JPH09119916A - Method for quantitative analysis of very small amount of compound - Google Patents

Method for quantitative analysis of very small amount of compound

Info

Publication number
JPH09119916A
JPH09119916A JP7275868A JP27586895A JPH09119916A JP H09119916 A JPH09119916 A JP H09119916A JP 7275868 A JP7275868 A JP 7275868A JP 27586895 A JP27586895 A JP 27586895A JP H09119916 A JPH09119916 A JP H09119916A
Authority
JP
Japan
Prior art keywords
less
quantitative
mass
column
target compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7275868A
Other languages
Japanese (ja)
Inventor
Takashi Suzuki
隆 鈴木
Kazue Matsuzaki
和恵 松崎
Yasuo Mizooku
康夫 溝奥
Utaji Sawa
歌二 澤
Hajime Kitahara
一 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUMIKA BUNSEKI CENTER KK
Original Assignee
SUMIKA BUNSEKI CENTER KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUMIKA BUNSEKI CENTER KK filed Critical SUMIKA BUNSEKI CENTER KK
Priority to JP7275868A priority Critical patent/JPH09119916A/en
Publication of JPH09119916A publication Critical patent/JPH09119916A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a method for quantitatively analyzing a target compound of which content in an organism sample is extremely small, by a high-speed liquid chromatography/mass spectrometer system. SOLUTION: The inner diameter of the column for a high-speed liquid chromatography is set to 1.0-4.6mm, the length is set to 1-25cm, and the particle diameter of an inverse-phase system filler in the column is 3-10μm. A fixed amount of target compound which is equal to or more than 0.1pg/ml and less than 10pg/ml is injected into a mass spectrograph and an optimized product ion is set to a take-in width which is 1 mass unit to 2 mass units for measurement, thus achieving, with an improved reproducibility, a relative standard deviation of 20% or less for a quantitative lower limit which is 0.1pg to less than 10pg when the content of the quantitative target compound in a sample is less than 1μg/ml.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は高速液体クロマト
グラフィー・質量分析計システム(LC−MS/MS)
を用いて、試料中の含有量が極微量である目的化合物を
定量分析する方法に関する。この定量分析方法は医薬品
の開発における安全性試験等に付随する薬物動態試験等
に係わる試料中の微量薬物濃度測定に用いられ得る。
TECHNICAL FIELD The present invention relates to a high performance liquid chromatography / mass spectrometer system (LC-MS / MS).
The present invention relates to a method for quantitatively analyzing a target compound whose content in a sample is extremely small. This quantitative analysis method can be used for measuring a trace amount of drug concentration in a sample involved in a pharmacokinetic test associated with a safety test in drug development.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】クロ
マトグラフィーを用いる生体試料中微量薬物の濃度測定
技術としてはすでにLC−UV法、LC−蛍光法、GC
−NPD法等がよく知られている。しかし、これらの分
析法は、定量下限がナノまたはサブナノグラムのレベル
であり、極微量(ピコグラム/mlレベル)の薬物分析に
は不十分である。近年、ピコグラム/mlレベル薬物の分
析法としてGC−MS/MS法の報告がある(ANALYTIC
AL BIOCHEMISTRY 164,156-163 (1987))が、この方法は
ペンタフルオロベンジルエステル化およびトリメチルシ
ルエーテル化の2段階の誘導体修飾化が必須であり、対
象化合物が限定されることや前処理が繁雑で多大な労力
を費やすことから多数検体の分析に適さない欠点があ
る。また、LC−MS/MS(APCI)法により、薬
物を誘導体化することなく、定量下限10pg/mlを実現
したとの報文もある(Biol. Mass Spectrometry 21, 585
-589 (1992))が、これ以下のまさにピコグラム/mlレ
ベルの薬物を定量することはできない。本発明は、上記
のような欠点がなく、ピコグラム/mlレベルの薬物濃
度を長期安定的に定量し得るような「液体クロマトグラ
フィー技術と質量分析計使用技術の組み合わせによる分
析手段」を提供するものである。
2. Description of the Related Art As a technique for measuring the concentration of a trace amount of drug in a biological sample using chromatography, LC-UV method, LC-fluorescence method, GC has already been used.
-NPD method and the like are well known. However, these analytical methods have a lower limit of quantification at the nano or sub-nanogram level, and are insufficient for the drug analysis of a very small amount (picogram / ml level). Recently, there is a report of GC-MS / MS method as an analysis method for picogram / ml level drug (ANALYTIC
AL BIOCHEMISTRY 164 , 156-163 (1987)), but this method requires a two-step derivative modification of pentafluorobenzyl esterification and trimethylsiletherification, which limits the target compounds and complicated pretreatment. Since it requires a lot of labor, it has a drawback that it is not suitable for the analysis of a large number of samples. There is also a report that the lower limit of quantification of 10 pg / ml was achieved without derivatizing the drug by LC-MS / MS (APCI) method (Biol. Mass Spectrometry 21 , 585).
-589 (1992)) cannot quantify the drug at very low picogram / ml levels below this. The present invention provides "an analysis means by a combination of a liquid chromatography technique and a mass spectrometer use technique" capable of stably quantifying a picogram / ml level drug concentration for a long time without the above-mentioned drawbacks. Is.

