JPH09122518A - Controller for crusher - Google Patents

Controller for crusher

Info

Publication number
JPH09122518A
JPH09122518A JP28533695A JP28533695A JPH09122518A JP H09122518 A JPH09122518 A JP H09122518A JP 28533695 A JP28533695 A JP 28533695A JP 28533695 A JP28533695 A JP 28533695A JP H09122518 A JPH09122518 A JP H09122518A
Authority
JP
Japan
Prior art keywords
crusher
crushing
amount
raw material
calculation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28533695A
Other languages
Japanese (ja)
Other versions
JP3643153B2 (en
Inventor
Yukio Miyama
幸穂 深山
Koji Yamamoto
晃二 山本
Shunichi Tsumura
俊一 津村
Katsumi Shimodaira
克己 下平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP28533695A priority Critical patent/JP3643153B2/en
Publication of JPH09122518A publication Critical patent/JPH09122518A/en
Application granted granted Critical
Publication of JP3643153B2 publication Critical patent/JP3643153B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crushing And Grinding (AREA)
  • Disintegrating Or Milling (AREA)

Abstract

PROBLEM TO BE SOLVED: To cope with the wear of a crusher of high frequency load change by obtaining a crushing means-pressurizing force correction signal according to the difference in a wear conditions-assumed value of a crusher at the time of calculation this time from design conditions thereby correcting the pressurizing force of a crushing means. SOLUTION: A first arithmetic means 21 calculates the holdup of a material to be crushed based on the inputs of a raw material supply command signal 3, a pressurizing force command signal 16 and a classification property command signal 17 and a supposed value of wear conditions at the present time (assumed value at the time of last calculation 27) to obtain a rotation power force predicted value 25. A second arithmetic means 22 takes in the deviation value 26 of a rotation power measured value 29 and corrects the supposed value of wear conditions (assumed value at the time of last calculation 27) by fuzzy inference to output it to a third arithmetic means 23 as the assumed value 27 of this time. The third arithmetic means 23 obtains a pressurizing force correction signal 34 and a classifying property correction signal 35 by fuzzy inference according to the difference of the assumed value 27 of this time from the set wear conditions.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、粉砕機の制御装置
に係り、ことに、被粉砕物の生産量、粒径分布の良好な
制御応答性を実現し、かつ、粉砕機の故障発生を防止す
るに好適な粉砕機の制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for a crusher, and more particularly, it realizes a good control responsiveness of a product to be crushed and a particle size distribution, and prevents the crusher from being damaged. The present invention relates to a control device of a crusher suitable for prevention.

【0002】[0002]

【従来の技術】図2は、本発明の適用対象となる粉砕機
と、従来技術による制御装置を図示している。被粉砕原
料1を供給するフィーダー2は原料供給指令信号3に従
って被粉砕原料運搬速度を加減され、信号3に比例する
原料を粉砕機のホッパ4に与える。被粉砕原料は電動機
5により回転され、被粉砕物の保有手段をなすターンテ
ーブル6上に落下し、後述する分級手段により捕集され
た粗粒被粉砕物11、13と混合され保有被粉砕物7と
なる。保有被粉砕物7は遠心力により、粉砕手段8をな
す前述のターンテーブルの外周に置かれた回転ローラー
により粉砕され、該外周を吹き上げる搬送空気9に乗
り、分級手段(ベーン12)により分級され、そのうち
の微粒分は粉砕機生産物10として需要先へと輸送され
る。
2. Description of the Related Art FIG. 2 shows a crusher to which the present invention is applied and a control device according to the prior art. The feeder 2 for supplying the raw material 1 to be crushed adjusts the raw material conveying speed according to the raw material supply command signal 3, and supplies the hopper 4 of the crusher with a raw material proportional to the signal 3. The raw material to be ground is rotated by the electric motor 5, drops on the turntable 6 which is a means for holding the ground material, and is mixed with the coarse-grained ground materials 11 and 13 collected by the classifying means described later to hold the ground material. It becomes 7. The crushed object to be crushed 7 is crushed by a rotating roller placed on the outer circumference of the above-mentioned turntable which constitutes the crushing means 8 by centrifugal force, is carried by the carrier air 9 blowing up the outer circumference, and is classified by the classifying means (vane 12). The fine particles among them are transported to the customer as the crusher product 10.

【0003】次に、搬送空気9に乗った被粉砕物は、重
力とのバランスにより大粒径の粒子が前述の保有手段6
へと再循環する重力分級捕集被粉砕物11の流れを、さ
らに、比較的に粒径が小さく、該重力分級を通過した被
粉砕物は分級手段のベーン12により旋回を受けて遠心
力により、粒径が大なる粒子が再循環する遠心分級捕集
被粉砕物13の流れを生じる。
Next, the object to be crushed on the carrier air 9 has a large particle size due to the balance with gravity, and the holding means 6 is used.
The flow of the gravity-classified collected pulverized material 11 recirculated to the pulverized material is further swirled by the vane 12 of the classification means by the centrifugal force, and the pulverized material having a relatively small particle size passes through the vane 12 of the classification means. The flow of the centrifugal classification and collection object 13 to be recirculated causes the particles having a large particle diameter to be recirculated.

【0004】昨今では、遠心力分級において鋭敏な特性
を得るため、前記ベーンに換えて、遠心力を与えるため
の回転羽根を電動機で駆動する回転式分級機が採用され
る場合もあるが、基本的機能としては同等に考えればよ
い。従来技術の制御装置は被粉砕原料の供給量に応じて
粉砕手段8の加圧力指令信号16、分級手段12の分級
特性指令信号17を加減する構成である。ここで、原料
供給フィーダー指令信号3は、通例、粉砕機生産物10
の流量が需要先の需要量に対して過不足のないように加
減され、当該生産物流量がオンライン計測可能な場合
は、該流量計測値と目標値の偏差のPI(比例積分式)
調節により与えればよい。しかしながら、多くの場合、
該流量はオンライン計測が困難であるから、該流量と因
果関係にある状態量で同様の目的を達する。例えば、被
粉砕原料が石炭で、需要先がドラムボイラであれば、該
ドラムの蒸気圧力は、バーナに供給される微粉炭流量と
直接的な因果関係を有するから、該ドラム圧力が目標値
となるよう、該偏差のPI調節により、フィーダー指令
信号3を加減すればよい。
In recent years, in order to obtain sensitive characteristics in centrifugal force classification, a rotary classifier in which rotary vanes for giving centrifugal force are driven by an electric motor is sometimes used instead of the vane, but it is basically used. Should be considered as the same function. The control device of the prior art is configured to adjust the pressing force command signal 16 of the crushing means 8 and the classification characteristic command signal 17 of the classifying means 12 according to the supply amount of the material to be crushed. Here, the raw material supply feeder command signal 3 is usually the crusher product 10
If the product flow rate can be measured online, the PI (proportional integral formula) of the deviation between the measured flow rate and the target value can be adjusted.
It can be given by adjustment. However, in many cases
Since it is difficult to measure the flow rate online, the state quantity having a causal relationship with the flow rate achieves the same purpose. For example, if the material to be crushed is coal and the customer is a drum boiler, the steam pressure of the drum has a direct causal relationship with the flow rate of the pulverized coal supplied to the burner, so that the drum pressure is a target value. The feeder command signal 3 may be adjusted by adjusting the deviation PI.

