JPH09122231A - Hollow thread membrane type white blood cell removing filter device - Google Patents

Hollow thread membrane type white blood cell removing filter device

Info

Publication number
JPH09122231A
JPH09122231A JP30332995A JP30332995A JPH09122231A JP H09122231 A JPH09122231 A JP H09122231A JP 30332995 A JP30332995 A JP 30332995A JP 30332995 A JP30332995 A JP 30332995A JP H09122231 A JPH09122231 A JP H09122231A
Authority
JP
Japan
Prior art keywords
membrane
average
volume
hollow thread
leukocyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30332995A
Other languages
Japanese (ja)
Inventor
Kenji Kobayashi
健次 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Medical Co Ltd
Original Assignee
Asahi Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Medical Co Ltd filed Critical Asahi Medical Co Ltd
Priority to JP30332995A priority Critical patent/JPH09122231A/en
Publication of JPH09122231A publication Critical patent/JPH09122231A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To increase the white blood cell removing capability without increasing the pressure loss by filling a porous hollow thread membrane with through holes having the average hole diameter of the prescribed value, having the average membrane thickness of the prescribed value, and having the average filtration area/apparent membrane volume of the prescribed value in a container provided with an inlet and an outlet. SOLUTION: A porous hollow thread membrane 2 provided with through holes having the average hole diameter 1-100μm and having the average membrane thickness 0.05-2mm and the average filtration area/apparent membrane volume of the value 3-200cm<2> /cm<3> is filled in a container 1 provided with a liquid inlet 4 and a liquid outlet 6 to form this hollow thread membrane type white blood cell removing filter device. The average hole diameter is the average diameter of fine holes dispersed on the cut surface of an optical cross section of the hollow thread membrane 2, and the average membrane thickness is the average value of the membrane thicknesses measured at ten or more points at random on one hollow thread membrane 2. The average filtration area is the logarithmic average between the total inner area and the total outer area when the hollow thread membrane 2 is typically regarded as a cylinder, and the apparent membrane volume is the sum of the total volume of the membrane base material and the total fine hole volume in the membrane.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、白血球浮遊液から白血
球を捕捉、除去する中空糸膜型白血球除去フィルター装
置に関する。詳しくは、全血、赤血球濃厚液、血小板濃
厚液などの輸血用血液製剤中に混入している白血球を捕
捉、除去するための中空糸膜型白血球除去フィルター装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hollow fiber membrane type leukocyte removal filter device for capturing and removing leukocytes from leukocyte suspension. More specifically, the present invention relates to a hollow fiber membrane type leukocyte removal filter device for capturing and removing leukocytes mixed in blood products for transfusion such as whole blood, concentrated red blood cells and concentrated platelets.

【0002】[0002]

【従来の技術】近年、免疫学、輸血学の進歩に伴い、従
来の全血輸血から種々の疾患の治療に必要な成分だけを
濃縮して輸血する成分輸血が行われる様になってきてい
る。成分輸血に用いられている各種の血液製剤、即ち赤
血球濃厚液(CRC)、血小板濃厚液(PC)、乏血小
板血漿(PPP)は献血によって得られた全血を遠心操
作で分離、分画して調整される。しかしながら、遠心操
作によって、分離された血液製剤中には多くの白血球が
含まれており、この混入白血球により輸血後副作用が誘
発されることが明かになってきた。輸血後副作用として
は、頭痛、吐き気、悪寒、非溶血性発熱反応などの比較
的軽微な副作用から、免疫障害をもつ患者に対しては、
輸血された白血球が受血者の皮膚、内部器官に致死的影
響を与える移植片対宿主反応(GVHD)の誘発や、サ
イトメガロウィルス感染等の白血球に存在するウィルス
による感染、アロ抗原感作などの重篤な副作用が知られ
ている。このような輸血副作用を防止するためには、血
液製剤に混入している白血球を捕捉、除去することが有
効である。通常、全血、血液製剤等の輸血に用いられる
血液製剤中には107 個/mlの白血球が含まれてい
る。頭痛、非溶血性発熱反応、悪寒、吐き気などの比較
的軽微な副作用を防止するためには、1回の輸血で受血
者に輸注される白血球数を1億個程度以下に抑える必要
があるとされており、このためには血液製剤中に含まれ
ている白血球の残存率を10-1〜10-2以下になるまで
除去する必要がある。またアロ抗原感作及びウィルス感
染を予防するためには、白血球残存率を10-4〜10-5
以下にまで除去することで予防しうると期待されてい
る。血液製剤から白血球を除去する方法には、血液の比
重差を利用した重力遠心分離方法と不織布などの繊維状
媒体や三次元網目連続孔を有する多孔質体などの多孔質
素子を白血球捕捉材としたフィルター法の2種類に大別
されるが、白血球除去効率の良いこと、操作の簡便なこ
と、コストが低いことの利点からフィルター法が広く用
いられている。
2. Description of the Related Art In recent years, with the progress of immunology and blood transfusion, component blood transfusion in which only components necessary for treatment of various diseases are concentrated and transfused has been performed from conventional whole blood transfusion. . Various blood products used for component transfusion, namely, erythrocyte concentrate (CRC), platelet concentrate (PC), and platelet poor plasma (PPP), are separated and fractionated by centrifuging whole blood obtained by donation. Be adjusted. However, it has been clarified that a large number of leukocytes are contained in the blood product separated by the centrifugation operation, and the mixed leukocytes induce post-transfusion side effects. Post-transfusion side effects include relatively minor side effects such as headache, nausea, chills, and non-hemolytic fever reaction.
Induction of graft-versus-host reaction (GVHD) in which transfused leukocytes have a lethal effect on the recipient's skin and internal organs, infection by viruses present in leukocytes such as cytomegalovirus infection, alloantigen sensitization, etc. It is known to have serious side effects. In order to prevent such blood transfusion side effects, it is effective to capture and remove leukocytes mixed in the blood product. Usually, blood products used for transfusion such as whole blood and blood products contain 10 7 / ml of white blood cells. In order to prevent relatively minor side effects such as headache, non-hemolytic fever reaction, chills, and nausea, it is necessary to keep the number of white blood cells infused to the recipient in a single blood transfusion to less than 100 million. For this purpose, it is necessary to remove the residual white blood cells contained in the blood product until the residual ratio becomes 10 -1 to 10 -2 or less. In order to prevent alloantigen sensitization and virus infection, the leukocyte residual rate is 10 -4 to 10 -5.
It is expected to be prevented by removing up to the following. Methods for removing leukocytes from blood products include gravity centrifugation using the difference in specific gravity of blood and a porous element such as a fibrous medium such as a non-woven fabric or a porous body having three-dimensional continuous pores as a leukocyte-capturing material. The filtering method is broadly classified into two types, and the filtering method is widely used because of its advantages of high leukocyte removal efficiency, simple operation, and low cost.