【0003】[0003]

【課題を解決するための手段】高速液体クロマトグラフ
ィーおよび2個のイオン分離室を有する質量分析装置か
らなる高速液体クロマトグラフィー・質量分析計システ
ム(LC−MS/MS)を用いる定量分析方法であっ
て、(1)上記高速液体クロマトグラフィーのカラムの内
径が1.0〜4.6mm、長さが1〜25cm、カラム内
の逆相系充填剤の粒子径が3〜10μmであり、(2)上
記質量分析計が、0.1pg以上10pg未満の定量目
的化合物を注入し、最適化されたプロダクトイオンを1
マスユニット以上2マスユニット以下の取り込み幅に設
定して測定したとき、S/N比が3以上であり、(3)試
料中の定量目的化合物の含有量が1μg/ml未満であ
るとき、定量下限0.1pg/ml以上10pg/ml
未満につき相対標準偏差20%以下を再現性よく実現す
ることを特徴とする定量分析方法である。
A quantitative analysis method using a high performance liquid chromatography / mass spectrometer system (LC-MS / MS) comprising a high performance liquid chromatography and a mass spectrometer having two ion separation chambers. (1) The inner diameter of the high performance liquid chromatography column is 1.0 to 4.6 mm, the length is 1 to 25 cm, and the particle size of the reversed-phase packing material in the column is 3 to 10 μm. ) The mass spectrometer injects 0.1 pg or more and less than 10 pg of the quantitative target compound, and optimizes the product ion to 1
Quantitative when the S / N ratio is 3 or more, and (3) the content of the target compound in the sample is less than 1 μg / ml, when the measurement is performed by setting the intake width from the mass unit to 2 mass units. Lower limit 0.1 pg / ml or more 10 pg / ml
It is a quantitative analysis method characterized in that a relative standard deviation of 20% or less is realized with good reproducibility.

【0004】[0004]

【発明の実施の形態】上記の充填カラムにおいて、カラ
ムの内径は1.0〜4.6mmであり、好ましくは、1.
0〜2.5mm、より好ましくは2.1mm以下である。
BEST MODE FOR CARRYING OUT THE INVENTION In the above packed column, the inner diameter of the column is 1.0 to 4.6 mm, preferably 1.
It is 0 to 2.5 mm, and more preferably 2.1 mm or less.

【0005】カラムの長さは1〜25cmであり、5〜
15cmの方がより好ましい。充填剤の粒子径は3〜1
0μmであればよい。
The length of the column is 1 to 25 cm, 5 to
15 cm is more preferable. The particle size of the filler is 3 to 1
It may be 0 μm.

【0006】充填剤は、移動相との関係で固定相として
逆相クロマトグラフィーに適するものが用いられる。通
常、メチル(C1)−、アミノプロピル−、シアノプロ
ピル−、フェニル−、オクチル(C8)−またはオクタ
デシル(C18)−シリル基でシリカ表面のヒドロキシル
基を化学修飾した結合型充填剤が用いられるが、セルロ
ースや蛋白質、ピレン等を固定化した充填剤やカーボン
ブラックなども用い得る。好ましくは、フェニル−、オ
クチル−、オクタデシル−シリルであり、最も好ましく
は、オクタデシルシリル基で修飾されたものである。こ
のような充填剤は市販のものを使用し得る。
As the packing material, a packing material suitable for reverse phase chromatography is used as a stationary phase in relation to the mobile phase. Usually, a bonded filler obtained by chemically modifying a hydroxyl group on a silica surface with a methyl (C 1 )-, aminopropyl-, cyanopropyl-, phenyl-, octyl (C 8 )-or octadecyl (C 18 ) -silyl group is used. Although used, a filler in which cellulose, protein, pyrene or the like is immobilized, carbon black or the like can also be used. Preferred are phenyl-, octyl-, octadecyl-silyl, and most preferred are those modified with octadecylsilyl groups. As such a filler, a commercially available one can be used.

【0007】移動相は水性媒体であり、有機溶媒として
はアセトニトリル、メタノール、アセトン、ジオキサ
ン、テトラヒドロフラン、エタノール、イソプロパノー
ルなどが用いられる。分離状況等によって使い分ける。
The mobile phase is an aqueous medium, and as the organic solvent, acetonitrile, methanol, acetone, dioxane, tetrahydrofuran, ethanol, isopropanol and the like are used. Use properly according to the separation situation.

【0008】検出器としての質量分析計には2個のイオ
ン分離室を有する一体型の質量分析装置が用いられる。
本発明の定量分析法を実施するために用いられる分析装
置は0.1pg以上10pg未満の定量目的化合物を注
入したとき、S/N比が3以上であることを要する。
A mass spectrometer as a detector uses an integrated mass spectrometer having two ion separation chambers.
The analyzer used for carrying out the quantitative analysis method of the present invention is required to have an S / N ratio of 3 or more when injecting 0.1 pg or more and less than 10 pg of the quantitative target compound.