【0005】そして、このとき加圧力指令信号16は関
数要素18により、粉砕機の粉砕能力は該加圧力ととも
に増加することに基づき、被粉砕原料の供給量増加に応
じて、加圧力を増加する方向で与えられる。また、分級
特性指令信号17は関数要素19により、一般に粉砕機
は高負荷運転で粉砕機生産物10の粒径分布が悪化(粗
粒分が増加)する傾向にあるため、被粉砕原料の供給量
増に応じて分級設定を絞る(旋回力を増して粗粒の捕集
効率を上げる)方向で与えられる。ただし、需要先の事
情により、低負荷運転時にいっそうの粒度の向上を要求
される場合もあり、関数要素18、19の設定法につい
て、上述のごとく画一的に論じにくいが、指令信号1
6、17が被粉砕原料の供給量の関数となる点は従来技
術において共通している。また、従来技術では、しばし
ば粉砕機の回転動力を検出器28で表示し、内部の異常
監視に供してきた。
At this time, the pressing force command signal 16 is increased by the function element 18 due to the crushing capacity of the crusher increasing with the pressing force, and the pressing force is increased in accordance with the increase in the supply amount of the material to be crushed. Given in direction. In addition, since the classification characteristic command signal 17 has a function element 19, the particle size distribution of the grinder product 10 generally tends to deteriorate (the coarse particle content increases) due to the function element 19, so that the material to be ground is supplied. It is given in the direction of narrowing the classification setting according to the increase in the amount (increasing the swirling force to increase the collection efficiency of coarse particles). However, depending on the circumstances of the customer, it may be required to further improve the granularity at the time of low load operation, and it is difficult to uniformly discuss the setting method of the function elements 18 and 19 as described above.
It is common in the prior art that points 6 and 17 are functions of the supply amount of the raw material to be ground. Further, in the prior art, the rotational power of the crusher is often displayed on the detector 28 and used for internal abnormality monitoring.

【0006】[0006]

【発明が解決しようとする課題】図2に示す従来技術の
制御回路は、粉砕手段8の摩耗が軽微な場合は、通常は
問題となる事態は発生しない。しかしながら、当該摩耗
がある程度進行すると粉砕機の特性が変化するため、加
圧力指令信号16、分級特性指令信号17を変化させた
り、場合によっては粉砕手段8の交換を推奨する必要が
あるにもかかわらず、上記従来技術には当該機能はな
い。従って、従来技術では粉砕機生産物10の粒度が変
化したり、保有被粉砕物7の量が変化して被粉砕原料1
の増減に対する粉砕機生産物10の応答時定数が相違し
たり、さらに摩耗により粉砕能力が著しく低下して運転
不能(設計値を大幅に越える保有被粉砕物7の量が蓄
積)の事態を招くことすらある。
The conventional control circuit shown in FIG. 2 does not usually cause a problem when the crushing means 8 is slightly worn. However, since the characteristics of the crusher change when the wear progresses to some extent, it is necessary to change the pressing force command signal 16 and the classification characteristic command signal 17, or to recommend replacement of the crushing means 8 in some cases. However, the above-mentioned related art does not have the function. Therefore, according to the conventional technique, the particle size of the crusher product 10 changes, or the amount of the object 7 to be crushed changes so that the crushed raw material 1
The response time constant of the crusher product 10 with respect to the increase or decrease of the value of ‘1’ and the crushing ability of the crusher product 10 is significantly reduced due to abrasion, resulting in the inoperability (the amount of the crushed object 7 to be stored greatly exceeds the design value). There are even things.

【0007】このような事態を防ぐため、従来は管理者
が回転動力検出器28を監視し、被粉砕原料1供給量に
比して当該動力が適切か否かで粉砕手段8の摩耗状況を
判断し、必要な措置を講じてきた。しかしながら、日常
的に運転負荷変化を行なう粉砕機にあっては、熟練管理
者といえども、この方法では摩耗状況の把握が困難であ
る。
In order to prevent such a situation, conventionally, an administrator monitors the rotation power detector 28 to determine the wear condition of the crushing means 8 depending on whether the power is appropriate compared with the amount of the raw material 1 to be crushed. Judged and took necessary measures. However, even in the case of a crusher that changes its operating load on a daily basis, it is difficult for even a skilled manager to grasp the wear condition by this method.

【0008】つまり、運転動力は本質的に粉砕機の保有
被粉砕物7の量に依存し、当該判断には該保有量を把握
せねばならないが、当該把握は負荷一定時(定常状態)
以外では高度な課題となるからである。すなわち、定常
状態であれば当該保有量は被粉砕原料1供給量、分級機
構12の設定(捕集されて再び保有被粉砕物となる量に
影響)から一義的に定まる平衡値となり、当該供給量、
当該設定から(当該保有量を直接意識しなくても結果と
して)熟練者は正常な回転動力を判断できる。これに対
し、負荷変化中はまさに当該平衡状態へ向けた変化の過
程であり、保有被粉砕物7の量の把握は難しい。
That is, the operating power essentially depends on the amount of the crushed object 7 held by the crusher, and the held amount must be grasped for the judgment, but the grasp is made when the load is constant (steady state).
This is because it is a high-level issue in other cases. In other words, in the steady state, the held amount becomes an equilibrium value that is uniquely determined by the feed amount of the pulverized raw material 1 and the setting of the classifying mechanism 12 (which affects the amount of the raw material to be pulverized and retained again). amount,
From this setting (as a result even if the amount of possession is not directly conscious), a skilled person can judge the normal rotational power. On the other hand, during the load change, it is exactly the process of change toward the equilibrium state, and it is difficult to grasp the amount of the retained pulverized material 7.

【0009】結局、従来技術では、原料1供給量の高頻
度変化運用において、時事刻々の当該供給量を知っても
保有被粉砕物7の量の把握が困難だから、本質的に該保
有量に対応して求まる回転動力の正常値(粉砕手段8の
摩耗が許容範囲の際の値)が不明である。よって、熟練
管理者にとっても回転動力検出器28指示の妥当性評価
は一般に難しく、当該摩耗への対処は困難といえる。
After all, in the prior art, in the operation of changing the supply amount of the raw material 1 with high frequency, it is difficult to grasp the amount of the crushed object 7 to be held even if the supply amount of the raw material 1 is known every moment. The normal value of the rotational power (corresponding to the value when the abrasion of the crushing means 8 is within the allowable range) determined correspondingly is unknown. Therefore, it is generally difficult for a skilled manager to evaluate the validity of the instruction of the rotational power detector 28, and it can be said that it is difficult to deal with the wear.

【0010】本発明の目的は、以上の不具合を解消し、
高頻度負荷変化の粉砕機における、粉砕機構の摩耗に対
処することができる、粉砕機の制御装置を提供すること
にある。
The object of the present invention is to solve the above problems,
It is an object of the present invention to provide a crusher control device capable of coping with wear of a crushing mechanism in a crusher with a high frequency load change.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
本願で特許請求する発明は以下のとおりである。 (1)粉砕機内で回転する被粉砕物保有手段と、該保有
手段へ原料を供給する手段と、前記保有手段に所要加圧
力で押圧される粉砕手段と、該粉砕手段により粉砕され
た被粉砕物の粗粒分を保有手段に再循環するとともに微
粒分を粉砕機生産物として需要側に送るための分級手段
と、保有手段への原料供給量を制御する手段と、該原料
供給量に基づき分級手段の分級特性を制御する手段と、
前記原料供給量に基づき粉砕手段の加圧力を制御する手
段とを備えた粉砕機の制御装置において、原料供給手段
の原料供給量制御信号と粉砕手段の加圧力制御信号と分
級手段の分級特性制御信号とを入力し、前回計算時点の
粉砕手段の摩耗状況推定値に基づき、粉砕機内の粉砕、
分級、混合、滞留を模擬した動特性モデルを用いて被粉
砕物保有量を算出し、これにより粉砕機の回転動力予測
値を得る第1の演算手段と、第1の演算手段で得た回転
動力予測値と回転動力計測値の偏差を入力して、粉砕手
段の摩耗状態の前回計算時点の推定値を補正して今回計
算時点の当該推定値を得る第2の演算手段と、今回計算
時点の粉砕手段の摩耗状況推定値の設計条件からの相違
に応じて粉砕手段の加圧力補正信号を得る第3の演算手
段と、第3の演算手段により得た加圧力補正信号により
粉砕手段の加圧力を補正する手段を設けたことを特徴と
する粉砕機の制御装置。
The invention claimed in this application to achieve the above object is as follows. (1) Grinding object holding means rotating in a crusher, means for supplying a raw material to the holding means, crushing means pressed by the holding means with a required pressing force, and crushed object crushed by the crushing means The coarse particles of the product are recycled to the holding means and the fine particles are sent to the demand side as a crusher product, a means for controlling the raw material supply amount to the holding means, and a raw material supply amount based on the raw material supply amount. Means for controlling the classification characteristics of the classification means,
A control device for a crusher, comprising: a means for controlling a pressing force of a crushing means based on the raw material supply amount, a raw material supply amount control signal of the raw material supply means, a pressing force control signal of the crushing means, and a classification characteristic control of the classifying means. Input the signal and crush in the crusher based on the estimated wear status of the crushing means at the time of the previous calculation,
A first calculation means for calculating the amount of crushed object possessed by using a dynamic characteristic model simulating classification, mixing, and retention, thereby obtaining a rotational power predicted value of the crusher, and a rotation obtained by the first calculation means. The second calculation means for inputting the deviation between the predicted power value and the rotational power measurement value to correct the estimated value of the abrasion state of the crushing means at the previous calculation time point to obtain the estimated value at the current calculation time point, and the current calculation time point Third computing means for obtaining a pressing force correction signal of the crushing means in accordance with the difference between the estimated wear condition value of the crushing means and the design condition, and the pressing force correction signal obtained by the third calculating means for applying the crushing means A control device for a crusher, which is provided with means for correcting pressure.

