyme modification, organic solvent-soluble enzyme modified with the same and its production - Google Patents

Glucoside derivative for enzyme modification, organic solvent-soluble enzyme modified with the same and its production

Info

Publication number
JPH09124570A
JPH09124570A JP27870995A JP27870995A JPH09124570A JP H09124570 A JPH09124570 A JP H09124570A JP 27870995 A JP27870995 A JP 27870995A JP 27870995 A JP27870995 A JP 27870995A JP H09124570 A JPH09124570 A JP H09124570A
Authority
JP
Japan
Prior art keywords
enzyme
derivative
organic solvent
modified
lipid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27870995A
Other languages
Japanese (ja)
Inventor
Ryoji Hamaide
良二 浜出
Naoki Yamamori
直樹 山盛
Shigeo Okahata
恵雄 岡畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paint Co Ltd
Original Assignee
Nippon Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paint Co Ltd filed Critical Nippon Paint Co Ltd
Priority to JP27870995A priority Critical patent/JPH09124570A/en
Priority to GB9621688A priority patent/GB2306473B/en
Priority to US08/742,597 priority patent/US5770188A/en
Publication of JPH09124570A publication Critical patent/JPH09124570A/en
Pending legal-status Critical Current

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a glucoxide derivative which is inexpensive and readily available, has a specific chemical structure, modifies an enzyme to impart the the enzyme solubility in organic solvent as well as sustain its high enzymatic activity in the organic solvent. SOLUTION: This glucoxide derivative has a chemical structure of' the formula (R is a 6-22C hydrocarbon group), for example, N,N-dilauryl-D-gluconic acid amide. This derivative is obtained, for example, by dissolving (A) a secondary amine disubstituted with a 6-20 hydrocarbon group and (B) glucono-1,5-lactone in a solvent boiling at 60-250 deg.C such as methanol and allowing them to react with each other at the refluxing temperature. When an enzyme is modified with this compound, the weight ratio of this compound to the enzyme is 0.2-100.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、酵素修飾用グルコ
キサイド誘導体、上記誘導体で修飾された有機溶媒可溶
性酵素、および上記誘導体を用いる有機溶媒可溶性酵素
の製造方法に関する。
TECHNICAL FIELD The present invention relates to a glucoxide derivative for enzyme modification, an organic solvent-soluble enzyme modified with the above derivative, and a method for producing an organic solvent-soluble enzyme using the above derivative.

【0002】[0002]

【従来の技術】近年、酵素の優れた特性が明らかにされ
るにつれて、これを生理活性物質の有機合成および新規
機能性塗料の開発といった先端技術分野で有効に利用し
たいという要望が高まっている。
2. Description of the Related Art In recent years, as the excellent properties of enzymes have been revealed, there is a growing demand for effective utilization of them in advanced technological fields such as organic synthesis of physiologically active substances and development of new functional coatings.

【0003】しかし、酵素は水溶液中で種々の反応を触
媒するが、有機溶媒に対しては一般に不安定であり凝集
して失活し易い。したがって、有機溶媒を用いる分野で
の酵素の利用は不十分であった。
However, although the enzyme catalyzes various reactions in an aqueous solution, it is generally unstable to an organic solvent and easily aggregates to be inactivated. Therefore, the utilization of enzymes in the field of using organic solvents has been insufficient.