【0009】S/N比とは、空試験のクロマトグラムに
おけるノイズピークの強度に対する実試験クロマトグラ
ムの目的イオンピーク強度の比をいう。3以上のS/N
比を得るために、質量分析計の稼働開始以後に、分析目
的化合物をイオン化室へ導入する際の分析目的化合物の
量が1回あたり500μg以下であり、1日あたり10
00μg以下であり、1年間あたり50mg以下になるよ
うに使用して、稼働履歴を調整しておくことが望まし
い。
The S / N ratio is the ratio of the intensity of the target ion peak of the actual test chromatogram to the intensity of the noise peak in the blank test chromatogram. S / N of 3 or more
In order to obtain the ratio, the amount of the compound to be analyzed when introducing the compound to be analyzed into the ionization chamber after the start of operation of the mass spectrometer is 500 μg or less per time,
It is desirable to adjust the operation history by using it so that it is less than 00 μg and less than 50 mg per year.

【0010】試料中の定量目的化合物の含有量が1μg
/ml未満であるとき、上記の質量分析計を用いて最適
化されたプロダクトイオン(娘イオン)を1マスユニッ
ト以上2マスユニット以下の取り込み幅で検出すると
き、相対標準偏差20%以下で定量下限0.1pg/m
l以上10pg/ml未満につき再現性よく測定し得
る。定量下限とは、当該試験法における精度、正確度が
確かめられた最小測定量をいう。相対標準偏差(R.S.
D.)とは、n個の測定値の標準偏差の測定値平均に対
する百分率をいう。
The content of the quantitative target compound in the sample is 1 μg
When the product ion (daughter ion) optimized using the above-mentioned mass spectrometer is detected with a capture width of 1 mass unit or more and 2 mass units or less when the amount is less than 1 ml / ml, the relative standard deviation is 20% or less. Lower limit 0.1 pg / m
It can be measured with good reproducibility for 1 or more and less than 10 pg / ml. The lower limit of quantification refers to the minimum measurable quantity whose accuracy and precision in the test method have been confirmed. Relative standard deviation (RS
D.) refers to the percentage of the standard deviation of n measured values with respect to the average of the measured values.

【0011】本発明の定量分析方法を用いるに当たっ
て、通常、目的化合物以外の生体成分をできるかぎり取
り除く前処理(クリーンアップ)を施したものを、例え
ば水と有機溶媒の混合溶媒に溶かし(これを試料溶液と
する)、これの1〜100μlの中の一定量を正確に量
りとり、高速液体クロマトグラフの注入部分に導入す
る。
In using the quantitative analysis method of the present invention, usually, pretreatment (cleanup) for removing biological components other than the target compound as much as possible is dissolved in, for example, a mixed solvent of water and an organic solvent. A sample solution), 1 to 100 μl of which is accurately weighed and introduced into the injection part of the high performance liquid chromatograph.

【0012】[0012]

【実施例】【Example】

実施例1 1.標準溶液の調製 ヒヨスチアミン10mgを少量のメタノールで溶解後、
メタノールで正確に50mlとし、これを原液とした
(200μg/ml)。この原液を次のように希釈して
各標準溶液を調製した。 10 μg/ml :原液の5mlをとり、メタノールで正確に100mlとした。 0.5 μg/ml :上記の5mlをとり、メタノールで正確に100mlとした。 0.05 μg/ml :上記の5mlをとり、メタノールで正確に50mlとした。 0.02 μg/ml :上記の2mlをとり、メタノールで正確に50mlとした。 0.01 μg/ml :上記の4mlをとり、メタノールで正確に20mlとした。 0.005 μg/ml :上記の5mlをとり、メタノールで正確に50mlとした。 0.002 μg/ml :上記の5mlをとり、メタノールで正確に50mlとした。 0.001 μg/ml :上記の2mlをとり、メタノールで正確に20mlとした。 0.0005 μg/ml :上記の1mlをとり、メタノールで正確に20mlとした。
Example 1 Preparation of standard solution After dissolving 10 mg of hyoscyamine with a small amount of methanol,
To exactly 50 ml with methanol, this was used as a stock solution (200 μg / ml). Each stock solution was prepared by diluting this stock solution as follows. 10 μg / ml: 5 ml of the stock solution was taken and made exactly 100 ml with methanol. 0.5 μg / ml: Take 5 ml of the above and make exactly 100 ml with methanol. 0.05 μg / ml: Take 5 ml of the above and make exactly 50 ml with methanol. 0.02 μg / ml: 2 ml of the above was taken and made exactly 50 ml with methanol. 0.01 μg / ml: The above 4 ml was taken and made exactly 20 ml with methanol. 0.005 μg / ml: The above 5 ml was taken and made exactly 50 ml with methanol. 0.002 μg / ml: The above 5 ml was taken and made exactly 50 ml with methanol. 0.001 μg / ml: The above 2 ml was taken and made exactly 20 ml with methanol. 0.0005 μg / ml: 1 ml of the above was taken and made exactly 20 ml with methanol.