【0003】[0003]

【発明が解決しようとする課題】白血球除去フィルター
装置に充填される白血球捕捉材は、不織布などの繊維状
媒体や三次元網目状連続組織を有するスポンジ状構造物
が主として用いられている。白血球の除去機構は主とし
て粘着によると考えられているため、同じ素材で同様な
表面を有する白血球捕捉材の白血球除去能の差は、白血
球捕捉材と白血球の衝突頻度の大小により生ずるとされ
ている。そのため、白血球除去能を高めるには、白血球
が粘着すべき白血球捕捉材の表面積が大きい方が白血球
捕捉材と白血球との衝突頻度が増すため好ましく、一般
に細い繊維径を有する繊維状媒体は表面積が大きく、高
い白血球除去能を有することになる。そのため、不織布
を白血球捕捉材とする場合には、平均繊維径が1〜3μ
m程度の極細繊維が主として用いられている。しかしな
がら、このような極細繊維径を有する従来の不織布を用
いて、単位容積当たりの白血球除去能を高めるために
は、不織布の充填密度を高めて実質的に捕捉材量を増量
するか、更に、繊維径の小さい不織布に切り替える必要
があった。通常充填密度の上限は、0.4g/cm3
度であり、これ以上高めると、不織布の反発力によっ
て、容器内に充填することが困難になるか、これを避け
るために熱プレスなどを行えば、不織布がフィルム状に
つぶれてしまい、もはや捕捉材としての機能を果たさな
くなる。従って、白血球除去能を高めるための方法とし
ては、充填密度0.4g/cm3 以下の範囲内で白血球
捕捉材を増量するか、より繊維径の小さな白血球捕捉材
を用いなければならない。しかしながら、これら何れの
場合においても、白血球除去能の向上にともなって、血
液製剤を通過させる際の圧力損失が増大してしまい、期
待する血液量を処理し終わる前に、処理速度が極端に低
下するという問題があった。
As the leukocyte-capturing material to be filled in the leukocyte-removing filter device, a fibrous medium such as a non-woven fabric or a sponge-like structure having a three-dimensional network continuous structure is mainly used. Since the mechanism of removing leukocytes is thought to be mainly due to adhesion, the difference in leukocyte-removing ability of leukocyte-capturing materials made of the same material and having the same surface is said to be caused by the frequency of collision between leukocyte-trapping materials and leukocytes. . Therefore, in order to enhance the leukocyte-removing ability, it is preferable that the surface area of the leukocyte-capturing material to which the leukocytes should adhere is larger because the frequency of collision between the leukocyte-trapping material and the leukocytes is increased. It is large and has a high leukocyte-removing ability. Therefore, when the non-woven fabric is used as the leukocyte-capturing material, the average fiber diameter is 1 to 3 μm.
Ultrafine fibers of about m are mainly used. However, using a conventional nonwoven fabric having such an ultrafine fiber diameter, in order to enhance the leukocyte removal ability per unit volume, the packing density of the nonwoven fabric is increased to substantially increase the amount of the trapping material, or It was necessary to switch to a non-woven fabric with a small fiber diameter. Usually, the upper limit of the packing density is about 0.4 g / cm 3 , and if it is increased more than this, it will be difficult to fill the inside of the container due to the repulsive force of the nonwoven fabric. In this case, the non-woven fabric will be crushed into a film and will no longer function as a capturing material. Therefore, as a method for enhancing leukocyte-removing ability, it is necessary to increase the amount of leukocyte-capturing material within the range of a packing density of 0.4 g / cm 3 or less, or to use a leukocyte-trapping material having a smaller fiber diameter. However, in any of these cases, as the leukocyte-removing ability is improved, the pressure loss at the time of passing the blood product increases, and the processing speed extremely decreases before the expected blood volume is processed. There was a problem of doing.

【0004】一方、スポンジ状構造物については、特開
平1−224324号に白血球による目詰まりの恐れの
ない白血球分離材として、バブルポイントが0.08〜
0.3kg/cm2 である多孔質体が開示されている。
しかしながら、本発明者等が検討した結果、該白血球分
離材は血液製剤中に混入している白血球の残存率を10
-2〜10-3に減ずるに適したものであり、本発明で目的
とする白血球残存率10-4を達成するに必要な、比較的
小さな平均孔径を有する多孔質体を用いる場合には、次
のような問題を有するものであった。即ち、多孔質体は
至適な平均孔径のものを用いれば不織布に比べ、数分の
一の厚みで同等の白血球除去能を示し、小型化を達成す
る上で有力な手段を提供し得るものであるが、このよう
な高い白血球除去能を示すものは、同時に白血球の目詰
まりによる圧力損失が高く、繊維径が小さい不織布を用
いるのと同様に、血液の処理速度が著しく低下するとい
う問題を有していた。上記以外の白血球捕捉材としては
ニトロセルロース製膜がWO94/17894に記載さ
れているが、実施例で使用している平膜では、その構造
上膜体積当たりの有効濾過面積が小さく、膜表面に白血
球の目詰まりが発生しやすいという問題を有している。
本発明の目的は、圧力損失を増大させずにしかも単位体
積当たりの白血球除去能を高めた白血球除去フィルター
を提供すること、より詳しくは、全血、赤血球濃厚液
(CRC)、血小板濃厚液(PC)、乏血小板血漿(P
PP)などの白血球浮遊液から白血球を高収率で除去
し、かつ該白血球浮遊液を処理する際に処理速度が減少
しない、即ち、血球による目詰まりや圧力損失の増加が
見られない白血球除去フィルター装置を提供することに
ある。
On the other hand, regarding the sponge-like structure, the bubble point is 0.08 to 0.08 as a leukocyte separating material which does not cause clogging by leukocytes in JP-A-1-224324.
A porous body of 0.3 kg / cm 2 is disclosed.
However, as a result of examination by the present inventors, the leukocyte separating material has a residual ratio of leukocytes mixed in blood products of 10 or less.
In the case of using a porous body having a relatively small average pore diameter, which is suitable for reducing to −2 to 10 −3 and is necessary for achieving the target leukocyte survival rate of 10 −4 in the present invention, It had the following problems. That is, if a porous body having an optimal average pore size is used, it shows equivalent leukocyte-removing ability with a thickness of a fraction of that of non-woven fabric, and can provide a powerful means for achieving miniaturization. However, those exhibiting such a high leukocyte-removing ability have a problem that at the same time, the pressure loss due to the clogging of leukocytes is high, and similarly to the case of using a non-woven fabric having a small fiber diameter, the processing speed of blood is significantly reduced. Had. A nitrocellulose membrane is described in WO94 / 17894 as a leukocyte-capturing material other than the above, but the flat membrane used in the examples has a small effective filtration area per membrane volume due to its structure, and the membrane surface It has a problem that white blood cells are likely to be clogged.
It is an object of the present invention to provide a leukocyte depletion filter which has increased leukocyte depletion capacity per unit volume without increasing pressure loss, and more specifically, whole blood, red blood cell concentrate (CRC), platelet concentrate ( PC), platelet poor plasma (P
PP) and the like to remove leukocytes from leukocyte suspensions in high yield, and the treatment rate does not decrease when treating the leukocyte suspensions, that is, clogging by blood cells and increase in pressure loss are not seen. It is to provide a filter device.