【0004】従来から、有機溶媒中にて酵素の活性を維
持したまま反応を行う方法は数種提案されている。例え
ば、逆ミセル法(ルイシら、J. Am. Chem, Soc.、第106
号、第7285頁、1984年)およびポリエチレングリコール
法(Y. イナダら、Biochem. Biophys. Res. Commun.、第
122号、第845頁、1984年)が挙げられる。しかし、これ
らの方法には酵素の活性の安定性が非常に悪く、操作が
煩雑であるという問題がある。また酵素と脂質との複合
体を形成させ、有機溶媒に可溶化する方法(特開昭64
−80282号公報)もあるが、合成脂質の調製が難し
く、また得られた脂質複合体の活性も低いなどの問題が
ある。
Conventionally, several methods have been proposed for carrying out the reaction in an organic solvent while maintaining the activity of the enzyme. For example, the reverse micelle method (Ruishi et al., J. Am. Chem, Soc.
No. 7285, 1984) and polyethylene glycol method (Y. Inada et al., Biochem. Biophys. Res. Commun.
No. 122, p. 845, 1984). However, these methods have a problem that the stability of the enzyme activity is very poor and the operation is complicated. In addition, a method of forming a complex of an enzyme and a lipid and solubilizing it in an organic solvent (JP-A-64)
However, there are problems that it is difficult to prepare a synthetic lipid, and the activity of the obtained lipid complex is low.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記従来の問
題を解決するものであり、その目的とするところは、有
機溶媒中で高い活性を示す有機溶媒可溶性酵素を提供す
ることにある。
The present invention solves the above-mentioned conventional problems, and an object of the present invention is to provide an organic solvent-soluble enzyme which exhibits high activity in an organic solvent.

【0006】[0006]

【課題を解決するための手段】本発明は、式The present invention is based on the formula

【0007】[0007]

【化2】 Embedded image

【0008】[式中、Rはそれぞれ独立してC6〜C20
の炭化水素基である。]で示す酵素修飾用グルコキサイ
ド誘導体を提供するものであり、そのことにより上記目
的が達成される。
[In the formula, R is independently C 6 to C 20
Is a hydrocarbon group. ] The enzyme-modified glucoxide derivative represented by the above] is provided, whereby the above object is achieved.

【0009】本発明の酵素修飾用グルコキサイド誘導体
は、C6〜C20のジアルキル置換2級アミンとグルコノ
−1,5−ラクトンとを反応させることにより容易に合
成できる。反応は、一般に、メタノールのような60〜
250℃の沸点を有する溶媒に上記アミンとラクトンと
を溶解し、還流させることにより行われる。
The glucoside derivative for enzyme modification of the present invention can be easily synthesized by reacting a C 6 -C 20 dialkyl-substituted secondary amine with glucono-1,5-lactone. The reaction is generally 60 to 60 such as methanol.
It is carried out by dissolving the above amine and lactone in a solvent having a boiling point of 250 ° C. and refluxing.

【0010】この酵素修飾用グルコキサイド誘導体は、
本来親水性である種々の酵素を修飾することにより有機
溶媒に可溶性とする。修飾方法は特に限定されないが、
一般には、上記酵素修飾用グルコキサイド誘導体を親水
性媒体に溶解する工程;および酵素を含有する緩衝液に
該酵素修飾用グルコキサイド誘導体の溶液を滴下する工
程;を包含する方法により行われる。
This enzyme-modified glucoxide derivative is
It is made soluble in an organic solvent by modifying various enzymes that are hydrophilic in nature. The modification method is not particularly limited,
Generally, it is carried out by a method including a step of dissolving the above-mentioned enzyme-modified glucoside derivative in a hydrophilic medium; and a step of dropping a solution of the enzyme-modified glucoside derivative into a buffer solution containing the enzyme.

【0011】ここで用いる「親水性媒体」という用語に
は、メタノール、エタノール、プロパノール、アセトン
およびメチルエチルケトンのような親水性有機溶媒の
他、緩衝溶液のような水溶液も含まれる。
The term "hydrophilic medium" as used herein includes hydrophilic organic solvents such as methanol, ethanol, propanol, acetone and methyl ethyl ketone, as well as aqueous solutions such as buffered solutions.