【0013】2.前処理方法(図1参照) 血清1mlに内標準物質(IS):DL−ヒヨスチアミ
ン−d3(N-methyl-d3 98%)のメタノール溶液
(25ng/ml)10μlを加えて混和し、14%
(v/v)アンモニア水20μlを添加して塩基性(p
H 9)に調整し、食塩250mg添加による塩析下で
1−ブタノール/1−クロロブタン(1/9 v/v)
5mlを加え、5分間振盪、5分間遠心分離(3000
rpm)した後、有機層を分取した。残った水層に再び
1−ブタノール/1−クロロブタン(1/9 v/v)
5mlを加え、5分間振盪、5分間遠心分離(3000
rpm)した後、有機層を分取し、先の有機層と合わせ
た。これに、1%(v/v)酢酸300μlを加え、5
分間振盪、5分間遠心分離(3000rpm)した後、
有機層を捨て、残った水層を下記条件のLC−MSに1
00μl注入した。
2. Pretreatment methods (see FIG. 1) internal standard serum 1 ml (IS): DL-methanol solution (25 ng / ml) of hyoscyamine -d 3 (N-methyl-d 3 98%) added to, and mixed with 10 [mu] l, 14%
(V / v) Add 20 μl of ammonia water to add
H 9) and 1-butanol / 1-chlorobutane (1/9 v / v) under salting out by adding 250 mg of sodium chloride.
Add 5 ml, shake for 5 minutes, and centrifuge for 5 minutes (3000
rpm) and then the organic layer was separated. 1-butanol / 1-chlorobutane (1/9 v / v) was added again to the remaining aqueous layer.
Add 5 ml, shake for 5 minutes, and centrifuge for 5 minutes (3000
rpm), the organic layer was separated and combined with the previous organic layer. To this, add 300 μl of 1% (v / v) acetic acid and add 5
After shaking for 5 minutes and centrifugation (3000 rpm) for 5 minutes,
The organic layer was discarded, and the remaining aqueous layer was subjected to LC-MS under the following conditions 1
00 μl was injected.

【0014】 LC−MS/MS装置および測定条件 (1)装置 トリプルステージ四重極型質量分析計 TSQ7000(Finnigan MAT社製) LC-MSインターフェース TSQ/SSQ700 APIsystem (Finnigan MAT社製) 液体クロマトグラフ 626 (Waters社製) オートインジェクター 717plus (Waters社製) (2)測定条件 分析カラム SUMIPAX ODS C-210 2.1mm i.d.×150mmL 移動相 20mM酢酸アンモニウム/メタノール=4/6(v/v) カラム温度 室温 流速 0.2ml/min イオン化法 エレクトロスプレーイオン化法 イオン検出 陽イオン検出 スプレー電圧 4.5kV シースガス圧 70psi(N2) 補助ガス流量 10unit(N2) キャピラリー温度 200℃ コリジョンガス圧 1.5mTorr(Ar) コリジョンエネルギー 30eV エレクトロマルチプラ 2.0kV イヤー電圧 モニターイオン ヒヨスチアミン m/z 290 → m/z 124 IS m/z 293 → m/z 127LC-MS / MS device and measurement conditions (1) Device Triple stage quadrupole mass spectrometer TSQ7000 (manufactured by Finnigan MAT) LC-MS interface TSQ / SSQ700 API system (manufactured by Finnigan MAT) Liquid chromatograph 626 (Waters) Auto-injector 717plus (Waters) (2) Measurement conditions Analytical column SUMIPAX ODS C-210 2.1mm id x 150mmL Mobile phase 20mM Ammonium acetate / methanol = 4/6 (v / v) Column temperature Room temperature Flow rate 0.2ml / min Ionization method Electrospray ionization method Ion detection Positive ion detection Spray voltage 4.5kV Sheath gas pressure 70psi (N 2 ) Auxiliary gas flow 10unit (N 2 ) Capillary temperature 200 ℃ Collision gas pressure 1.5mTorr (Ar) Collision energy 30eV Electro Multipla 2.0kV Ear voltage monitor Ion Hyoscyamine m / z 290 → m / z 124 IS m / z 293 → m / z 127

【0015】3.添加検量線作成法 血清1.0mlに、以下に示す標準溶液を加え、よく混
和した後、2の前処理方法に従って処理を行った。 S-0 0 pg/ml血清 :無添加 S-1 5 pg/ml血清 :標準溶液を10μl S-2 10 pg/ml血清 :標準溶液を10μl S-3 20 pg/ml血清 :標準溶液を10μl S-4 50 pg/ml血清 :標準溶液を10μl S-5 100 pg/ml血清 :標準溶液を10μl S-6 200 pg/ml血清 :標準溶液を10μl S-7 500 pg/ml血清 :標準溶液を10μl 測定毎に上記試料を測定しヒヨスチアミン添加濃度x
と、内部標準のピーク面積に対するヒヨスチアミンのピ
ーク面積の比yの関係を重み付き最小二乗法により求
め、検量線を作成した。最小二乗法における重みは測定
値の逆数の二乗1/y2を用いた。
3. Preparation of addition calibration curve To 1.0 ml of serum, the following standard solution was added and mixed well, and then treated according to the pretreatment method of 2. S-0 0 pg / ml serum: no additive S-1 5 pg / ml serum: standard solution 10 μl S-2 10 pg / ml serum: standard solution 10 μl S-3 20 pg / ml serum: standard solution 10 μl S-4 50 pg / ml serum: standard solution 10 μl S-5 100 pg / ml serum: standard solution 10 μl S-6 200 pg / ml serum: standard solution 10 μl S-7 500 pg / ml serum: standard solution The above sample was measured every 10 μl of measurement, and the concentration of hyoscyamine added x
And the relationship of the ratio y of the peak area of hyoscyamine to the peak area of the internal standard was determined by the weighted least squares method, and a calibration curve was prepared. As the weight in the least square method, the square of the reciprocal of the measured value, 1 / y 2, was used.