【0005】[0005]

【課題を解決するための手段】本発明は、平均孔径が1
〜100μmである貫通孔を有し、平均膜厚が0.05
〜2mm、(平均濾過面積/みかけ膜体積)の値が3〜
200cm2 /cm3である多孔質中空糸膜を液体の入
口と出口を有する容器に充填した中空糸膜型白血球除去
フィルター装置である。本発明における多孔質中空糸膜
の平均孔径とは、貫通孔を有する多孔質体を血液の流れ
方向に対して垂直に切断し、断面全体に分散している細
孔の各々について直径を測定して直径と細孔の数との関
係を調べたときに、最も数の多い細孔の円に換算した直
径を表すものである。即ち、多孔質フィルターの任意の
切断面に分散する細孔はいろいろな形でその直径も様々
であるが、個々の細孔をその細孔の断面積と同じ面積の
円に換算し、その直径を横軸にとり、縦軸に細孔の数を
とってグラフを描くと一般に正規分布に近い曲線とな
る。そして、その曲線のピークに当たる直線が本発明で
いう平均孔径である。即ち、平均孔径とは、任意の切断
面各々につきその切断面上に分散する細孔の平均直径の
ことであり、どの切断面上の平均孔径も1〜100μm
の範囲内になければならない。また、血液の入口側と出
口側の平均孔径とは、多孔質体表面からフィルターの厚
み方向に対して0.01mm以下の部分での切断面の平
均孔径をいい、また0.01mm厚みの範囲内で平均孔
径が特に変わらなければ表面での平均孔径を血液の入口
側と出口側の平均孔径としても良い。平均孔径は血液入
口側と出口側を含み少なくとも3ケ所以上の切断面につ
いて、走査電子顕微鏡で撮影し、目視により切断面上に
分散している細孔の直径をランダムに1000個以上測
定して求める。
The present invention has an average pore size of 1
Having a through-hole of ˜100 μm and an average thickness of 0.05
2 mm, the value of (average filtration area / apparent membrane volume) is 3 to
A hollow fiber membrane-type leukocyte removal filter device in which a porous hollow fiber membrane having a volume of 200 cm 2 / cm 3 is filled in a container having an inlet and an outlet for a liquid. With the average pore diameter of the porous hollow fiber membrane in the present invention, the porous body having through-holes is cut perpendicularly to the flow direction of blood, and the diameter is measured for each of the pores dispersed in the entire cross section. When the relationship between the diameter and the number of pores is investigated, it represents the diameter of the circle with the largest number of pores. That is, the pores dispersed on any cut surface of the porous filter have various shapes and diameters, but each pore is converted into a circle having the same area as the cross-sectional area of the pore, and its diameter is Is plotted on the abscissa and the number of pores is plotted on the ordinate, and a graph is generally drawn to approximate a normal distribution. The straight line corresponding to the peak of the curve is the average pore diameter in the present invention. That is, the average pore diameter is an average diameter of pores dispersed on each cut surface, and the average pore diameter on any cut surface is 1 to 100 μm.
Must be within the range. Further, the average pore size on the inlet side and the outlet side of blood means the average pore size of the cut surface at a portion of 0.01 mm or less from the surface of the porous body in the thickness direction of the filter, and the range of 0.01 mm thickness. The average pore size on the surface may be used as the average pore size on the blood inlet side and the average pore size on the blood outlet side, provided that the average pore size does not change. The average pore size is at least three or more cut surfaces including the blood inlet side and the outlet side, photographed with a scanning electron microscope, and the diameters of pores dispersed on the cut surfaces are randomly measured by 1000 or more. Ask.

【0006】本発明で用いる多孔質中空糸膜の平均孔径
に関して、液体濾過方向の入口側は10〜100μmの
範囲が好ましく、更に好ましくは15〜75μm、最も
好ましくは25〜50μmの範囲である。入口側の平均
孔径が10μm未満であると孔径が小さ過ぎて、入口側
表面で白血球等による目詰まりから流速の低下を引き起
こし易い。一方、100μmを越えると白血球と膜表面
との接触頻度が低下し、効率的な白血球除去の機能を果
たさない。液体濾過方向の出口側は1〜30μmが好ま
しく、更に好ましくは2〜20μm、最も好ましくは3
〜15μmの範囲である。出口側の平均孔径が1μm未
満であると、孔径が小さ過ぎて流速が大きく低下する。
一方、30μmを越えると白血球が漏出する恐れがあ
る。
The average pore diameter of the porous hollow fiber membrane used in the present invention is preferably in the range of 10 to 100 μm on the inlet side in the liquid filtration direction, more preferably 15 to 75 μm, and most preferably 25 to 50 μm. If the average pore size on the inlet side is less than 10 μm, the pore size is too small, and the flow velocity is likely to be reduced due to clogging by leukocytes and the like on the inlet side surface. On the other hand, if it exceeds 100 μm, the frequency of contact between leukocytes and the membrane surface decreases, and the function of efficient leukocyte removal is not fulfilled. The outlet side in the liquid filtration direction is preferably 1 to 30 μm, more preferably 2 to 20 μm, most preferably 3 μm.
Is in the range of ˜15 μm. If the average pore diameter on the outlet side is less than 1 μm, the pore diameter is too small and the flow velocity is greatly reduced.
On the other hand, if it exceeds 30 μm, white blood cells may leak.