【0012】(2)粉砕機内で回転する被粉砕物保有手
段と、該保有手段へ所要量の原料を供給する手段と、前
記保有手段に所要加圧力で押圧される粉砕手段と、該粉
砕手段で粉砕された被粉砕物の粗粒分を保有手段に再循
環するとともに微粒分を需要先へ送るための分級手段
と、需要先の需要量に応じて保有手段への原料供給量を
制御する手段と、該原料供給量に基づき粉砕手段の加圧
力を制御する手段と、前記原料供給量に基づき分級手段
の分級特性を制御する手段とを備えた粉砕機の制御装置
において、原料供給手段の原料供給量信号と粉砕手段の
加圧力信号と分級手段の分級特性信号とを入力し、前回
計算時点の粉砕手段の摩耗状況推定値に基づき、粉砕機
の動特性モデルを用いて被粉砕物保有量を算出し、これ
により粉砕機の回転動力予測値を得る第1の演算手段
と、第1の演算手段で得た回転動力予測値と回転動力計
測値の偏差を入力して、粉砕手段の摩耗状態の前回計算
時点の推定値を補正して今回計算時点の当該推定値を得
る第2の演算手段と、今回計算時点の粉砕手段の摩耗状
況推定値の設計摩耗条件からの相違に応じて分級手段の
分級特性補正信号を得る第3の演算手段と、第3の演算
手段により得た分級特性補正信号により分級手段の分級
特性制御量を補正する手段を設けたことを特徴とする粉
砕機の制御装置。
(2) Means for holding the object to be crushed rotating in the crusher, means for supplying a required amount of raw material to the holding means, crushing means which is pressed by the holding means with a required pressure, and crushing means The coarse particles of the crushed product are recycled to the holding means and the classification means for sending the fine particles to the demand destination, and the raw material supply amount to the holding means is controlled according to the demand amount of the demand destination. In the controller of the pulverizer, the means for controlling the pressing force of the crushing means based on the raw material supply amount, and the means for controlling the classification characteristics of the classification means based on the raw material supply amount, Input the raw material supply amount signal, the crushing unit pressure signal and the classifying unit classification characteristic signal, and use the dynamic characteristics model of the crusher to hold the object to be crushed based on the estimated wear status of the crushing unit at the previous calculation. Calculate the amount, which allows the rotation of the crusher The first calculation means for obtaining the force prediction value and the deviation between the rotation power prediction value and the rotation power measurement value obtained by the first calculation means are input to correct the estimated value of the wear state of the grinding means at the time of the previous calculation. Then, the second calculating means for obtaining the estimated value at the time of the present calculation and the third calculating means for obtaining the classification characteristic correction signal of the classifying means in accordance with the difference between the wear condition estimated value of the crushing means at the present calculation time and the design wear condition And a means for correcting the classification characteristic control amount of the classification means by the classification characteristic correction signal obtained by the third calculation means.

【0013】(3)粉砕機内で回転する被粉砕物保有手
段と、該保有手段へ所要量の被粉砕原料を供給する手段
と、前記保有手段に所要加圧力で押圧される粉砕手段
と、該粉砕手段を通過した被粉砕物の粗粒分を保有手段
に再循環するとともに微粒分を粉砕機生産物として需要
先へ送るための分級手段と、保有手段外周部を吹き上げ
粉砕手段で粉砕された被粉砕物を分級手段に搬送すると
ともに、分級手段で分級された微粒分を需要先に搬送す
る搬送空気の供給手段と、需要先の需要量に基づき保有
手段への原料供給量を制御する手段と、該原料供給量に
基づき粉砕手段の加圧力を制御する手段と、上記原料供
給量に基づき分級手段の分級特性を制御する手段とを備
えた粉砕機の制御装置において、原料供給量制御信号、
加圧力制御信号、分級特性制御信号を入力し、現時点の
粉砕手段摩耗量の仮定値、または、前回計算時点での摩
耗量推定値に基づき、動特性モデルを用いて被粉砕物保
有量を算出し、これにより粉砕機の回転動力予測値を第
1の演算手段と、第1の演算手段で求めた回転動力予測
値と回転動力測定値との偏差を入力してファジィ推論に
より、粉砕手段の摩耗量の前回計算時点の推定値を補正
して今回計算時点の摩耗量推定値を得る第2の演算手段
と、今回計算時点の摩耗量推定値の設計摩耗条件からの
相違に応じてファジィ推論により粉砕手段の加圧力補正
信号と分級手段の分級特性補正信号とを得る第3の演算
手段と、第3の演算手段により得た加圧力補正信号によ
り粉砕手段の加圧力を補正する手段と、第3の演算手段
より得た分級特性補正信号により分級手段の分級特性を
補正する手段とを設けたことを特徴とする粉砕機の制御
装置。
(3) Means for holding a material to be ground which rotates in a grinder, means for supplying a required amount of raw material to be ground to the holding means, grinding means for pressing the holding means with a required pressure, and The coarse particles of the material to be crushed that have passed through the crushing means are recirculated to the holding means, and the classification means for sending the fine particles to the customer as a crusher product, and the outer circumference of the holding means is blown up and crushed by the crushing means. Carrier air supply means for conveying the crushed material to the classifying means and also for conveying the fine particles classified by the classifying means to the demand destination, and means for controlling the raw material supply amount to the holding means based on the demand amount of the demand destination And a means for controlling the pressing force of the pulverizing means based on the raw material supply amount and a means for controlling the classification characteristic of the classifying means based on the raw material supply amount. ,
Input the pressing force control signal and classification characteristic control signal, and calculate the amount of material to be crushed using the dynamic characteristic model based on the assumed value of the abrasion amount of the grinding means at the present time or the estimated value of the abrasion amount at the time of the previous calculation. Then, the rotation power prediction value of the crusher is input to the first calculation means, and the deviation between the rotation power prediction value obtained by the first calculation means and the rotation power measurement value is input, and the crushing means The second calculation means for correcting the estimated value of the wear amount at the time of the previous calculation to obtain the estimated value of the wear amount at the time of this calculation, and the fuzzy inference according to the difference between the estimated value of the wear amount at the time of this calculation and the design wear condition. Third calculating means for obtaining the pressure correction signal of the crushing means and the classification characteristic correction signal of the classifying means, and means for correcting the pressure of the crushing means by the pressure correction signal obtained by the third calculating means, Classification characteristics obtained from the third calculating means Control device for grinding machine by a positive signal, characterized in that a means for correcting the classification properties of the classification means.