【0016】4.結果 (1)5回の測定における定量下限(添加検量線のS−
1)のクロマトグラムよりS/N比を算出した結果、そ
れぞれ8.0,7.3,6.5,10.2,6.8であっ
た。定量下限のクロマトグラムの一例を図2に示す。 (2)測定範囲の確認 表1に結果を示す。添加検量線(5〜500pg/ml
血清)の直線性はすべて相関係数0.99以上と良好で
あった。また、すべての濃度範囲において、2.2%〜
16.9%の精度を示した。
4. Results (1) Lower limit of quantification in 5 measurements (S-of addition calibration curve
As a result of calculating the S / N ratio from the chromatogram of 1), the values were 8.0, 7.3, 6.5, 10.2 and 6.8, respectively. An example of the lower limit of quantification chromatogram is shown in FIG. (2) Confirmation of measurement range Table 1 shows the results. Addition calibration curve (5-500 pg / ml
The linearity of serum) was good with a correlation coefficient of 0.99 or more. In addition, in all concentration ranges, 2.2% to
It showed an accuracy of 16.9%.

【0017】[0017]

【表1】 測定範囲の精度 濃度 ピーク面積比 (pg/ml) 1回目 2回目 3回目 4回目 5回目 平均値±S.D. R.S.D. S0(0.0) 0.0000 0.0000 0.0000 0.0000 0.0000 S1(5.0) 0.1210 0.1281 0.1303 0.1137 0.1365 0.1259 ± 0.0088 7.0 S2(10.1) 0.2519 0.1879 0.2346 0.1639 0.2058 0.2088 ± 0.0353 16.9 S3(20.2) 0.4073 0.3699 0.4278 0.3281 0.4987 0.4064 ± 0.0641 15.8 S4(50.4) 0.9121 0.8998 1.0686 0.7618 0.8529 0.8990 ± 0.1117 12.4 S5(100.8) 1.7857 1.7946 1.6064 1.4373 1.6836 1.6615 ± 0.1474 8.9 S6(201.6) 3.7621 3.4589 3.1689 3.5479 3.8852 3.5646 ± 0.2783 7.8 S7(504.0) 8.3288 8.2082 8.1567 8.0341 8.5182 8.2492 ± 0.1838 2.2 傾き 0.01722 0.01678 0.01675 0.01518 0.01738 0.01666 ± 0.0009 切片 0.03836 0.03467 0.05512 0.02867 0.04821 0.04101 ± 0.0106 相関係数 0.99599 0.99801 0.99288 0.99392 0.99105 0.99437[Table 1] Accuracy of measurement range Concentration peak area ratio (pg / ml) 1st 2nd 3rd 4th 5th Mean ± SDRSD S0 (0.0) 0.0000 0.0000 0.0000 0.0000 0.0000 S1 (5.0) 0.1210 0.1281 0.1303 0.1137 0.1365 0.1259 ± 0.0088 7.0 S2 (10.1) 0.2519 0.1879 0.2346 0.1639 0.2058 0.2088 ± 0.0353 16.9 S3 (20.2) 0.4073 0.3699 0.4278 0.3281 0.4987 0.4064 ± 0.0641 15.8 S4 (50.4) 0.9121 0.8998 1.0686 0.7618 0.8529 0.8990 ± 0.1117 12.4 S5 (100.8) 1.7857 1.76064 1.4373 1.6836 1.6615 ± 0.1474 8.9 S6 (201.6) 3.7621 3.4589 3.1689 3.5479 3.8852 3.5646 ± 0.2783 7.8 S7 (504.0) 8.3288 8.2082 8.1567 8.0341 8.5182 8.2492 ± 0.1838 2.2 inclination 0.01722 0.01678 0.01675 0.01518 0.01738 0.01666 ± 0.0009 intercept 0.03836 0.03467 0.05512 0.02867 0.04821 0.04101 ± 0.0106 Relation number 0.99599 0.99801 0.99288 0.99392 0.99105 0.99437

【0018】(3)日内変動及び日間変動 表2に結果を示す。日内変動(同時再現性試験)におけ
る測定精度は5.6〜12.8%、平均正確度は98.5
〜108.4%を示し、日間変動(日差再現性試験)に
おける測定精度は8.6〜10.2%、平均正確度は10
2.1〜104.4を示した。
(3) Intraday variation and daily variation Table 2 shows the results. The measurement accuracy in daily fluctuation (simultaneous reproducibility test) was 5.6 to 12.8%, and the average accuracy was 98.5.
-10 to 108.4%, the measurement accuracy in daily fluctuation (daily reproducibility test) is 8.6 to 10.2%, the average accuracy is 10
2.1 to 104.4 are shown.