【0012】例えば、酵素1mgをpH4.0〜9.0の緩
衝液0.02〜20.0ml、好ましくは0.1〜2mlに溶
解させておき、0〜30℃、好ましくは冷却下4℃で、
撹拌している酵素溶液にグルコキサイド誘導体溶液を滴
下する。グルコキサイド誘導体溶液は、グルコキサイド
誘導体1mg当たり一般に0.002〜0.1ml、特に0.
005〜0.02mlの割合で、グルコキサイド誘導体を
親水性媒体に溶解させて調製することが好ましい。
For example, 1 mg of the enzyme is dissolved in 0.02 to 20.0 ml, preferably 0.1 to 2 ml of a buffer solution having a pH of 4.0 to 9.0, and is dissolved at 0 to 30 ° C., preferably 4 ° C. under cooling. so,
The glucoside derivative solution is added dropwise to the stirred enzyme solution. The glucoxide derivative solution is generally 0.002-0.1 ml, in particular, 0.1 mg / mg of the glucoxide derivative.
It is preferable that the glucoxide derivative is dissolved in a hydrophilic medium at a ratio of 005 to 0.02 ml.

【0013】撹拌は、撹拌羽根やマグネチックスターラ
ーおよびホモミキサーなどのような通常の撹拌装置を用
いて行いうる。十分に撹拌、冷却を行いながら滴下する
と酵素−グルコキサイド誘導体複合体が析出し沈澱す
る。この沈澱を遠心分離又は濾過などにより分離した
後、緩衝液次いで蒸留水で洗浄し、そのまま凍結乾燥も
しくは流動層乾燥するか、または少量の蒸留水に分散さ
せた後にスプレー乾燥する事により、グルコキサイド誘
導体で修飾された有機溶媒可溶性の酵素の粉末を得るこ
とができる。
The stirring can be carried out using a conventional stirring device such as a stirring blade, a magnetic stirrer and a homomixer. When added dropwise with sufficient stirring and cooling, the enzyme-glucoside derivative complex precipitates and precipitates. The precipitate is separated by centrifugation or filtration, washed with a buffer solution and distilled water, and then freeze-dried or fluidized-bed dried as it is, or dispersed in a small amount of distilled water and spray-dried to give a glucoside derivative. An organic solvent-soluble enzyme powder modified with can be obtained.

【0014】本発明の方法において、グルコキサイド誘
導体は、酵素の重量を基準にして重量比0.2〜10
0、特に0.5〜10となる量で用いることが好まし
い。使用量が0.2以下ではグルコキサイド誘導体修飾
酵素の回収率が低くなり、100以上では酵素活性が小
さくなる。
In the method of the present invention, the glucoside derivative is used in a weight ratio of 0.2 to 10 based on the weight of the enzyme.
It is preferably used in an amount of 0, particularly 0.5 to 10. When the amount used is 0.2 or less, the recovery rate of the glucoxide derivative-modifying enzyme is low, and when it is 100 or more, the enzyme activity is low.

【0015】本発明の方法により有機溶媒に可溶性とし
うる酵素には、加水分解酵素、酸化還元酵素、転移酵
素、脱離酵素、異性化酵素および合成酵素などが挙げら
れる。
Enzymes that can be made soluble in an organic solvent by the method of the present invention include hydrolases, oxidoreductases, transferases, leaving enzymes, isomerases and synthases.