【0007】また、膜の目詰まりを防止する理由で、平
均孔径が液体の濾過方向に連続的もしくは段階的に減少
する構造であっても良い。この時液体の濾過方向の入口
側表面の孔径が出口側表面の孔径の2〜50倍が好まし
く、更に3〜30倍がより好ましい。2倍未満であると
膜の目詰まり防止効果が少なく、一方、50倍を越える
と孔径の勾配が大き過ぎて、白血球除去に適した孔径の
膜容積が相対的に減少してしまう。
Further, in order to prevent the membrane from being clogged, the structure may be such that the average pore diameter decreases continuously or stepwise in the liquid filtration direction. At this time, the pore size of the inlet side surface of the liquid in the filtering direction is preferably 2 to 50 times, more preferably 3 to 30 times the pore size of the outlet side surface. If it is less than 2 times, the effect of preventing clogging of the membrane is small, while if it exceeds 50 times, the gradient of the pore diameter is too large and the membrane volume of the pore diameter suitable for leukocyte removal is relatively reduced.

【0008】本発明における均均膜厚とは、一本の中空
糸膜についてランダムに10点以上測定した膜厚の平均
値のことであり、フィルター内のどの中空糸膜の平均膜
厚も0.05〜2mmの範囲内になければならない。膜
厚は、中空糸膜を中空糸軸方向に対して垂直方向つまり
液体の濾過方向に対して平行方向に切断し、1つの膜断
面の内径及び外径をランダムに各々4点以上測定した平
均値より、下記の式に従って求めた値である。 平均膜厚=10点以上の膜厚の平均値 本発明で用いる多孔質中空糸膜の平均膜厚は0.05〜
2mmであり、より好ましい範囲は0.1〜1mmであ
る。0.05mm未満であると白血球と膜表面との接触
回数が少なく、白血球が漏出する可能性が高くなる。一
方、2mmを越えるとみかけの膜体積に対する濾過面積
の比率が低下し、濾過速度が低下する。
The uniform thickness in the present invention is an average value of the thicknesses of one hollow fiber membrane measured at random at 10 points or more, and the average thickness of any hollow fiber membrane in the filter is 0. Must be within the range of .05 to 2 mm. Membrane thickness is an average obtained by cutting the hollow fiber membrane in a direction perpendicular to the hollow fiber axis direction, that is, in the direction parallel to the liquid filtration direction, and randomly measuring 4 or more points each of the inner diameter and the outer diameter of one membrane cross section. It is a value obtained from the value according to the following formula. Average film thickness = average value of film thickness of 10 points or more The average film thickness of the porous hollow fiber membrane used in the present invention is 0.05 to
It is 2 mm, and the more preferable range is 0.1 to 1 mm. If it is less than 0.05 mm, the number of contact between leukocytes and the membrane surface is small, and the possibility of leukocyte leakage increases. On the other hand, when it exceeds 2 mm, the ratio of the filtration area to the apparent membrane volume decreases, and the filtration speed decreases.

【0009】本発明で用いる多孔質中空糸膜の平均濾過
面積(Sav)とは中空糸膜を模式的に円筒とみなした時
の全内面積(S1 )と全外面積(S2 )の対数平均であ
り、次式により求められる。 また、みかけ膜体積とは膜の基材が占める全体積と膜内
の全細孔部体積の合計であり、膜が占めるみかけ上の体
積のことである。本発明の(平均濾過面積/みかけ膜体
積)の値は3〜200cm2 /cm3 であり、より好ま
しい範囲は5〜100cm2 /cm3 である。3cm2
/cm3 未満では従来の平板状フィルターと同様に濾過
面積が小さいため、処理速度の低下や目詰まりが発生す
る恐れがある。一方200cm2 /cm3 を超える膜で
は、白血球除去に必要な膜厚を確保するには中空糸膜の
内径及び外径が必要以上に大きくなるので、膜及び膜を
充填したモジュールの製造が困難になる。本発明で用い
る多孔質中空糸膜の空孔率は0.40〜0.95が好ま
しい。空孔率が0.40未満であると血液が通過するた
めの細孔の空間容積が不足し、血球による目詰まりが生
じ、0.95を超えると多孔質膜の強度が低下し、もは
や濾材としての機能を果たさなくなるため不適である。
The average filtration area (S av ) of the porous hollow fiber membrane used in the present invention is the total inner area (S 1 ) and the total outer area (S 2 ) when the hollow fiber membrane is regarded as a cylinder. Is the logarithmic average of and is calculated by the following equation. The apparent membrane volume is the total volume occupied by the base material of the membrane and the total volume of all pores in the membrane, and is the apparent volume occupied by the membrane. The value of (average filtration area / apparent membrane volume) of the present invention is 3 to 200 cm 2 / cm 3 , and a more preferable range is 5 to 100 cm 2 / cm 3 . 3 cm 2
If it is less than / cm 3 , the filtration area is small as in the case of the conventional flat plate filter, so that the processing speed may be reduced and clogging may occur. On the other hand, if the membrane exceeds 200 cm 2 / cm 3 , the inner and outer diameters of the hollow fiber membrane will be unnecessarily large to secure the membrane thickness necessary for leukocyte removal, making it difficult to manufacture the membrane and the module filled with the membrane. become. The porosity of the porous hollow fiber membrane used in the present invention is preferably 0.40 to 0.95. If the porosity is less than 0.40, the space volume of pores for passing blood is insufficient and clogging by blood cells occurs, and if it exceeds 0.95, the strength of the porous membrane decreases, and the filter medium is no longer used. It is not suitable because it does not fulfill its function.

【0010】また、本発明で用いる多孔質中空糸膜の素
材としては、白血球以外の濾過液体中の有用成分にダメ
ージを与えにくいものであれば特に限定はなく各種のも
のを用いることができ、有機高分子、無機高分子、金属
等が挙げられる。その中でも有機高分子は切断等の加工
性に優れるため好ましい素材である。有機高分子として
は、例えば、ポリウレタン、ポリアクリロニトリル、ポ
リビニルアルコール、ポリビニルアセタール、ポリエス
テル、ポリアミド、ポリスチレン、ポリスルホン、セル
ロース、セルロースアセテート、ポリエチレン、ポリプ
ロピレン、ポリフッ化ビニル、ポリフッ化ビニリデン、
ポリトリフルオロクロロビニル、フッ化ビニリデン−テ
トラフルオロエチレン共重合体、ポリエーテルスルホ
ン、ポリ(メタ)アクリレート、ブタジエン−アクリロ
ニトリル共重合体、ポリエーテル−ポリアミドブロック
共重合体、エチレン−ビニルアルコール共重合体等が挙
げられるが、本発明の多孔質中空糸膜の素材は上記例示
に限定されるものではない。
The material of the porous hollow fiber membrane used in the present invention is not particularly limited as long as it does not easily damage useful components in the filtered liquid other than leukocytes, and various materials can be used. Examples thereof include organic polymers, inorganic polymers and metals. Among them, organic polymers are preferable materials because they are excellent in workability such as cutting. As the organic polymer, for example, polyurethane, polyacrylonitrile, polyvinyl alcohol, polyvinyl acetal, polyester, polyamide, polystyrene, polysulfone, cellulose, cellulose acetate, polyethylene, polypropylene, polyvinyl fluoride, polyvinylidene fluoride,
Polytrifluorochlorovinyl, vinylidene fluoride-tetrafluoroethylene copolymer, polyether sulfone, poly (meth) acrylate, butadiene-acrylonitrile copolymer, polyether-polyamide block copolymer, ethylene-vinyl alcohol copolymer However, the material of the porous hollow fiber membrane of the present invention is not limited to the above examples.