【0019】[0019]

【表2】 日内変動 添加量 日数 定量値 平均定量値 S.D. R.S.D. 正確度 平均正確度(pg/ml) (pg/ml) (pg/ml) (%) (%) 4.6 92.0 5.5 110.0 1日目 5.6 5.0 0.6 11.1 112.0 99.2 4.4 88.0 4.7 94.0 5.0 100.0 5.2 104.0 5.0 2日目 5.7 5.4 0.3 5.6 114.0 108.4 5.6 112.0 5.6 112.0 5.5 110.0 4.4 88.0 3日目 4.3 5.0 0.6 12.8 86.0 100.8 5.3 106.0 5.7 114.0 50.6 100.4 54.2 107.5 1日目 56.2 49.6 6.0 12.1 111.5 98.5 41.7 82.7 45.5 90.3 49.7 98.6 43.0 85.3 50.4 2日目 52.8 51.5 5.5 10.7 104.8 102.2 57.3 113.7 54.8 108.7 58.5 116.1 54.5 108.1 3日目 51.3 53.2 3.5 6.6 101.8 105.5 49.4 98.0 52.2 103.6 523.6 103.9 452.7 89.8 1日目 578.3 502.9 49.5 9.8 114.7 99.8 472.0 93.7 488.0 96.8 581.3 115.3 533.9 105.9 504.0 2日目 509.1 531.6 43.7 8.2 101.0 105.5 562.6 111.6 470.9 93.4 531.9 105.5 593.4 117.7 3日目 580.4 543.4 41.7 7.7 115.2 107.8 498.9 99.0 512.4 101.7 S.D.:標準偏差 R.S.D.:相対標準偏差 正確度(%)=定量値/添加量×100[Table 2] Daily fluctuation Addition amount Days Quantitative value Average quantified value SDRSD Accuracy Average accuracy (pg / ml) (pg / ml) (pg / ml) (%) (%) 4.6 92.0 5.5 110.0 Day 1 5.6 5.0 0.6 11.1 112.0 99.2 4.4 88.0 4.7 94.0 5.0 100.0 5.2 104.0 5.0 Day 2 5.7 5.4 0.3 5.6 114.0 108.4 5.6 112.0 5.6 112.0 5.5 110.0 4.4 88.0 Day 3 4.3 5.0 0.6 12.8 86.0 100.8 5.3 106.0 5.7 114.0 50.6 100.4 54.2 107.5 Day 1 56.2 49.6 6.0 12.1 111.5 98.5 41.7 82.7 45.5 90.3 49.7 98.6 43.0 85.3 50.4 Day 2 52.8 51.5 5.5 10.7 104.8 102.2 57.3 113.7 54.8 108.7 58.5 116.1 54.5 108.1 Day 3 51.3 53.2 3.5 6.6 101.8 105.5 49.4 98.0 52.2 103.6 523.6 103.9 452.7 89.8 1 Day 578.3 502.9 49.5 9.8 114.7 99.8 472.0 93.7 488.0 96.8 581.3 115.3 533.9 105.9 504.0 Day 2 509.1 531.6 43.7 8.2 101.0 105.5 562.6 111.6 470.9 93.4 531.9 105.5 593.4 117.7 Day 3 580.4 543.4 41.7 7.7 115.2 107.8 498.9 99.0 512.4 101.7 S.D .: Standard deviation R.S.D .: Relative standard deviation Accuracy (%) = quantitative value / added amount × 100

【0020】 日間変動 添加量 日数 定量値 平均定量値 S.D. R.S.D. 平均正確度(pg/ml) (pg/ml) (pg/ml) (%) 4.6 5.5 1日目 5.6 4.4 4.7 5.0 5.2 5.0 2日目 5.7 5.1 0.52 10.2 102.8 5.6 5.6 5.5 4.4 3日目 4.3 5.3 5.7 50.6 54.2 1日目 56.2 41.7 45.5 49.7 43.0 50.4 2日目 52.8 51.4 5.0 9.7 102.1 57.3 54.8 58.5 54.5 3日目 51.3 52.2
523.6 452.7 1日目 578.3 472.0 488.0 581.3 533.9 504.0 2日目 509.1 526.0 45.3 8.6 104.4 562.6 470.9 531.9 593.4 3日目 580.4 498.9 512.4
Daily variation Addition amount Quantitative value Average quantified value SDRSD Average accuracy (pg / ml) (pg / ml) (pg / ml) (%) 4.6 5.5 Day 1 5.6 4.4 4.7 5.0 5.2 5.0 Day 2 5.7 5.1 0.52 10.2 102.8 5.6 5.6 5.5 4.4 Day 3 4.3 5.3 5.7 50.6 54.2 Day 1 56.2 41.7 45.5 49.7 43.0 50.4 Day 2 52.8 51.4 5.0 9.7 102.1 57.3 54.8 58.5 54.5 Day 3 51.3 52.2
523.6 452.7 Day 1 578.3 472.0 488.0 581.3 533.9 504.0 Day 2 509.1 526.0 45.3 8.6 104.4 562.6 470.9 531.9 593.4 Day 3 580.4 498.9 512.4