【0016】加水分解酵素の具体的には、エステルを加
水分解するエステラーゼおよびリパーゼ(微生物により
生産されたものでも動物の臓器、血清や植物の組織、種
子などから得られたものでも良い。)およびそれらを含
有する生体組織;動物臓器由来のペプシン、キモトリプ
シン、カルボキシペプチダーゼ、サーモライシン、カゼ
プシンおよびアミノペプチダーゼ、植物組織由来のパパ
イン、キモパパイン、プロメリンおよびアミノペプチダ
ーゼ、および微生物由来のカルボキシペプチダーゼ、プ
ロティナーゼおよびジペプチダーゼなどのようなペプチ
ド結合を加水分解するプロテアーゼおよびペプチダー
ゼ;α及びβ−グルコシダーゼ、α及びβ−グルカナー
ゼ、α及びβ−ガラクトシダーゼ、α及びβ−アミラー
ゼ、セルラーゼおよびプルラナーゼ等のような糖のグル
コシド結合を加水分解するグルコシダーゼ;ホスホモノ
エステラーゼ、ホスホジエステラーゼおよびピロホスフ
ァターゼなどのようなリン酸結合を加水分解するホスフ
ァターゼ;アルギナーゼ、ウレアーゼおよびグルタミナ
ーゼなどのようなアミド基を加水分解するアミダーゼ;
その他ヌクレアーゼおよびコラゲナーゼ等が挙げられ
る。
Specific examples of the hydrolase include esterases and lipases that hydrolyze esters (either those produced by microorganisms or those obtained from animal organs, serum or plant tissues, seeds, etc.) and Living tissues containing them; pepsin, chymotrypsin, carboxypeptidase, thermolysin, casepsin and aminopeptidase derived from animal organs, papain, chymopapain, promeline and aminopeptidase derived from plant tissue, and carboxypeptidase, proteinase and dipeptidase derived from microorganisms, etc. Proteases and peptidases that hydrolyze peptide bonds such as; α and β-glucosidases, α and β-glucanases, α and β-galactosidases, α and β-amylases, cellulases and pullulas Glucosidases that hydrolyze sugar glucosidic bonds such as enzymes; phosphatases that hydrolyze phosphate bonds such as phosphomonoesterases, phosphodiesterases and pyrophosphatases; hydrolyzing amide groups such as arginase, urease and glutaminase. Amidase that decomposes;
Other examples include nucleases and collagenases.

【0017】酸化還元酵素の具体例には、アルコールデ
ヒドロゲナーゼ、ラクテートデヒドロゲナーゼ、グルコ
ースオキシダーゼ、コレステロールオキシダーゼおよび
アミンオキシダーゼ等が挙げられる。
Specific examples of the oxidoreductase include alcohol dehydrogenase, lactate dehydrogenase, glucose oxidase, cholesterol oxidase and amine oxidase.

【0018】その他、トランスホスホリダーゼ、トラン
スグルコシダーゼ、トランスペプチダーゼ、トランスア
ミダーゼおよびトランスグルタミナーゼなどのような転
移酵素;デカルボキシラーゼおよびリアーゼなどのよう
な脱離酵素;ラセマーゼおよびイソメラーゼなどのよう
な異性化酵素;およびリガーゼなどのような合成酵素も
本発明に用いうる。
In addition, transferases such as transphospholidase, transglucosidase, transpeptidase, transamidase and transglutaminase; leaving enzymes such as decarboxylase and lyase; isomerases such as racemase and isomerase. And synthases such as ligase may also be used in the present invention.

【0019】[0019]

【実施例】以下実施例により本発明を更に詳細に説明す
るが、本発明はこれらに限定されない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.

【0020】製造例1〜6では修飾酵素用グルコキサイ
ド誘導体である脂質1〜6の調製を説明する。
Preparation Examples 1 to 6 describe the preparation of lipids 1 to 6 which are glucoxide derivatives for modifying enzymes.

【0021】製造例1 脂質1の調製 冷却器、撹拌機及び窒素導入管を備えた反応容器中に
1,5−グルコノラクトン35g、ジラウリルアミン5
7g及びメタノール125mlを加え、還流下で2時間
加熱した。得られた淡黄色固体をソックスレー抽出器で
n−ヘキサンを用いて抽出し、45gの白色固体を得
た。この白色固体のIRスペクトルでは、1750cm
-1の1,5−グルコノラクトンのエステルのピークが消
えていた。この物質を脂質1とする。
Production Example 1 Preparation of lipid 1 35 g of 1,5-gluconolactone and 5 of dilaurylamine were placed in a reaction vessel equipped with a condenser, a stirrer and a nitrogen introducing tube.
7 g and 125 ml of methanol were added, and the mixture was heated under reflux for 2 hours. The obtained pale yellow solid was extracted with n-hexane using a Soxhlet extractor to obtain 45 g of a white solid. In the IR spectrum of this white solid, 1750 cm
The peak of the 1,5-gluconolactone ester of -1 disappeared. This substance is called lipid 1.