【0011】更に、本発明で用いる多孔質中空糸膜は公
知の方法で製造されるものでも良く、具体的には発砲分
解法、溶剤気散法、気体混入法、化学反応法、溶出法、
燒結法等のスポンジ状構造物の製造法や延伸開孔法等が
挙げられ、熱処理や適当な液体による膨潤等の2次加工
を施しても良い。本発明で用いられる多孔質中空糸膜表
面は塩基性もしくは酸性官能基を有していることが好ま
しい。白血球の高分子材料に対する粘着性は高分子材料
の表面性状に影響され、一般に白血球に限らず血球細胞
は負の荷電を細胞表面に有している。そのため、白血球
を捕捉、除去するためには正の荷電を表面に有している
高分子材料が一般に有効であることが知られている(W
O/05812号)。また、それとは逆に負の荷電を有
する表面も白血球捕捉に有効である。本来負の荷電を有
する細胞と、同じく負の荷電を有する酸性官能基との間
には静電的な反発力が働き、細胞の粘着量は減少しても
よさそうであるが、恐らくは細胞が負の荷電を有する材
料表面に接触するよりも早く、血漿中に含まれるある種
のタンパク質が粘着し、このタンパク質の仲介によって
白血球の粘着が促進されるのではないかと思われる。ま
た、白血球浮遊液の円滑な濾過、もしくは白血球以外の
細胞等へのダメージや非特異的吸着を低減するためにヒ
ドロキシル基やポリエチレンオキサイド鎖等の親水性の
官能基を導入することも有効である。上記の官能基を膜
表面に含有させるために、膜素材として上記の官能基を
有する高分子等を用いるか、他の素材と混合して用いて
も良い。また、グラフト重合、コーティング、アルカ
リ、酸等の薬品処理、プラズマ処理等の表面改質により
上記官能基を導入することも好ましい。
Further, the porous hollow fiber membrane used in the present invention may be produced by a known method, and specifically, the foam decomposition method, the solvent vaporization method, the gas mixing method, the chemical reaction method, the elution method,
Examples thereof include a sponge-like structure manufacturing method such as a sintering method, a stretching opening method, and the like, and secondary processing such as heat treatment or swelling with an appropriate liquid may be performed. The surface of the porous hollow fiber membrane used in the present invention preferably has a basic or acidic functional group. The adhesiveness of leukocytes to polymer materials is influenced by the surface properties of the polymer materials, and not only leukocytes but blood cells generally have a negative charge on the cell surface. Therefore, it is known that a polymer material having a positive charge on the surface is generally effective for capturing and removing leukocytes (W
O / 05812). On the contrary, a surface having a negative charge is also effective for capturing leukocytes. An electrostatic repulsive force acts between the originally negatively charged cell and an acidic functional group that also has a negative charge, and it seems that the amount of cell adhesion may decrease, but It is suspected that certain proteins contained in plasma adhere faster than they contact the negatively charged material surface, and that the mediation of this protein promotes adhesion of leukocytes. It is also effective to smoothly filter the leukocyte suspension or to introduce a hydrophilic functional group such as a hydroxyl group or a polyethylene oxide chain in order to reduce damage or non-specific adsorption to cells other than leukocytes. . In order to contain the above-mentioned functional group on the film surface, a polymer having the above-mentioned functional group or the like may be used as a film material, or may be used as a mixture with another material. It is also preferable to introduce the above-mentioned functional group by graft polymerization, coating, chemical treatment with alkali, acid or the like, surface modification such as plasma treatment.

【0012】本発明の中空糸膜型白血球除去フィルター
装置は液体の入口部と白血球除去用多孔質中空糸膜との
間に、白血球浮遊液中の凝集物を除去するフィルターを
介在させても良い。また、フィルター装置の入口部にメ
ッシュチャンバー等の凝集物除去用フィルターを組み込
んだ回路を接続して使用しても良い。白血球浮遊液中に
凝集物が多数存在すると濾過の際に目詰まりが発生し易
くなるため、このような液体を濾過する場合は凝集物を
除去する必要がある。これに用いるフィルターとしては
多孔質膜、不織布、織布、メッシュ、濾紙、メンブラン
フィルター等が挙げられる。本発明の中空糸膜型白血球
除去フィルター装置は使用する直前に白血球浮遊液の入
った容器に接続して用いても良いし、あらかじめ装置の
液体入口部及び/または液体出口部に血液バッグ等の容
器を接続したシステムを組み、これに白血球浮遊液を注
入して使用しても良い。更に、フィルター装置内にあら
かじめ生理食塩水、血液抗凝固剤、赤血球保存液等の液
体が存在していても良い。また、この装置の濾過方向は
中空糸膜の内側から外側、外側から内側の何れでも可能
である。内側から外側へ濾過する場合は、装置をどの方
向に向けて使用しても膜内の液流により液が膜全体に均
等に流れるので、全膜面積を有効に利用できる利点があ
る。一方外側から内側へ濾過する場合は、除去した白血
球による目詰まりが発生しにくいという利点がある。
In the hollow fiber membrane type leukocyte removal filter device of the present invention, a filter for removing aggregates in the leukocyte suspension may be interposed between the liquid inlet and the leukocyte removal porous hollow fiber membrane. . Further, a circuit incorporating a filter for removing agglomerates such as a mesh chamber may be connected to the inlet of the filter device for use. If a large number of aggregates are present in the leukocyte suspension, clogging is likely to occur during filtration. Therefore, it is necessary to remove the aggregates when filtering such a liquid. Examples of filters used for this purpose include porous membranes, non-woven fabrics, woven fabrics, meshes, filter papers and membrane filters. The hollow fiber membrane type leukocyte depletion filter device of the present invention may be used by connecting it to a container containing leukocyte suspension immediately before use, and may be used in advance at the liquid inlet and / or liquid outlet of the device such as a blood bag. A system in which a container is connected may be assembled and a leukocyte suspension may be injected into the system for use. Further, liquids such as physiological saline, blood anticoagulants, and red blood cell preservatives may be present in the filter device in advance. Further, the filtration direction of this device can be either from the inside to the outside or from the outside to the inside of the hollow fiber membrane. When filtering from the inside to the outside, there is an advantage that the entire membrane area can be effectively used because the liquid flows evenly through the membrane due to the liquid flow in the membrane, whichever direction the device is used. On the other hand, when filtering from the outside to the inside, there is an advantage that clogging due to the removed white blood cells is unlikely to occur.