【0021】[0021]

【発明の効果】本発明の定量分析方法によれば、測定対
象化合物の誘導体修飾操作が必要でなく、ピコグラム/
mlレベルの化合物濃度を長期安定的に測定し得る。例
えば、この定量分析方法は医薬品の開発における安全性
試験等に付随する薬物動態試験等に係わる生体試料中の
微量薬物濃度測定に用いられ得る。近年、医薬品は副作
用等の悪影響を少なくするため、益々投与量の低減化の
傾向にある。これに対応し、生体試料中の薬物濃度の測
定も益々微量化の必要にせまられている。このような状
況下において、本発明の有用性は極めて大きいものがあ
る。
EFFECTS OF THE INVENTION According to the quantitative analysis method of the present invention, the derivative modification operation of the compound to be measured is not required, and the picogram /
The compound concentration at the ml level can be stably measured over a long period of time. For example, this quantitative analysis method can be used for measuring a trace amount of drug concentration in a biological sample involved in a pharmacokinetic test accompanying a safety test in drug development. In recent years, pharmaceuticals tend to be administered more and more in order to reduce adverse effects such as side effects. In response to this, measurement of the drug concentration in a biological sample is required to be further reduced. Under such circumstances, the usefulness of the present invention is extremely great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 前処理方法のフローチャートである。FIG. 1 is a flowchart of a pretreatment method.

【図2】 定量下限の測定例(ヒヨスチアミン)を示す
クロマトグラムである。
FIG. 2 is a chromatogram showing an example of measurement of the lower limit of quantification (hyoscyamine).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 溝奥 康夫 大阪府大阪市此花区春日出中3丁目1番 135号 株式会社住化分析センター内 (72)発明者 澤 歌二 大阪府大阪市此花区春日出中3丁目1番 135号 株式会社住化分析センター内 (72)発明者 北原 一 大阪府大阪市此花区春日出中3丁目1番 135号 株式会社住化分析センター内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuo Mizooku 3-1,135 Kasugadenaka, Konohana-ku, Osaka City, Osaka Prefecture Sumika Analytical Center Co., Ltd. (72) Inventor Kaji Sawa, Osaka City, Osaka Prefecture 3-1-135 Kasugaden-ku, Sumitomo Chemical Analysis Center Co., Ltd. (72) Inventor, Hajime Kitahara 3-1-135 Kasukadinaka, Konohana-ku, Osaka, Osaka

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高速液体クロマトグラフィーおよび2個
のイオン分離室を有する質量分析装置からなる高速液体
クロマトグラフィー・質量分析計システム(LC−MS
/MS)を用いる定量分析方法であって、 (1)上記高速液体クロマトグラフィーのカラムの内径が
1.0〜4.6mm、長さが1〜25cm、カラム内の逆
相系充填剤の粒子径が3〜10μmであり、 (2)上記質量分析計が、0.1pg以上10pg未満の定
量目的化合物を注入し、最適化されたプロダクトイオン
を1マスユニット以上2マスユニット以下の取り込み幅
に設定して測定したとき、S/N比が3以上であり、 (3)試料中の定量目的化合物の含有量が1μg/ml未
満であるとき、定量下限0.1pg/ml以上10pg
/ml未満につき相対標準偏差20%以下を再現性よく
実現する、ことを特徴とする定量分析方法。
1. A high performance liquid chromatography / mass spectrometer system (LC-MS) comprising high performance liquid chromatography and a mass spectrometer having two ion separation chambers.
/ MS), (1) The above-mentioned high performance liquid chromatography column has an inner diameter of 1.0 to 4.6 mm, a length of 1 to 25 cm, and particles of a reversed-phase packing material in the column. The diameter is 3 to 10 μm, and (2) the mass spectrometer injects a quantitative target compound of 0.1 pg or more and less than 10 pg, and optimizes the product ions to a capture width of 1 mass unit or more and 2 mass units or less. When set and measured, the S / N ratio is 3 or more, and (3) when the content of the target compound for quantitative determination in the sample is less than 1 μg / ml, the lower limit of quantitative determination is 0.1 pg / ml or more and 10 pg
A quantitative analysis method characterized in that a relative standard deviation of 20% or less per 1 ml / ml is realized with good reproducibility.
【請求項2】 上記カラムの内径が1.0〜2.5mmで
ある、請求項1記載の定量分析方法。
2. The quantitative analysis method according to claim 1, wherein the inner diameter of the column is 1.0 to 2.5 mm.
JP7275868A 1995-10-24 1995-10-24 Method for quantitative analysis of very small amount of compound Pending JPH09119916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7275868A JPH09119916A (en) 1995-10-24 1995-10-24 Method for quantitative analysis of very small amount of compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7275868A JPH09119916A (en) 1995-10-24 1995-10-24 Method for quantitative analysis of very small amount of compound