【0022】製造例2 脂質2の調製 ジラウリルアミンの代わりにジステアリルアミン62g
を用い、n−ヘキサンの代わりにヘプタンを用いること
以外は製造例1と同様にして脂質2を調製した。
Production Example 2 Preparation of Lipid 2 62 g of distearylamine instead of dilaurylamine
Was used, and Lipid 2 was prepared in the same manner as in Production Example 1 except that heptane was used instead of n-hexane.

【0023】製造例3 脂質3の調製 ジラウリルアミンの代わりにココナッツアミン56gを
用いること以外は製造例1と同様にして脂質3を調製し
た。
Production Example 3 Preparation of Lipid 3 Lipid 3 was prepared in the same manner as in Production Example 1 except that 56 g of coconut amine was used instead of dilaurylamine.

【0024】製造例4 脂質4の調製 ジラウリルアミンの代わりにオレイルステアリルアミン
61gを用いること以外は製造例1と同様にして脂質4
を調製した。
Production Example 4 Preparation of Lipid 4 Lipid 4 was produced in the same manner as in Production Example 1 except that 61 g of oleylstearylamine was used instead of dilaurylamine.
Was prepared.

【0025】製造例5 脂質5の調製 ジラウリルアミンの代わりにオクチルパルミチルアミン
52gを用いること以外は製造例1と同様にして脂質5
を調製した。
Preparation Example 5 Preparation of Lipid 5 Lipid 5 was prepared in the same manner as in Preparation Example 1 except that 52 g of octylpalmitylamine was used instead of dilaurylamine.
Was prepared.

【0026】製造例6 脂質6の調製 ジラウリルアミンの代わりにジエチルアミン22gを用
いること以外は製造例1と同様にして脂質6を調製し
た。
Production Example 6 Preparation of Lipid 6 Lipid 6 was prepared in the same manner as in Production Example 1 except that 22 g of diethylamine was used instead of dilaurylamine.

【0027】実施例1 糸状菌(Mucor miehei)由来のリパーゼ100mgをリン酸
緩衝液(0.1M、pH7.0)50mlに溶解し、遠心沈降
させて不溶物を除いた(a液)。
Example 1 100 mg of a lipase derived from a filamentous fungus (Mucor miehei) was dissolved in 50 ml of a phosphate buffer (0.1 M, pH 7.0) and centrifuged to remove insoluble matter (solution a).

【0028】脂質1の100mgをアセトン1mlに溶解し
た(b液)。氷温にて撹拌しているa液にb液を滴下し
て、4時間氷温で撹拌し続け、その後一晩4℃にて放置
した。沈澱物を含むこの溶液を遠心分離(4℃、400
0g、10min)にかけ、上清を取り除き残った沈澱物を
リン酸緩衝液および蒸留水で洗浄した。その後、この固
体を凍結乾燥して102.4mgの粉末を得た。得られた
修飾酵素はUVスペクトルにより同定した。
100 mg of lipid 1 was dissolved in 1 ml of acetone (solution b). Solution b was added dropwise to solution a which was stirred at ice temperature, and stirring was continued at ice temperature for 4 hours, and then left overnight at 4 ° C. The solution containing the precipitate is centrifuged (400C, 400 ° C).
0 g, 10 min), the supernatant was removed, and the remaining precipitate was washed with phosphate buffer and distilled water. Then, this solid was freeze-dried to obtain 102.4 mg of powder. The obtained modified enzyme was identified by UV spectrum.