【0013】本発明で言う白血球浮遊液としては、全
血、濃厚赤血球、洗浄赤血球、白血球除去赤血球、解凍
赤血球濃厚液、解凍赤血球浮遊液の赤血球製剤、乏血小
板血漿、多血小板血漿、新鮮凍結血漿、新鮮液状血漿、
クリオプレシピテートの血漿製剤、濃厚血小板、バフィ
ーコート、バフィーコート除去血等が挙げられる。以下
実施例に基づき、本発明の中空糸膜型白血球除去フィル
ター装置について詳細に説明する。
The leukocyte suspension referred to in the present invention includes whole blood, concentrated red blood cells, washed red blood cells, leukocyte-removed red blood cells, thawed red blood cell concentrate, red blood cell preparation of thawed red blood cell suspension, platelet poor plasma, platelet rich plasma, fresh frozen plasma. , Fresh liquid plasma,
Examples include plasma preparations of cryoprecipitate, concentrated platelets, buffy coat, buffy coat-removed blood, and the like. The hollow fiber membrane type leukocyte removal filter device of the present invention will be described in detail based on the following examples.

【0014】[0014]

【実施例】【Example】

【実施例1】溶出法により得られたポリエチレン製多孔
質中空糸膜にヒドロキシエチルメタアクリレート(HE
MA)とジメチルアミノエチルメタアクリレート(D
M)からなるポリマー(ポリマー中のDM含量は30モ
ル%)を0.5%エタノール溶液として含浸させ、液切
り後60℃で16時間熱風乾燥し、コーティング膜を得
た。この上記中空糸膜2を液体の入口4と出口6を有す
るポリカーボネート製円筒容器1に34本を充填し、両
端をウレタン接着剤で固定し、図1に示すような中空糸
膜型白血球除去フィルターを作製した。ここで使用した
コーティング多孔質中空糸膜は有効長15cm、膜厚
0.4mm(膜外形平均値1.1mm、膜内径平均値
0.3mm)、平均孔径5.2μm、みかけ膜体積4.
5cm3 であった。200mlの血液に28mlのCP
Dを加えて調製した全血228mlから、採血後8時間
以内に遠心分離によって多血小板血漿を除去して140
mlに調製し、4℃で15日間血液バッグで保存した赤
血球製剤(ヘマトクリット61%)を室温(23℃)に
なるまで放置した後、メッシュチャンバー7を組み込ん
だ血液移送チューブ8を接続した上記白血球フィルター
装置で濾過した。濾過の際は赤血球製剤の入った血液供
給バッグ9にメッシュチャンバー7を組み込んだ血液移
送チューブ8を接続し、更に血液が中空糸膜2の内側に
導入され、外側に向かって濾過されるように上記白血球
除去フィルター装置を接続し、出口6には血液回収バッ
グ10を接続した。この時供給バッグ9の下端から血液
回収バッグ10の上端までの落差は1.0mに設定し、
落差で濾過を行った。
Example 1 Hydroxyethyl methacrylate (HE) was added to a polyethylene porous hollow fiber membrane obtained by an elution method.
MA) and dimethylaminoethyl methacrylate (D
A polymer consisting of M) (DM content in the polymer was 30 mol%) was impregnated as a 0.5% ethanol solution, and the solution was drained and dried with hot air at 60 ° C. for 16 hours to obtain a coating film. A hollow fiber membrane type leukocyte removal filter as shown in FIG. 1 was prepared by filling 34 hollow cylinders 1 made of polycarbonate having liquid inlet 4 and outlet 6 with the hollow fiber membranes 2 and fixing both ends with urethane adhesive. Was produced. The coated porous hollow fiber membrane used here had an effective length of 15 cm, a membrane thickness of 0.4 mm (membrane outer shape average value 1.1 mm, membrane inner diameter average value 0.3 mm), average pore diameter 5.2 μm, and apparent membrane volume 4.
It was 5 cm 3 . 28 ml of CP in 200 ml of blood
Platelet-rich plasma was removed from 228 ml of whole blood prepared by adding D by centrifugation within 8 hours after blood collection.
The red blood cell preparation (hematocrit 61%) prepared in a blood bag and stored in a blood bag at 4 ° C. for 15 days was allowed to reach room temperature (23 ° C.), and then the above-mentioned white blood cells to which a blood transfer tube 8 incorporating a mesh chamber 7 was connected. It was filtered with a filter device. At the time of filtration, the blood transfer bag 8 containing the mesh chamber 7 is connected to the blood supply bag 9 containing the red blood cell preparation, and further blood is introduced inside the hollow fiber membrane 2 and filtered toward the outside. The leukocyte removal filter device was connected, and the blood collection bag 10 was connected to the outlet 6. At this time, the head from the lower end of the supply bag 9 to the upper end of the blood collection bag 10 is set to 1.0 m,
The head was filtered.