【0014】本発明では、粉砕機構の摩耗を推定するに
あたり、現時点の粉砕手段の摩耗量は未知であるから、
まず、摩耗の仮定値により実プラントの回転動力を予測
し、当該予測値と実測値との偏差に応じて上述の仮定値
を補正し、求める推定値となす。具体的には、第1の演
算手段において、周期的に被粉砕物保有量を求めるにあ
たり、前回の計算時点で求めた当該摩耗量推定値に基づ
き、現在の当該摩耗量の仮定値を粉砕機の動特性モデル
に与える。当該仮定値は、前回と今回の計算時点の間隔
が小さければ、摩耗量の前回値そのままでよいし、そう
でない場合は、時間間隔に応じた摩耗量増加分を考慮す
る。いずれにせよ、当該仮定値は第2の演算手段での計
算の初期値にあたるから、真値に近いほど推定が速く収
束する。
In the present invention, when the wear of the crushing mechanism is estimated, the amount of wear of the crushing means at present is unknown.
First, the rotational power of the actual plant is predicted based on the assumed value of wear, and the above-described assumed value is corrected according to the deviation between the predicted value and the actual measured value to obtain an estimated value. Specifically, when the amount of material to be crushed is periodically obtained by the first computing means, the present assumed amount of wear is calculated based on the estimated amount of wear obtained at the time of the previous calculation. To the dynamic characteristic model of. If the interval between the previous calculation time and the current calculation time is small, the assumed value may be the previous value of the wear amount as it is. Otherwise, the increase amount of the wear amount according to the time interval is considered. In any case, since the assumed value corresponds to the initial value of the calculation by the second calculating means, the closer to the true value, the faster the estimation converges.

【0015】第1の演算手段は、粉砕機の動特性モデル
を用いて、記憶しておいた前回計算時点の被粉砕物保有
量、現時点の粉砕手段摩耗量の仮定値、被粉砕原料の供
給量から、現時点の被粉砕物保有量を算出し、さらに、
当該保有量に対応する回転動力の予測値を求める。第2
の演算手段は、一般的に、回転動力の実測値が予測値よ
り大であれば、摩耗量は過小評価であったとして、当該
仮定値を増加方向に修正し、逆の場合も同様に作用す
る。
The first computing means uses the dynamic characteristic model of the crusher to store the crushed object stored at the time of the previous calculation, the assumed value of the crushing means wear amount at this time, and the supply of the crushed raw material. From the amount, calculate the current amount of crushed material possessed, and further
The predicted value of the rotational power corresponding to the possessed amount is calculated. Second
Generally, if the measured value of the rotational power is larger than the predicted value, it is determined that the wear amount is underestimated, and the assumed value is corrected in the increasing direction. To do.

【0016】なお、第1と第2の演算手段の作動形態
は、各計算時点において、上述の運転動力の予測値と実
測値の偏差が規定値以内となるまで収束計算を繰り返す
場合と、1回または規定回数で当該収束計算を打ち切る
場合がある。これらは、採用する計算機の計算速度と各
計算時点の時間間隔の兼ね合いで決定する。
The operation modes of the first and second calculation means are such that, at each calculation time point, the convergence calculation is repeated until the deviation between the predicted value and the measured value of the above-mentioned driving power is within a specified value, and 1 The convergence calculation may be terminated once or a specified number of times. These are determined in consideration of the calculation speed of the computer used and the time interval at each calculation time point.

【0017】[0017]

【発明の実施の形態】本発明における粉砕機の制御装置
は、粉砕機の動特性モデルを用い、粉砕機構の摩耗量仮
定値(通常は前回の計算における推定値)に基づき、現
時点における被粉砕物保有量を求め、これにより、粉砕
機の運転動力の予測値を算出する第1の演算手段、およ
び当該予測値と実測の運転動力の偏差から、先の粉砕機
構の摩耗量仮定値を修正して現時点の当該摩耗量の推定
値とする第2の演算手段を中心に構成される。ここに、
第1の演算手段中の動特性モデルとは、非定常状態につ
いて、周期的な計算により、現時点の粉砕機の操作量と
1計算周期前に求めた粉砕機の状態量から、現時点の粉
砕機の状態量を求める手段をいう。また、第2の演算手
段において、運転動力の偏差から摩耗量仮定値を修正す
るにあたり、系の確率微分方程式に基づく最尤推定法、
経験的知見によるファジィ推論、実機特性の学習に基づ
くニューラルネットワーク、最も簡単に実施可能なPI
動作等が適用できる。
BEST MODE FOR CARRYING OUT THE INVENTION The control device for a crusher according to the present invention uses a dynamic characteristic model of the crusher, and based on an assumed value of the wear amount of the crushing mechanism (usually an estimated value in the previous calculation), the crushed object at the present time. The amount of material possession is obtained, and the first calculation means for calculating the predicted value of the operating power of the crusher, and the deviation of the predicted value and the actual measured operating power, is used to correct the wear amount assumed value of the crushing mechanism. Then, the second arithmetic means is mainly used as the estimated value of the current wear amount. here,
The dynamic characteristic model in the first computing means is, for an unsteady state, a periodic calculation, and based on the operation amount of the crusher at the present time and the state amount of the crusher obtained one calculation cycle before, the crusher at the present time. Is a means for obtaining the state quantity of. Further, in the second computing means, the maximum likelihood estimation method based on the stochastic differential equation of the system is used to correct the wear amount assumption value from the deviation of the driving power,
Fuzzy inference based on empirical knowledge, neural network based on learning of actual machine characteristics, most easily implemented PI
Operation etc. can be applied.

【0018】本発明は、上記構成により負荷変化時も含
め、粉砕手段の摩耗の推定値を得た後、第3の演算手段
により、当該摩耗量の推定値に基づいて加圧力指令信
号、および分級特性指令信号の補正量を求めたり、必要
な場合、粉砕手段の交換を推奨するメッセージを表示す
ることにより達成される。以下、本発明の内容を図面を
使って詳細に説明する。
According to the present invention, after the estimated value of the abrasion of the crushing means is obtained by the above-mentioned configuration including the change of the load, the third calculating means calculates the pressing force command signal based on the estimated value of the abrasion amount, and This is achieved by obtaining the correction amount of the classification characteristic command signal and displaying a message recommending replacement of the crushing means if necessary. The contents of the present invention will be described in detail below with reference to the drawings.

【0019】図1は本発明の実施例であり、以下、従来
技術による図2の実施例と共通の部位には同一の部品番
号を付し、説明を省略する。第1の演算手段21は、当
該時点において実機粉砕機と同一の操作量(原料供給指
令信号3、加圧力指令信号16、分級特性指令信号1
7)を入力し、現時点の摩耗状況(摩耗量)の仮定値
(前回計算時点の推定値27)に基づき、動特性モデル
を用いて被粉砕物7保有量を算出し、これにより、回転
動力予測値25を得る。
FIG. 1 shows an embodiment of the present invention. In the following, the same parts as those of the embodiment of FIG. 2 according to the prior art will be designated by the same part numbers and the description thereof will be omitted. The first calculation means 21 has the same operation amount (raw material supply command signal 3, pressing force command signal 16, classification characteristic command signal 1) as that of the actual crusher at that time.
7) is input, and based on the assumed value of the current wear state (wear amount) (estimated value 27 at the time of the previous calculation), the crushed object 7 holding amount is calculated using the dynamic characteristic model. Obtain the predicted value 25.

【0020】当該動特性モデルとしては、着目する諸量
の関係を実測データで整理した統計モデルでも使用可能
であるが、粉砕機内の諸過程(粉砕、分級、混合、滞留
等)を忠実に模擬した物理モデルが最も広範囲の条件で
高精度であり、本例では、物理モデルを用いる。さら
に、物理モデルも手法上、各種あって、例えば、発明者
自身の研究による「微粉炭ボイラ制御装置」(特願昭6
3−131342;昭63/5/31)に記したモデル
も使用可能であるが、本例では発明者の最新の研究に係
わり、粒度分布をわずか4つの変数(さきの特許出願に
かかる実施例の手法では30程度の粒度分布のサンプル
点を用いていた)で模擬可能で、高精度、低計算量な手
法(計測自動制御学会中国支部学術講演会;平3/12
/13にて発明者が講演)を採用することとし、次節を
設けて詳細を説明する。
As the dynamic characteristic model, a statistical model in which relations of various quantities of interest are arranged by actual measurement data can be used, but various processes in the crusher (crushing, classification, mixing, retention, etc.) are faithfully simulated. The physical model described above has high accuracy in the widest range of conditions, and in this example, the physical model is used. Furthermore, there are various physical models in terms of the method, and for example, the “pulverized coal boiler control device” (Japanese Patent Application No. Sho 6)
The model described in 3-131342; Sho 63/5/31) can also be used, but in this example, the particle size distribution is related to the latest research of the inventor, and the particle size distribution is only four variables (Examples related to the previous patent application). The above method used sample points with a particle size distribution of about 30), and can be simulated with high precision and low computational complexity (Mechanism and Automation Control Society China Branch Academic Lecture Meeting; Hira 3/12)
/ 13 will be adopted by the inventor, and the following section will be provided to explain the details.