【0029】実施例2 実施例1で用いた糸状菌(Mucor miehei)由来のリパーゼ
の代わりに糸状菌(Rhizopus niveus)由来のリパーゼ1
00mgをリン酸緩衝液(0.1M、pH7.0)50mlに溶
解し遠心沈降させて不溶物を取り除きa液とした。次
に、脂質2の100mgをアセトン1mlに溶解させた(b
液)。以下実施例1と同様の操作により粉末状の修飾酵
素91.6mgを得た。
Example 2 Lipase 1 derived from a filamentous fungus (Rhizopus niveus) instead of the lipase derived from a filamentous fungus (Mucor miehei) used in Example 1
00 mg was dissolved in 50 ml of a phosphate buffer solution (0.1 M, pH 7.0) and spun down by centrifugation to remove insoluble matter to obtain a solution a. Next, 100 mg of lipid 2 was dissolved in 1 ml of acetone (b
liquid). Then, the same procedure as in Example 1 was carried out to obtain 91.6 mg of the modifying enzyme in powder form.

【0030】実施例3 脂質1の代わりに100mgの脂質3を用いること以外は
実施例1と同様にして粉末状の修飾酵素88.9mgを得
た。
Example 3 In the same manner as in Example 1 except that 100 mg of Lipid 3 was used instead of Lipid 1, 88.9 mg of powdered modification enzyme was obtained.

【0031】実施例4 脂質1の代わりに100mgの脂質4を用いること以外は
実施例1と同様にして粉末状の修飾酵素97.6mgを得
た。
Example 4 97.6 mg of a modifying enzyme in powder form was obtained in the same manner as in Example 1 except that 100 mg of lipid 4 was used instead of lipid 1.

【0032】実施例5 脂質1の代わりに100mgの脂質5を用いること以外は
実施例1と同様にして粉末状の修飾酵素92.4mgを得
た。
Example 5 92.4 mg of a modifying enzyme in powder form was obtained in the same manner as in Example 1 except that 100 mg of lipid 5 was used instead of lipid 1.

【0033】比較例1 実施例1において用いたグルコキサイド誘導体の代わり
にジドデシルグルタメートグルコンアミド100mgを用
い、アセトン1mlに溶解させb液とした。以下実施例1
と同様の操作により105.2mgの粉末を得た。
Comparative Example 1 Instead of the glucoside derivative used in Example 1, 100 mg of didodecyl glutamate gluconamide was used and dissolved in 1 ml of acetone to prepare a solution b. Example 1 below
By the same operation as above, 105.2 mg of powder was obtained.

【0034】比較例2 実施例2において用いたグルコキサイド誘導体の代わり
にモノガラクトシルジグリセリド100mgを用いアセト
ン1.5mlに溶解させb液とした。以下実施例2と同様
の操作により52.6mgの粉末を得た。
[0034] is b solution was dissolved in acetone 1.5ml using monogalactosylated diglyceride 100mg instead of Gurukokisaido derivatives used in Comparative Example 2 Example 2. Then, the same operation as in Example 2 was carried out to obtain 52.6 mg of powder.

【0035】比較例3 脂質1の代わりに100mgの脂質6を用いること以外は
実施例1と同様の操作を行ったが、粉末状の修飾酵素は
得られなかった。
Comparative Example 3 The same operation as in Example 1 was carried out except that 100 mg of lipid 6 was used in place of lipid 1, but no powdery modification enzyme was obtained.