【0015】濾過前の赤血球製剤(以下、元液とする)
及び回収液の体積、ヘマトクリット、白血球数を測定
し、赤血球回収率及び白血球除去率を求めた。 赤血球回収率=(回収液体液×回収液ヘマトクリット)
/(元液体積×元液ヘマトクリット)×100(%) 白血球残存率=(1−回収液白血球濃度/元液白血球濃
度)×100(%) なお、元液及び回収液の体積は、各々の重量を比重1.
075で割った値とした。また白血球濃度の測定は次の
方法で行った。 元液白血球濃度の測定:チュルク液によって、10倍希
釈した元液をビュルケルチュルク型の血球計算板に注入
し、光学顕微鏡を用いて大区画4区画中に存在する白血
球をカウントし、この値をn1 とした。 元液白血球濃度=n1 ×0.25×105 (個/ml) 回収液白血球濃度の測定:回収液の入ったバッグ内に5
%フィコール400DLのEBSS溶液(以下、フィコ
ール液という)を回収液と同容量を振とう混和しながら
加え、血漿分離スタンド上で回収バッグを固定し、40
分間静置した。静置後、沈降している赤血球層を乱さな
いように、静かに上澄を回収した後、再びフィコール液
を前回と同容量回収バッグに加え、同様の操作を繰り返
した。2回の操作により回収された上澄をコーニング2
5350遠心チューブ4本に分注し、840×g、15
分間遠心し、沈査を吸い上げぬように注意しながら、上
澄をアスピレータで廃棄した。各遠心チューブに200
mlの溶血液(1.145%しゅう酸アンモニウム生理
食塩液)を加えて振とう混和し、ただちに468×g、
10分間遠心し、前述と同様の注意を払いながら、上澄
をアスピレータで廃棄した。4本分の沈査を15mlの
遠心チューブに集め、溶血液を加えて全量を15mlと
した後、10分間室温に静置し、468×g、10分間
遠心し、沈査を含む0.5mlを残して、上澄を慎重に
廃棄した。沈査を含む液を十分に攪拌して単一細胞浮遊
液とした後、蛍光染色液(69.9mg/1アククリジ
ンオレンジ液)50μlを加え、更に攪拌した。この液
を、改良型ノイバウエル式血球計算板6枚に注入し、落
射式蛍光顕微鏡を用いて大区画108区画中に存在する
白血球をカウントした。このカウント値n2 から次式に
よって、回収液白血球濃度を算出した。 回収液白血球濃度=(2 /108×104 ×0.55
/0.55)/回収液体積(個/ml) 下線部が回収液からフィコール液を用いて最終的に0.
55mlまで濃縮した液(以下、濃縮液とする)中の白
血球濃度(個/ml)であり、これに濃縮液の体積0.
55mlを乗じて白血球数を算出する。更に0.55で
割るのは、フィコール液を用いて白血球を回収する際の
回収率が55%であるためである。以上の結果、赤血球
回収率は95%、白血球除去率は99.9%、濾過時間
は15分であった。
Red blood cell preparation before filtration (hereinafter referred to as original solution)
Also, the volume of the recovered liquid, hematocrit, and the number of white blood cells were measured to obtain the red blood cell recovery rate and the white blood cell removal rate. Red blood cell recovery rate = (recovered liquid liquid x recovered liquid hematocrit)
/ (Source solution volume x source solution hematocrit) x 100 (%) Leukocyte residual rate = (1-recovered solution leukocyte concentration / source solution leukocyte concentration) x 100 (%) The volumes of the source solution and the recovered solution are Specific gravity is 1.
The value was divided by 075. The white blood cell concentration was measured by the following method. Determination of white blood cell concentration of original solution: The original solution diluted 10 times with Turk's solution was injected into a Bürkertürk's hemocytometer, and white blood cells present in 4 large sections were counted using an optical microscope. Was set to n 1 . Original liquid leukocyte concentration = n 1 × 0.25 × 10 5 (cells / ml) Measurement of recovered liquid leukocyte concentration: 5 in the bag containing the recovered liquid
% Ficoll 400 DL EBSS solution (hereinafter referred to as Ficoll solution) was added while shaking and mixing the same volume as the collection solution, and the collection bag was fixed on the plasma separation stand.
Let stand for minutes. After leaving still, the supernatant was gently recovered so as not to disturb the sedimented red blood cell layer, and then Ficoll solution was again added to the same volume recovery bag as before, and the same operation was repeated. Corning the supernatant collected by two operations 2
Dispense into 4 tubes of 5350, 840 xg, 15
After centrifuging for a minute, the supernatant was discarded with an aspirator, taking care not to suck up the precipitate. 200 for each centrifuge tube
ml of hemolyzed blood (1.145% ammonium oxalate physiological saline) was added and mixed by shaking. Immediately, 468 × g,
After centrifuging for 10 minutes, the supernatant was discarded with an aspirator while paying the same attention as above. Collect the four precipitates in a 15-ml centrifuge tube, add hemolyzate to make the total volume 15 ml, then leave at room temperature for 10 minutes, centrifuge at 468 xg for 10 minutes, and leave 0.5 ml containing the precipitate. The supernatant was carefully discarded. The solution containing the precipitate was thoroughly stirred to give a single cell suspension, and 50 μl of a fluorescent staining solution (69.9 mg / 1 accridine orange solution) was added and further stirred. This solution was injected into six modified Neubauer-type hemocytometers, and white blood cells present in the large section 108 were counted using an epi-illumination fluorescence microscope. The white blood cell concentration of the recovered liquid was calculated from the count value n 2 by the following equation. Recovered liquid leukocyte concentration = (n 2/108 × 10 4 × 0.55
/0.55)/recovered liquid volume (pieces / ml) The underlined portion from the recovered liquid finally uses 0.1%.
The white blood cell concentration (cells / ml) in a liquid concentrated to 55 ml (hereinafter referred to as a concentrated liquid), and the volume of the concentrated liquid was 0.
The white blood cell count is calculated by multiplying by 55 ml. The reason for further dividing by 0.55 is that the recovery rate when leukocytes are recovered using Ficoll solution is 55%. As a result, the red blood cell recovery rate was 95%, the white blood cell removal rate was 99.9%, and the filtration time was 15 minutes.

【0016】[0016]

【比較例1】実施例1のみかけ膜体積と同体積(4.5
cm3 )の有効濾過部を有する容器に、実施例1と同様
のコーティングを施した平均孔径5.4μmのポリビニ
ルホルマール(PVF)製平板状多孔質体(有効濾過面
積9cm2 、厚み5mm)を充填した。このフィルター
に実施例1と同様の血液回路を接続し、同様の赤血球製
剤を濾過した結果、白血球除去率は99.9%であった
が、濾過途中で目詰まりが発生し、濾過が停止してしま
い、赤血球回収率は58%であった。
[Comparative Example 1] The same volume as the apparent membrane volume of Example 1 (4.5
cm 3 ), a container having an effective filtration portion, and a polyvinyl formal (PVF) flat plate-shaped porous body (effective filtration area 9 cm 2 , thickness 5 mm) having an average pore diameter of 5.4 μm, which was coated in the same manner as in Example 1, were placed. Filled. The same blood circuit as in Example 1 was connected to this filter, and the same red blood cell preparation was filtered. As a result, the leukocyte removal rate was 99.9%, but clogging occurred during filtration and filtration stopped. The red blood cell recovery rate was 58%.

【0017】[0017]

【比較例2】実施例1のみかけ膜体積と同体積(4.5
cm3 )の有効濾過部を有する容器に、実施例1と同様
のコーティングを施した平均孔径5.1μmのポリエチ
レンテレフタレート(PET)製不織布を充填した(充
填密度0.29g/cm3 、充填厚み5mm)。このフ
ィルターに実施例1と同様の血液回路を接続し、同様の
赤血球製剤を濾過した結果、白血球除去率は99.9%
であったが、比較例1と同様濾過途中で目詰まりが発
生、濾過が停止した。このとき赤血球回収率は76%で
あった。
Comparative Example 2 The same volume as the apparent membrane volume of Example 1 (4.5
(cm 3 ), a container having an effective filtration portion was filled with a polyethylene terephthalate (PET) non-woven fabric having an average pore diameter of 5.1 μm and having the same coating as in Example 1 (filling density 0.29 g / cm 3 , filling thickness). 5 mm). The same blood circuit as in Example 1 was connected to this filter, and the same red blood cell preparation was filtered. As a result, the leukocyte removal rate was 99.9%.
However, similar to Comparative Example 1, clogging occurred during the filtration and the filtration stopped. At this time, the red blood cell recovery rate was 76%.