【0021】第2の演算手段22は、回転動力計測値2
9の偏差26を入力し、ファジィ推論により、摩耗状況
の仮定値(前回計算時点の推定値27)を補正して、今
回計算時点の当該推定値27を得る。第3の演算手段2
3は、今回計算時点の摩耗状況推定値27の粉砕手段の
設計摩耗条件からの相違に応じて、ファジィ推論によ
り、加圧力補正信号34、分級特性補正信号35を求め
る。一般には、摩耗の進行とともに加圧力を増加、分級
設定を絞り(50%通過粒径を低下)の方向に補正すれ
ばよい。
The second computing means 22 uses the rotational power measurement value 2
The deviation 26 of 9 is input, and the assumed value of the wear state (estimated value 27 at the time of the previous calculation) is corrected by fuzzy reasoning to obtain the estimated value 27 at the time of the current calculation. Third computing means 2
3 obtains the pressurizing force correction signal 34 and the classification characteristic correction signal 35 by fuzzy inference according to the difference between the wear state estimated value 27 at the time of this calculation and the design wear condition of the crushing means. Generally, it is sufficient to increase the pressing force as the wear progresses and correct the classification setting in the direction of narrowing (decreasing the passing particle size by 50%).

【0022】第1の演算手段において、動特性モデルは
以下に述べる手順に従い、加圧力指令信号16から粉砕
速度定数P、分級特性指令信号17から分級特性c
j (ξ)、原料供給指令信号3からQibをそれぞれ与え
て、被粉砕物7保有量をGb として求めればよい。 粉砕機内の現象 断面を微小時間に通過する粒子中、粒径ξ以下なる質量
割合により粒度分布が定義可能で、その密度関数をg
(ξ)と表記し、適宜に場所を示す添字を付加する。サ
ンプルされた静止状態の質量粒度分布密度f(ξ)との
関係は質量流量Qを用いて次式となる。
In the first computing means, the dynamic characteristic model is subjected to the procedure described below, and from the pressing force command signal 16 to the crushing rate constant P and from the classification characteristic command signal 17 to the classification characteristic c.
j (ξ) and Q ib from the raw material supply command signal 3 may be respectively given to obtain the crushed object 7 holding amount as G b . Phenomenon in the crusher Particle size distribution can be defined by the mass ratio of particle size ξ or less among particles passing through the cross section in a short time.
It is written as (ξ), and a subscript indicating the place is appropriately added. The relationship with the sampled stationary mass particle size distribution density f (ξ) is expressed by the following equation using the mass flow rate Q.

【0023】[0023]

【数1】 g(ξ)≡E{Q|(ξ,ξ+dξ〕}f(ξ)/E{Q} (1) 粉砕前後の諸量にそれぞれ添字ipopを与えると、粒度
分布について次の関係がある。
## EQU1 ## g (ξ) ≡E {Q | (ξ, ξ + dξ]} f (ξ) / E {Q} (1) Given the subscripts ip and op to the quantities before and after crushing, Have a relationship.

【数2】 (Equation 2)

【0024】ここに、粒径ξを対数軸にとると条件付確
率密度gopipは Austin らの解明した粉砕分布定数と
一致し、これをsとする。
Here, when the particle size ξ is taken on the logarithmic axis, the conditional probability density g op │ip coincides with the crushing distribution constant clarified by Austin et al., And is designated as s.

【数3】 gopip(ξ|η)=s(ξ−η) (3) 質量流量については、粉砕機構内で蓄積はないと仮定し
て次式を得る。
## EQU3 ## g op | ip (ξ | η) = s (ξ−η) (3) For the mass flow rate, the following equation is obtained assuming that there is no accumulation in the crushing mechanism.

【0025】[0025]

【数4】 E{Qop}=E{Qip} (4) 第j番目の分級機構について、各「粒子の通過」は互い
に独立事象であって、Θj をインジケータとすれば、実
験により解明されている分級効率cj (ξ)と次の関係
がある。
## EQU00004 ## E {Q op } = E {Q ip } (4) For the j-th classification mechanism, each "particle passage" is an independent event, and if Θ j is used as an indicator, it is experimentally determined. There is the following relationship with the classification efficiency c j (ξ) that has been clarified.

【0026】[0026]

【数5】 Pr{Θj =0|(ξ,ξ+dξ〕}=Cj (ξ) (5) Pr{Θj =1|(ξ,ξ+dξ〕}=1−Cj (ξ) (6) 分級入口粉体流、循環粉体流、および通過粉体流に係わ
る諸量にそれぞれ添字 ijrjojを与えると、ベイズ定
理により粒度分布密度の次の表式を得る。
## EQU00005 ## Pr {.THETA.j= 0 | (ξ, ξ + dξ]} = Cj(Ξ) (5) Pr {Θj= 1 | (ξ, ξ + dξ]} = 1-Cj(Ξ) (6) Related to classification inlet powder flow, circulating powder flow, and passing powder flow
Subscripts for each quantity ij,rj,ojIs given, Bayesian constant
The following expression of the particle size distribution density is obtained by theory.

【0027】[0027]

【数6】 grj(ξ)=Cj ( ξ)gij(ξ)/rj (7) goj(ξ)=〔1−Cj ( ξ)〕gij(ξ)/(1−rj ) (8) ここに、G rj (ξ) = C j (ξ) g ij (ξ) / r j (7) g oj (ξ) = [1-C j (ξ)] g ij (ξ) / (1- r j ) (8) where

【0028】[0028]

【数7】 分級機構周辺の流量は次のとおり求められる。(Equation 7) The flow rate around the classification mechanism is calculated as follows.

【0029】[0029]

【数8】 E{Qrj}=E{Θj ij}=rj E{Qij} (10) E{Qoj}=E{(1−Θj )Qij}=(1−rj )E{Qij} (11) 分級機構(j=0,………,n)からの循環粉体流と、
原料粉体流(添字ib)とを混合して流出粉体流(添
ob)となす機構を考える。ここで混合機構粉体保有量
b とQobとの間に次の関係を仮定する。
E {Q rj } = E {Θ j Q ij } = r j E {Q ij } (10) E {Q oj } = E {(1-Θ j ) Q ij } = (1-r j ) E {Q ij } (11) Circulating powder flow from the classification mechanism (j = 0, ..., N),
Let us consider the mechanism of mixing with the raw material powder flow (subscript ib ) to form the outflow powder flow (subscript ob ). Here, the following relationship is assumed between the mixing mechanism powder holding amounts G b and Q ob .

【0030】[0030]

【数9】 E{Qob}=E{P}E{Gb } (12) Pは粒径と独立とし、この仮定を正当化するため、混合
機構と続く粉砕機構の間に仮想的な分級機構(j=0)
を設けて Austin らの解明したξに依存する粉砕速度定
数を考慮する。ここで(1)と(12)に着目し、混合
により粒径は変化しないと考えて、(ξ,ξ+dξ〕に
属する粒子のマスバランス式が得られる。
[ Equation 9] E {Q ob } = E {P} E {G b } (12) P is independent of the particle size, and in order to justify this assumption, a virtual between the mixing mechanism and the subsequent crushing mechanism is assumed. Classification mechanism (j = 0)
And consider the ξ-dependent grinding rate constants clarified by Austin et al. Here, paying attention to (1) and (12), and considering that the particle size does not change due to mixing, a mass balance formula of particles belonging to (ξ, ξ + dξ] can be obtained.

【0031】[0031]

【数10】 E{P}-1(d/dt)E{Qob}gob(ξ) =Σj=0 n E{Qrj}grj(ξ)+E{Qib}gib(ξ) −E{Qob}gob(ξ) (13) モデルの数学的記述 Ξが分布密度g(ξ)に従うときλ、ρで規準化(アフ
ィン変換)したモーメントを考える。
E {P} −1 (d / dt) E {Q ob } g ob (ξ) = Σ j = 0 n E {Q rj } g rj (ξ) + E {Q ib } g ib (ξ ) −E {Q ob } g ob (ξ) (13) Mathematical description of model Consider a moment normalized (affine transformation) with λ and ρ when Ξ follows distribution density g (ξ).