【0036】実施例6 脂質修飾酵素の活性の測定 実施例1〜5、および比較例1〜3で得られた修飾酵素
1mgをトルエン5mlにそれぞれ溶解させ、リパーゼ活性
の測定を行った。修飾酵素を溶解したトルエン溶液10
0μlをオリーブ油−ポリビニルアルコール乳液に添加
し、37℃で30分反応させた後、生成した遊離脂肪酸
量を0.05Nの水酸化カリウム溶液で滴定した(オリー
ブ油を基質とした遊離脂肪酸のアルカリ滴定法、JIS
K0601、1988)。なおリパーゼ活性(IU)は
37℃において1分間に1μmolの遊離脂肪酸を生成さ
せる酸素量とする。この時の修飾酵素の活性を表1に示
す。
Example 6 Measurement of Lipid Modifying Enzyme Activity 1 mg of the modifying enzymes obtained in Examples 1 to 5 and Comparative Examples 1 to 3 were dissolved in 5 ml of toluene to measure the lipase activity. Toluene solution containing modified enzyme 10
After adding 0 μl to an olive oil-polyvinyl alcohol emulsion and reacting at 37 ° C. for 30 minutes, the amount of free fatty acid produced was titrated with a 0.05 N potassium hydroxide solution (alkali titration of free fatty acid using olive oil as a substrate. , JIS
K0601, 1988). The lipase activity (IU) is the amount of oxygen that produces 1 μmol of free fatty acid in 1 minute at 37 ° C. The activity of the modifying enzyme at this time is shown in Table 1.

【0037】[0037]

【表1】 [Table 1]

【0038】本結果より、本発明のグルコキサイド誘導
体修飾酵素の方が従来のものよりも酵素活性が高いこと
が判る。
From these results, it can be seen that the glucoside derivative-modifying enzyme of the present invention has higher enzyme activity than the conventional ones.

【0039】[0039]

【発明の効果】本発明の酵素修飾用グルコキサイド誘導
体は従来の修飾脂質に比べ合成法が簡単であり、大量に
安価に入手する事ができる。また本グルコキサイド誘導
体を用いた修飾酵素も有機溶媒中において従来のものに
比べ高い酵素活性を保持する事が出来る。
The enzyme-modified glucoside derivative of the present invention has a simpler synthetic method than conventional modified lipids and can be obtained in large quantities at low cost. Further, the modified enzyme using the glucoxide derivative can also retain a higher enzyme activity in the organic solvent than the conventional enzyme.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 式 【化1】 [式中、Rはそれぞれ独立してC6〜C20の炭化水素基
である。]で示す酵素修飾用グルコキサイド誘導体。
(1) Formula (1) [In the formula, each R is independently a C 6 to C 20 hydrocarbon group. ] The glucoside derivative for enzyme modification shown by these.
【請求項2】 前記RがC6〜C20のアルキル基及びア
ルケニル基からなる群からそれぞれ独立して選択される
請求項1記載の酵素修飾用グルコキサイド誘導体。
2. The enzyme-modified glucoside derivative according to claim 1, wherein R is independently selected from the group consisting of C 6 to C 20 alkyl groups and alkenyl groups.
【請求項3】 請求項1記載の酵素修飾用グルコキサイ
ド誘導体で修飾された有機溶媒可溶性酵素。
3. An organic solvent-soluble enzyme modified with the glucoxide derivative for enzyme modification according to claim 1.
【請求項4】 請求項1記載の酵素修飾用グルコキサイ
ド誘導体を親水性媒体に溶解する工程;および酵素を含
有する緩衝液に該酵素修飾用グルコキサイド誘導体の溶
液を滴下する工程;を包含する有機溶媒可溶性酵素の製
造方法。
4. An organic solvent comprising a step of dissolving the enzyme-modified glucoside derivative according to claim 1 in a hydrophilic medium; and a step of dropping a solution of the enzyme-modified glucoside derivative into a buffer solution containing the enzyme. A method for producing a soluble enzyme.
【請求項5】 前記RがC6〜C20のアルキル基及びア
ルケニル基からなる群からそれぞれ独立して選択される
請求項4記載の方法。
5. The method of claim 4, wherein each R is independently selected from the group consisting of C 6 to C 20 alkyl and alkenyl groups.
【請求項6】 前記酵素が加水分解酵素、酸化還元酵
素、転移酵素、脱離酵素、異性化酵素および合成酵素か
らなる群から選択される請求項4記載の方法。
6. The method according to claim 4, wherein the enzyme is selected from the group consisting of hydrolases, oxidoreductases, transferases, leaving enzymes, isomerases and synthases.
【請求項7】 酵素の重量を基準にして重量比0.2〜
100となる量で前記酵素修飾用グルコキサイド誘導体
を用いる請求項4記載の方法。
7. A weight ratio of 0.2 to 0.2 based on the weight of the enzyme.
The method according to claim 4, wherein the glucoxide derivative for enzyme modification is used in an amount of 100.
JP27870995A 1995-10-26 1995-10-26 Glucoside derivative for enzyme modification, organic solvent-soluble enzyme modified with the same and its production Pending JPH09124570A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP27870995A JPH09124570A (en) 1995-10-26 1995-10-26 Glucoside derivative for enzyme modification, organic solvent-soluble enzyme modified with the same and its production
GB9621688A GB2306473B (en) 1995-10-26 1996-10-17 Glucoxide derivatives for enzyme modification, lipid-coated enzymes, method of producing such enzymes and antifouling paint composition
US08/742,597 US5770188A (en) 1995-10-26 1996-10-28 Glucoxide derivatives for enzyme modification, lipid-coated enzymes, method of producing such enzymes and antifouling paint composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27870995A JPH09124570A (en) 1995-10-26 1995-10-26 Glucoside derivative for enzyme modification, organic solvent-soluble enzyme modified with the same and its production