【0018】[0018]

【比較例3】比較例2にて目詰まりが発生したことか
ら、比較例2より平均孔径の大きめの不織布を用いた。
実施例1のみかけ膜体積と同体積(4.5cm3 )の有
効濾過部を有する容器に、実施例1と同様のコーティン
グを施した平均孔径9.2μmのポリエチレンテレフタ
レート(PET)製不織布を充填した(充填密度0.2
5g/cm3 、充填厚み5mm)。このフィルターに実
施例1と同様の血液回路を接続し、同様の赤血球製剤を
濾過した結果、赤血球回収率は96%、白血球除去率は
99.7%、濾過時間は36分であった。実施例及び比
較例の結果を表1に示す。
[Comparative Example 3] Since clogging occurred in Comparative Example 2, a non-woven fabric having a larger average pore diameter than Comparative Example 2 was used.
A polyethylene terephthalate (PET) non-woven fabric having an average pore diameter of 9.2 μm coated with the same coating as in Example 1 was filled in a container having an effective filtration part having the same volume (4.5 cm 3 ) as the apparent membrane volume. (Packing density 0.2
5 g / cm 3 , filling thickness 5 mm). The same blood circuit as in Example 1 was connected to this filter, and the same red blood cell preparation was filtered. As a result, the red blood cell recovery rate was 96%, the white blood cell removal rate was 99.7%, and the filtration time was 36 minutes. Table 1 shows the results of Examples and Comparative Examples.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【発明の効果】本発明の中空糸膜型白血球除去フィルタ
ー装置を用いることにより、濾過流速低下、目詰まり等
を起こさず、白血球浮遊液から白血球を迅速に濾過する
ことができ、且つ高い白血球除去率を達成することが可
能となる。
EFFECT OF THE INVENTION By using the hollow fiber membrane type leukocyte removal filter device of the present invention, leukocytes can be rapidly filtered from leukocyte suspension without lowering the filtration flow rate, clogging, etc. It is possible to achieve the rate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明中空糸膜型白血球除去フィルター装置の
1例を示すもので、実施例に示した本発明装置の模式
図。
FIG. 1 shows an example of the hollow fiber membrane type leukocyte removal filter device of the present invention, and is a schematic view of the device of the present invention shown in Examples.

【符号の説明】 1 円筒容器 2 多孔質中空糸膜 3 接着剤 4 液体入口 5 キャップ 6 液体出口 7 メッシュチャンバー 8 血液移送チューブ 9 血液供給バッグ 10 血液回収バッグ[Explanation of symbols] 1 cylindrical container 2 porous hollow fiber membrane 3 adhesive 4 liquid inlet 5 cap 6 liquid outlet 7 mesh chamber 8 blood transfer tube 9 blood supply bag 10 blood collection bag

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 平均孔径が1〜100μmである貫通孔
を有し、平均膜厚が0.05〜2mm、(平均濾過面積
/みかけ膜体積)の値が3〜200cm2 /cm3 であ
る多孔質中空糸膜を液体の入口と出口を有する容器に充
填した中空糸膜型白血球除去フィルター装置。
1. A through hole having an average pore diameter of 1 to 100 μm, an average membrane thickness of 0.05 to 2 mm, and a value of (average filtration area / apparent membrane volume) of 3 to 200 cm 2 / cm 3 . A hollow fiber membrane-type leukocyte removal filter device in which a container having a liquid inlet and an outlet is filled with a porous hollow fiber membrane.
JP30332995A 1995-10-30 1995-10-30 Hollow thread membrane type white blood cell removing filter device Pending JPH09122231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30332995A JPH09122231A (en) 1995-10-30 1995-10-30 Hollow thread membrane type white blood cell removing filter device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30332995A JPH09122231A (en) 1995-10-30 1995-10-30 Hollow thread membrane type white blood cell removing filter device

Publications (1)

Publication Number Publication Date
JPH09122231A true JPH09122231A (en) 1997-05-13

Family

ID=17919671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30332995A Pending JPH09122231A (en) 1995-10-30 1995-10-30 Hollow thread membrane type white blood cell removing filter device

Country Status (1)

Country Link
JP (1) JPH09122231A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007527257A (en) * 2003-07-03 2007-09-27 フレゼニウス・ヘモケア・イタリア・ソシエタ・ア・レスポンサビリタ・リミタータ Filter for removal of substances from blood products

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007527257A (en) * 2003-07-03 2007-09-27 フレゼニウス・ヘモケア・イタリア・ソシエタ・ア・レスポンサビリタ・リミタータ Filter for removal of substances from blood products

Similar Documents

Publication Publication Date Title
US5665233A (en) Filter apparatus for selectively removing leukocytes
US5298165A (en) Method for removing leukocytes and a filter system for removing the same
KR101038248B1 (en) Method of Removing Leukocytes, Leukocyte-Removing Filter and Utilization Thereof
JP3941838B2 (en) Leukocyte removal filter material
US8900462B2 (en) Method for removing leukocyte and filter for use therein
JP3311091B2 (en) Filter for separating white blood cells and filter for separating white blood cells and platelets
US5707520A (en) Remover unit for use in filtration circuit for removing at least leukocyte
EP2633871A1 (en) Novel leucocyte removal filter
JP3461360B2 (en) Leukocyte removal filter material
US7524425B2 (en) Filter for the removal of substances from blood products
JP3270125B2 (en) Leukocyte trapping material
JP3461359B2 (en) Leukocyte removal filter system and leukocyte removal method
JP2918595B2 (en) White blood cell separator
JPH0510105B2 (en)
JP3657013B2 (en) Leukocyte removal filter material, leukocyte removal apparatus and leukocyte removal method
JPH09122231A (en) Hollow thread membrane type white blood cell removing filter device
JP4384823B2 (en) Leukocyte removal filter device and leukocyte removal method
JPH11290060A (en) Cell separation filter suitable for recovering cell, cell separation system and separation of cell
JP3209556B2 (en) Leukocyte selective removal filter device
JPH1142406A (en) Leucocyes removing filter medium
JPH0440202A (en) Air trap having filter for removal of fine particle
JPH03158168A (en) Blood component separating method and blood component separator