【0032】[0032]

【数11】 Vk (λ,ρ)≡E{〔(Ξ−λ)/ρ〕k } (14) このとき、キュムラントβk (λ,ρ)が対応して求め
られる。本モデルでは分布密度を次の4パラメータで整
理する。
V k (λ, ρ) ≡E {[(Ξ−λ) / ρ] k } (14) At this time, the cumulant β k (λ, ρ) is obtained correspondingly. In this model, the distribution density is organized by the following four parameters.

【0033】[0033]

【数12】 μ=V1(0,1),σ=〔V2(0,1)〕1/2 (15) Skewness: β3(μ,σ)=V3(μ,σ) (16) Excess: β4(μ,σ)=V4(μ,σ)−3 (17) これらより一意にエッジワース展開係数αk が求まり、
分布密度を具体的に表示できる。
## EQU12 ## μ = V 1 (0,1), σ = [V 2 (0,1)] 1/2 (15) Skewness: β 3 (μ, σ) = V 3 (μ, σ) (16 ) Excess: β 4 (μ, σ) = V 4 (μ, σ) −3 (17) From these, the edge-worth expansion coefficient α k is uniquely obtained,
The distribution density can be specifically displayed.

【0034】[0034]

【数13】 g(ξ)=Σk αk p(ξ;μ,σ)hk (〔ξ−μ〕/σ) (18) ここにp(ξ;μ,σ)はガウス分布、hk はk次のエ
ルミート多項式である。(3)を(2)に代入すると重
畳積分であって、キュムラントの和に帰着し、以下を得
る。
G (ξ) = Σ k α k p (ξ; μ, σ) h k ([ξ−μ] / σ) (18) where p (ξ; μ, σ) is a Gaussian distribution and h k is a Hermitian polynomial of degree k. Substituting (3) into (2) is a superposition integral, resulting in the sum of cumulants, and the following is obtained.

【0035】[0035]

【数14】 V1op ( μip,σip)=V1s(μip, σip) (19) V2op ( μip,σip)=1+V2s(μip, σip) (20) V3op ( μip,σip)=V3ip (μip, σip)+V3s(μip, σip) (21) V4op ( μip,σip)=V4ip (μip, σip)+V4s(μip, σip) +6V2s(μip, σip) (22) ここに、添字は、sは粉砕分布定数sを、それ以外は各
粒度分布密度gを指す。さらに、μop、σop、β3
op, σop)、β4op, σop)は(15)〜(17)お
よび次式を用いて計算できる。
(14) V 1opip , σ ip ) = V 1sip, σ ip ) (19) V 2opip , σ ip ) = 1 + V 2sip, σ ip ) (20) V 3opip , σ ip ) = V 3ipip, σ ip ) + V 3sip, σ ip ) (21) V 4opip , σ ip ) = V 4ipip, σ ip ) + V 4sip, σ ip ) + 6V 2sip, σ ip ) (22) Here, the subscript s indicates the pulverization distribution constant s, and the other subscripts indicate the particle size distribution density g. Furthermore, μ op , σ op , β 3
op, σ op ) and β 4op, σ op ) can be calculated using (15) to (17) and the following equation.

【0036】[0036]

【数15】 Vk (λ,ρ)=(ρo /ρ)k Σj=0 k k j ・Vj (λo,ρo )〔(λo −λ)/ρo k-j (23) Cj (ξ)は適当なγmj、λmj、ρmjを用いて近似でき
る。
V k (λ, ρ) = (ρ o / ρ) k Σ j = 0 k k C j · V jo, ρ o ) [(λ o −λ) / ρ o ] kj ( 23) C j (ξ) can be approximated by using appropriate γ mj , λ mj and ρ mj .

【0037】[0037]

【数16】 Cj (ξ)≒Σm γmjp(ξ;λmj,ρmj) (24) gij(ξ)は(18)の形式であり、(7)、(10)
より循環粉体流の諸量が具体的に求められる。
## EQU16 ## C j (ξ) ≈Σ m γ mj p (ξ; λ mj , ρ mj ) (24) g ij (ξ) is of the form (18), and (7), (10)
More concretely, various quantities of the circulating powder flow are required.

【0038】[0038]

【数17】 E{Qrj}grj(ξ)=E{Qrj}Σm p(ξ;λmrj,ρmrj ) Σk αrjmkk (〔ξ−λmrj 〕/ρmrj ) (25) ここに次の関係がある。E {Q rj } g rj (ξ) = E {Q rj } Σ m p (ξ; λ mrj, ρ mrj ) Σ k α rjmk h k ([ξ-λ mrj ] / ρ mrj ) ( 25) There is the following relationship here.

【0039】[0039]

【数18】 αrjmk=αOrjmk γmj ・exp{−(μij−λmj)2/〔2(σij 2 +ρmj 2)〕} (26) λmrj =(ρmj 2 μij+σij 2 λmj)/(σij 2 +ρmj 2 ) (27) ρmrj =ρmjσij/(σij 2 +ρmj 2)1/2 (28) また、αOrjmk は次式にエルミート多項式の加法定理を
適用し、係数を整理して得られる。
Α rjmk = α Orjmk γ mj · exp {-(μ ijmj ) 2 / [2 (σ ij 2 + ρ mj 2 )]} (26) λ mrj = (ρ mj 2 μ ij + σ ij 2 λ mj ) / (σ ij 2 + ρ mj 2 ) (27) ρ mrj = ρ mj σ ij / (σ ij 2 + ρ mj 2 ) 1/2 (28) In addition, α Orjmk is the Hermitian polynomial addition to the following equation. It is obtained by applying the theorem and organizing the coefficients.

【0040】[0040]

【数19】 Σk αijk k (〔ρmrj /σij〕〔ξ−λmrj 〕/ρmrj +〔λmrj −μij〕/σij) (29) (25)は分布密度の重みつき混合であり、添字m につ
いてαOrjmk からVk(λmrj , ρmrj )が一意に求ま
り、同一λ、ρのVk は重みつき加算が可能だから、結
局、(23)、(15)〜(17)を用いてμrj
σrj、β3rj, σ rj)、β4rj, σrj)が計算でき
る。添字ojの通過粉体流についても同様の議論である。
適当に選んだλb 、ρb で規準化すると(13)よりv
kob についての微分方程式を得る。
Σkαijkhk((Ρmrj/ Σij] (Ξ−λmrj] / Ρmrj + [Λmrjij] / Σij) (29) (25) is a weighted mixture of distribution densitiesmNitsu
AOrjmkTo Vkmrj, ρmrj) Is uniquely obtained
And V of the same λ and ρkSince weighted addition is possible,
Station, (23), (15) to (17)rj,
σrj, ΒThreerj,σ rj), ΒFourrj,σrj) Can be calculated
You. SubscriptojThe same discussion applies to the passing powder flow of the above.
Properly selected λb, ΡbWhen normalized with v, from (13)
kobGet the differential equation for.

【0041】[0041]

【数20】 E{P}-1(d/dt)E{Qob}vkob (λb ,ρb ) =Σj=o n E{Qrj}vkrj (λb ,ρb ) +E{Qib}vkib (λb ,ρb ) −E{Qob}vkob (λb ,ρb ) (30) (23)、(15)〜(17)を適用すれば、一般に、
μ、σ、β3, σ)、β4, σ)とvk (λ,ρ)
の相互変換が可能だから、(30)を離散時間系の逐次
計算として、解くことができる。このとき Pade 近似の
採用で安定な数値計算が可能となる。
Equation 20] E {P} -1 (d / dt) E {Q ob} v kob (λ b, ρ b) = Σ j = o n E {Q rj} v krj (λ b, ρ b) + E If {Q ib } v kibb , ρ b ) -E {Q ob } v kobb , ρ b ) (30) (23), (15) to (17) is applied, in general,
μ, σ, β 3, σ), β 4, σ) and v k (λ, ρ)
Since it is possible to perform the mutual conversion of (30), it is possible to solve by solving (30) as a sequential calculation of a discrete time system. At this time, stable numerical calculation becomes possible by adopting the Pade approximation.