Publications (1)

Publication Number Publication Date
JPH09119916A true JPH09119916A (en) 1997-05-06

Family

ID=17561559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7275868A Pending JPH09119916A (en) 1995-10-24 1995-10-24 Method for quantitative analysis of very small amount of compound

Country Status (1)

Country Link
JP (1) JPH09119916A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003043053A1 (en) * 2001-11-13 2003-05-22 Nano Solution, Inc. Microspray column, mass spectrometer, and mass spectrometry
JP2005099015A (en) * 2003-09-05 2005-04-14 Sumitomo Chemical Co Ltd Liquid chromatographic device
JP2017151111A (en) * 2008-08-08 2017-08-31 クエスト ダイアグノスティックス インヴェストメンツ インコーポレイテッド Mass spectrometry for blood plasma renin
CN109900828A (en) * 2019-03-26 2019-06-18 上海试四化学品有限公司 A kind of product quality analysis method of VA-086

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003043053A1 (en) * 2001-11-13 2003-05-22 Nano Solution, Inc. Microspray column, mass spectrometer, and mass spectrometry
JP2005099015A (en) * 2003-09-05 2005-04-14 Sumitomo Chemical Co Ltd Liquid chromatographic device
JP2017151111A (en) * 2008-08-08 2017-08-31 クエスト ダイアグノスティックス インヴェストメンツ インコーポレイテッド Mass spectrometry for blood plasma renin
CN109900828A (en) * 2019-03-26 2019-06-18 上海试四化学品有限公司 A kind of product quality analysis method of VA-086

Similar Documents

Publication Publication Date Title
Alpenfels A rapid and sensitive method for the determination of monosaccharides as their dansyl hydrazones by high-performance liquid chromatography
Naidong et al. Novel liquid chromatographic–tandem mass spectrometric methods using silica columns and aqueous–organic mobile phases for quantitative analysis of polar ionic analytes in biological fluids
Okamoto et al. Sensitive detection and structural characterization of trimethyl (p‐aminophenyl)‐ammonium‐derivatized oligosaccharides by electrospray ionization–mass spectrometry and tandem mass spectrometry
Moseley et al. Optimization of a coaxial continuous flow fast atom bombardment interface between capillary liquid chromatography and magnetic sector mass spectrometry for the analysis of biomolecules
WO2022120752A1 (en) Method for quantitative analysis of free amino acids in biological sample by liquid chromatography-tandem mass spectrometry
Bagnati et al. Analysis of dexamethasone and betamethasone in bovine urine by purification with an “on-line” immunoaffinity chromatography–high-performance liquid chromatography system and determination by gas chromatography–mass spectrometry
Altria Improved performance in capillary electrophoresis
Wu et al. Simultaneous determination of six alkaloids in blood and urine using a hydrophilic interaction liquid chromatography method coupled with electrospray ionization tandem mass spectrometry
Wang et al. Derivatization of 5-fluorouracil with 4-bromomethyl-7-methoxycoumarin for determination by liquid chromatography-mass spectrometry
Chopra et al. Comparative study on the analytical performance of different detectors for the liquid chromatographic analysis of tobramycin
Girault et al. Quantitative measurement of clenbuterol at the femtomole level in plasma and urine by combined gas chromatography/negative ion chemical ionization mass spectrometry
Ali et al. Simultaneous determination of ofloxacin, tetrahydrozoline hydrochloride, and prednisolone acetate by high-performance liquid chromatography
Debremaeker et al. Analysis of spectinomycin by liquid chromatography with pulsed electrochemical detection
Kawabata et al. An automated method for the simultaneous determination of pravastatin and its main metabolite in human plasma by high‐performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry
JPH09119916A (en) Method for quantitative analysis of very small amount of compound
Shaw et al. Determination of sialic acids by liquid chromatography–mass spectrometry
Gumbhir et al. High-performance liquid chromatographic determination of phenylephrine and its conjugates in human plasma using solid-phase extraction and electrochemical detection
Krijt et al. Identification and determination of succinyladenosine in human cerebrospinal fluid
CN111487334B (en) Detection method of low-limit canagliflozin impurities
CN114646701B (en) HPLC test method for related substances in L-prolylamide
Kishi et al. Direct injection method for quantitation of endogenous leukotriene E4 in human urine by liquid chromatography/electrospray ionization tandem mass spectrometry with a column-switching technique
Inoue et al. High-performance liquid chromatographic determination of triazolam and its metabolites in human urine
Cherkaoui et al. Development and validation of liquid chromatography and capillary electrophoresis methods for acarbose determination in pharmaceutical tablets
Camarasu Unknown residual solvents identification in drug products by headspace solid phase microextraction gas chromatography-mass spectrometry
Croes et al. Quantitation of paraquat in serum by HPLC