Publications (1)

Publication Number Publication Date
JPH09124570A true JPH09124570A (en) 1997-05-13

Family

ID=17601103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27870995A Pending JPH09124570A (en) 1995-10-26 1995-10-26 Glucoside derivative for enzyme modification, organic solvent-soluble enzyme modified with the same and its production

Country Status (1)

Country Link
JP (1) JPH09124570A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09118842A (en) * 1995-10-26 1997-05-06 Nippon Paint Co Ltd Self-renewal type stainproof coating composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09118842A (en) * 1995-10-26 1997-05-06 Nippon Paint Co Ltd Self-renewal type stainproof coating composition

Similar Documents

Publication Publication Date Title
US5489530A (en) Lipase from Pseudomonas and strain
Gu et al. Chemo-enzymatic asymmetric synthesis of amino acids. Enantioselective hydrolyses of 2-phenyl-oxazolin-5-ones.
JPH06184158A (en) Fo-1289 substance and its production
Furutani et al. Preparation of N-, O-diacyl ethanolamine from N-acyl ethanolamine using lipase preparations
JPH09124570A (en) Glucoside derivative for enzyme modification, organic solvent-soluble enzyme modified with the same and its production
JPS62272984A (en) Production of l-(-)-carnitine chloride by biotechnology
US5079167A (en) Method of racemate resolution
JPH01199576A (en) Alpha-aminoadipinylmonoamino compound
JP3729468B2 (en) Ceramidase-producing bacteria belonging to the genus Pseudomonas
JPS6362195B2 (en)
JPS6214272B2 (en)
JP3866357B2 (en) Thermostable, solvent-resistant esterase
JP2799621B2 (en) Method for producing phospholipase D
JPS5837834B2 (en) Novel lipoprotein lipase
JPH03280880A (en) Non-aqueous highly active enzyme
JP3301489B2 (en) How to use chemically modified esterase
JPH0632634B2 (en) Process for producing optically active carboxylic acid ester
JPS5867183A (en) Production of phospholipase d
GB1577087A (en) Enzyme preparation having l-amino acyl amidase activity
JP3065758B2 (en) Method for producing glycerylphosphorylcholine phosphodiesterase
JPH09107959A (en) Malate dehydrogenase and its production
JPS63219373A (en) Phospholipase d and production thereof
JP2799622B2 (en) Phospholipase D and method for producing the same
JP2716477B2 (en) Method for producing S-carboxymethyl-L-cysteine
JP2663458B2 (en) Organic acid production method