【0042】[0042]

【発明の効果】本発明によれば、次の効果がある。 1)頻繁な負荷変化を行なう粉砕機にあっても、常時、
負荷静定をもつことなく、粉砕機構の摩耗量を把握でき
る。 2)粉砕機の加圧力が、粉砕機構の摩耗量に応じて調節
され、高速負荷変化時にあっても、粉砕機出口粒径分布
の低下、粉体生産量の伸び悩みが防げる。また、不必要
な加圧による摩耗も予防できる。 3)粉砕機の分級設定が、粉砕機構の摩耗量に応じて調
節され、高速負荷変化時にあっても、該粉砕機生産物の
良好な粒度分布が維持できる。
According to the present invention, the following effects can be obtained. 1) Even in a crusher that frequently changes loads,
The wear amount of the crushing mechanism can be grasped without having to settle the load. 2) The pressing force of the crusher is adjusted according to the amount of wear of the crushing mechanism, and it is possible to prevent a decrease in the particle size distribution at the exit of the crusher and a slow increase in the amount of powder produced even when the high-speed load changes. Further, wear due to unnecessary pressurization can be prevented. 3) The classification setting of the crusher is adjusted according to the amount of wear of the crushing mechanism, and a good particle size distribution of the crusher product can be maintained even when the high speed load changes.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す図。FIG. 1 is a diagram showing an embodiment of the present invention.

【図2】従来技術の説明図。FIG. 2 is an explanatory diagram of a conventional technique.

【符号の説明】[Explanation of symbols]

1…被粉砕原料、2…フィーダー、3…原料供給指令信
号、4…ホッパ、5…電動機、6…ターンテーブル、7
…保有被粉砕物、8…粉砕手段、9…搬送空気、10…
粉砕機生産物、11…重力分級捕集被粉砕物、12…ベ
ーン、13…遠心分級被粉砕物、16…加圧力指令信
号、17…分級特性指令信号、18、19…関数要素、
21…第1の演算手段、22…第2の演算手段、23…
第3の演算手段、24…信号減算要素、25…回転動力
予測値、26…回転動力予測誤差、27…摩耗状況推定
値、28…回転動力検出器、29…回転動力計測値、3
0…加圧指令基本信号、31…分級特性指令基本信号、
32…信号加算要素、33…信号加算要素、34…加圧
力補正信号、35…分級特性補正信号。
1 ... Raw material to be crushed, 2 ... Feeder, 3 ... Raw material supply command signal, 4 ... Hopper, 5 ... Electric motor, 6 ... Turntable, 7
... held crushed object, 8 ... crushing means, 9 ... carrier air, 10 ...
Grinding machine product, 11 ... Gravity classification collected crushed object, 12 ... Vane, 13 ... Centrifugal classification crushed object, 16 ... Pressure command signal, 17 ... Classification characteristic command signal, 18, 19 ... Function element,
21 ... 1st calculating means, 22 ... 2nd calculating means, 23 ...
Third computing means, 24 ... Signal subtraction element, 25 ... Rotational power prediction value, 26 ... Rotational power prediction error, 27 ... Wear state estimated value, 28 ... Rotational power detector, 29 ... Rotational power measurement value, 3
0 ... Pressure command basic signal, 31 ... Classification characteristic command basic signal,
32 ... Signal addition element, 33 ... Signal addition element, 34 ... Pressurization force correction signal, 35 ... Classification characteristic correction signal.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 下平 克己 広島県呉市宝町3番36号 バブコック日立 株式会社呉研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsumi Shimohira 3-36 Takaracho, Kure City, Hiroshima Prefecture Babcock-Hitachi Kure Research Institute

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 粉砕機内で回転する被粉砕物保有手段
と、該保有手段へ原料を供給する手段と、前記保有手段
に所要加圧力で押圧される粉砕手段と、該粉砕手段によ
り粉砕された被粉砕物の粗粒分を保有手段に再循環する
とともに微粒分を粉砕機生産物として需要側に送るため
の分級手段と、保有手段への原料供給量を制御する手段
と、該原料供給量に基づき分級手段の分級特性を制御す
る手段と、前記原料供給量に基づき粉砕手段の加圧力を
制御する手段とを備えた粉砕機の制御装置において、原
料供給手段の原料供給量制御信号と粉砕手段の加圧力制
御信号と分級手段の分級特性制御信号とを入力し、前回
計算時点の粉砕手段の摩耗状況推定値に基づき、粉砕機
内の粉砕、分級、混合、滞留を模擬した動特性モデルを
用いて被粉砕物保有量を算出し、これにより粉砕機の回
転動力予測値を得る第1の演算手段と、第1の演算手段
で得た回転動力予測値と回転動力計測値の偏差を入力し
て、粉砕手段の摩耗状態の前回計算時点の推定値を補正
して今回計算時点の当該推定値を得る第2の演算手段
と、今回計算時点の粉砕手段の摩耗状況推定値の設計条
件からの相違に応じて粉砕手段の加圧力補正信号を得る
第3の演算手段と、第3の演算手段により得た加圧力補
正信号により粉砕手段の加圧力を補正する手段を設けた
ことを特徴とする粉砕機の制御装置。
1. A crushed object holding means that rotates in a crusher, a means for supplying a raw material to the holding means, a crushing means that is pressed by the holding means with a required pressure, and a crushed by the crushing means. Classifying means for recirculating the coarse particles of the material to be crushed to the holding means and sending the fine particles to the demand side as a crusher product, means for controlling the raw material supply amount to the holding means, and the raw material supply amount In the controller of the crusher, which comprises means for controlling the classification characteristics of the classifying means based on the above, and means for controlling the pressing force of the crushing means based on the raw material supply amount, a raw material supply amount control signal of the raw material supply means and pulverization By inputting the pressure control signal of the means and the classification characteristic control signal of the classifying means, a dynamic characteristic model simulating crushing, classification, mixing and retention in the crusher is calculated based on the estimated wear status of the crushing means at the previous calculation. Use the amount of material to be crushed And the deviation between the rotational power prediction value and the rotational power measurement value obtained by the first calculation means is input to calculate the wear of the crushing means. The second calculating means for correcting the estimated value at the time of the previous calculation of the state to obtain the estimated value at the time of the current calculation, and the crushing means according to the difference from the design condition of the estimated value of the wear state of the crushing means at the current calculation time. And a means for correcting the pressure applied to the crushing means by means of the pressure correction signal obtained by the third calculation means.
【請求項2】 粉砕機内で回転する被粉砕物保有手段
と、該保有手段へ所要量の原料を供給する手段と、前記
保有手段に所要加圧力で押圧される粉砕手段と、該粉砕
手段で粉砕された被粉砕物の粗粒分を保有手段に再循環
するとともに微粒分を需要先へ送るための分級手段と、
需要先の需要量に応じて保有手段への原料供給量を制御
する手段と、該原料供給量に基づき粉砕手段の加圧力を
制御する手段と、前記原料供給量に基づき分級手段の分
級特性を制御する手段とを備えた粉砕機の制御装置にお
いて、原料供給手段の原料供給量信号と粉砕手段の加圧
力信号と分級手段の分級特性信号とを入力し、前回計算
時点の粉砕手段の摩耗状況推定値に基づき、粉砕機の動
特性モデルを用いて被粉砕物保有量を算出し、これによ
り粉砕機の回転動力予測値を得る第1の演算手段と、第
1の演算手段で得た回転動力予測値と回転動力計測値の
偏差を入力して、粉砕手段の摩耗状態の前回計算時点の
推定値を補正して今回計算時点の当該推定値を得る第2
の演算手段と、今回計算時点の粉砕手段の摩耗状況推定
値の設計摩耗条件からの相違に応じて分級手段の分級特
性補正信号を得る第3の演算手段と、第3の演算手段に
より得た分級特性補正信号により分級手段の分級特性制
御量を補正する手段を設けたことを特徴とする粉砕機の
制御装置。
2. A crushing object holding means that rotates in a crusher, a means that supplies a required amount of raw material to the holding means, a crushing means that is pressed by the holding means with a required pressure, and a crushing means. Classifying means for recirculating the coarse particles of the crushed pulverized material to the holding means and sending the fine particles to the demand destination,
A means for controlling the amount of raw material supplied to the holding means according to the demand amount of the demand destination, a means for controlling the pressing force of the crushing means based on the raw material supply amount, and a classification characteristic of the classification means based on the raw material supply amount. In the control device of the crusher equipped with the control means, the raw material supply amount signal of the raw material supply means, the pressing force signal of the pulverizing means, and the classification characteristic signal of the classifying means are input, and the abrasion status of the pulverizing means at the time of the previous calculation Based on the estimated value, the crusher dynamic characteristic model is used to calculate the amount of crushed object to be retained, and the first calculation means for obtaining the rotation power prediction value of the crusher thereby, and the rotation obtained by the first calculation means. Second, the deviation between the predicted power value and the measured rotational power is input to correct the estimated value of the wear state of the crushing means at the previous calculation time point to obtain the estimated value at the current calculation time point.
And the third calculating means for obtaining the classification characteristic correction signal of the classifying means in accordance with the difference between the wear condition estimated value of the crushing means at the time of the present calculation and the design wear condition, and the third calculating means. A control device for a crusher, characterized in that means for correcting the classification characteristic control amount of the classification means by means of the classification characteristic correction signal is provided.
【請求項3】 粉砕機内で回転する被粉砕物保有手段
と、該保有手段へ所要量の被粉砕原料を供給する手段
と、前記保有手段に所要加圧力で押圧される粉砕手段
と、該粉砕手段を通過した被粉砕物の粗粒分を保有手段
に再循環するとともに微粒分を粉砕機生産物として需要
先へ送るための分級手段と、保有手段外周部を吹き上げ
粉砕手段で粉砕された被粉砕物を分級手段に搬送すると
ともに、分級手段で分級された微粒分を需要先に搬送す
る搬送空気の供給手段と、需要先の需要量に基づき保有
手段への原料供給量を制御する手段と、該原料供給量に
基づき粉砕手段の加圧力を制御する手段と、上記原料供
給量に基づき分級手段の分級特性を制御する手段とを備
えた粉砕機の制御装置において、原料供給量制御信号、
加圧力制御信号、分級特性制御信号を入力し、現時点の
粉砕手段摩耗量の仮定値、または、前回計算時点での摩
耗量推定値に基づき、動特性モデルを用いて被粉砕物保
有量を算出し、これにより粉砕機の回転動力予測値を得
る第1の演算手段と、第1の演算手段で求めた回転動力
予測値と回転動力測定値との偏差を入力して粉砕手段の
摩耗量の前回計算時点の推定値を補正して今回計算時点
の摩耗量推定値を得る第2の演算手段と、今回計算時点
の摩耗量推定値の設計摩耗条件からの相違に応じて粉砕
手段の加圧力補正信号と分級手段の分級特性補正信号と
を得る第3の演算手段と、第3の演算手段により得た加
圧力補正信号により粉砕手段の加圧力を補正する手段
と、第3の演算手段より得た分級特性補正信号により分
級手段の分級特性を補正する手段とを設けたことを特徴
とする粉砕機の制御装置。
3. An object-to-be-milled object holding means that rotates in a crusher, a means for supplying a required amount of material to be ground to the holding means, a crushing means that is pressed by the holding means with a required pressure, and the crusher. The coarse particles of the material to be crushed that have passed through the means are recirculated to the holding means, and the classification means for sending the fine particles as a crusher product to the demand destination, and the outer peripheral portion of the holding means is blown up to be crushed by the crushing means. A means for supplying carrier air that conveys the pulverized material to the classifying means and also conveys the fine particles classified by the classifying means to the demand destination, and a means for controlling the raw material supply amount to the holding means based on the demand amount of the demand destination. In the control device of the crusher, which comprises means for controlling the pressing force of the pulverizing means based on the raw material supply amount, and means for controlling the classification characteristic of the classifying means based on the raw material supply amount, a raw material supply amount control signal,
Input the pressing force control signal and classification characteristic control signal, and calculate the amount of material to be crushed using the dynamic characteristic model based on the assumed value of the abrasion amount of the grinding means at the present time or the estimated value of the abrasion amount at the time of the previous calculation. Then, the first calculation means for obtaining the rotational power prediction value of the crusher and the deviation between the rotational power prediction value obtained by the first calculation means and the rotational power measurement value are input to input the wear amount of the crushing means. The second calculation means for correcting the estimated value at the time of the previous calculation to obtain the estimated value of the wear amount at the time of this calculation, and the pressing force of the crushing means according to the difference between the estimated wear amount at the time of the current calculation and the design wear condition. Third calculating means for obtaining the correction signal and the classification characteristic correction signal of the classifying means, means for correcting the pressing force of the crushing means by the pressing force correction signal obtained by the third calculating means, and the third calculating means The classification characteristic of the classification means is determined by the obtained classification characteristic correction signal. Control device of the crusher, characterized in that a positive to means.
JP28533695A 1995-11-01 1995-11-01 Crusher control device Expired - Fee Related JP3643153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28533695A JP3643153B2 (en) 1995-11-01 1995-11-01 Crusher control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28533695A JP3643153B2 (en) 1995-11-01 1995-11-01 Crusher control device

Publications (2)

Publication Number Publication Date
JPH09122518A true JPH09122518A (en) 1997-05-13
JP3643153B2 JP3643153B2 (en) 2005-04-27

Family

ID=17690240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28533695A Expired - Fee Related JP3643153B2 (en) 1995-11-01 1995-11-01 Crusher control device

Country Status (1)

Country Link
JP (1) JP3643153B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011506085A (en) * 2007-12-21 2011-03-03 ヒタチ パワー ヨーロッパ ゲーエムベーハー Control system for pulverizer and method for operating the pulverizer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011506085A (en) * 2007-12-21 2011-03-03 ヒタチ パワー ヨーロッパ ゲーエムベーハー Control system for pulverizer and method for operating the pulverizer
US8706287B2 (en) 2007-12-21 2014-04-22 Steag Energy Services Gmbh Control system for a mill and method for operating a mill

Also Published As

Publication number Publication date
JP3643153B2 (en) 2005-04-27

Similar Documents

Publication Publication Date Title
Klyuev et al. Improving the energy efficiency of technological equipment at mining enterprises
AU2011297864B2 (en) Method for controlling a mill system having at least one mill, in particular an ore mill or cement mill
CN108393146B (en) Self-adaptive optimal decoupling control method for coal pulverizing system of steel ball coal mill
US20130030573A1 (en) Computer-based method and device for automatically providing control parameters for a plurality of coal mills supplying coal powder to a plant
CN113028441B (en) Coal mill outlet temperature adjusting method and device and storage medium
JPH09122518A (en) Controller for crusher
JPH09141116A (en) Vibration estimation device of crusher and control device based on vibration estimation of crusher
CA1275468C (en) Pulverized solid control system
JP3678811B2 (en) Crusher control device
JPH08507465A (en) Control method for closed circuit dry crusher
Li et al. Coal mill model considering heat transfer effect on mass equations with estimation of moisture
JP3689453B2 (en) Crusher state estimation device
Austin et al. A simulation model for an air-swept ball mill grinding coal
JP5345907B2 (en) Powder processing equipment and powder processing method
Yuwen et al. A dynamic model for a class of semi-autogenous mill systems
Satpati et al. Sensor-less predictive drying control of pneumatic conveying batch dryers
US4754931A (en) Pulverized solid control system
JPH09969A (en) Method for controlling mill for pulverized coal burning boiler and device therefor
JPH10211445A (en) Property controlling method for powder particle
JPH1038257A (en) Method for estimating stable combustion by coal property
JPH07284687A (en) Raw material supply controller of pulverizing equipment
Niemczyk et al. Derivation and validation of a coal mill model for control
JPH09170736A (en) Method for supplying specified amount of refuse for refuse incinerator
Eremenko et al. Economic Profitability of Using Delivery Drones at the Current Level of Battery Technology
JP3121129B2 (en) Powder production equipment with bulk density control

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050127

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080204

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20110204

LAPS Cancellation because of no payment of annual fees