JPH09118929A - Manufacture of corrosion resistant hot rolled steel sheet excellent in resistant to secondary operation brittleness - Google Patents

Manufacture of corrosion resistant hot rolled steel sheet excellent in resistant to secondary operation brittleness

Info

Publication number
JPH09118929A
JPH09118929A JP27431595A JP27431595A JPH09118929A JP H09118929 A JPH09118929 A JP H09118929A JP 27431595 A JP27431595 A JP 27431595A JP 27431595 A JP27431595 A JP 27431595A JP H09118929 A JPH09118929 A JP H09118929A
Authority
JP
Japan
Prior art keywords
less
resistance
steel sheet
rolled steel
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP27431595A
Other languages
Japanese (ja)
Inventor
Makoto Muraoka
誠 村岡
Shigeki Nomura
茂樹 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP27431595A priority Critical patent/JPH09118929A/en
Publication of JPH09118929A publication Critical patent/JPH09118929A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for more inexpensively manufacturing a hot- rolled steel sheet excellent in resistance to secondary operation brittleness and corrosion resistance as a material for automotive skirt parts. SOLUTION: A slab consisting of 0.01-0.07% C, 0.8-2.0% Mn, <=0.04% P, <=0.002% S, <=0.05% Cu, <=0.005% Ti, <=0.005% Nb and the balance Fe with inevitable impurities is heated at 1,050-1,300 deg.C and, after completing hot rolling at 830-900 deg.C, the hot rolled steel sheet is cooled at cooling rate of >=35 deg.C/sec and coiled at <=300 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、耐食性熱延鋼板の
製造方法、特に自動車の足廻り部品などに主に用いられ
る、耐二次加工脆性に優れる耐食性鋼板の製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a corrosion-resistant hot-rolled steel sheet, and more particularly to a method for producing a corrosion-resistant steel sheet having excellent secondary work embrittlement resistance which is mainly used for undercarriage parts of automobiles.

【0002】[0002]

【従来の技術】近年、自動車の足廻り部品用鋼板として
は耐食性の更なる改善の要請からメッキ鋼板が使用され
る場合が増加した。しかしメッキ鋼板は高価であり、し
かも孔拡げ性の劣化、溶接部ブローホール発生抑制によ
る作業性の低下、さらにはブローホール対策に莫大な費
用がかかるなどの欠点をもっている。
2. Description of the Related Art In recent years, there has been an increase in the use of plated steel sheets as steel sheets for undercarriage parts of automobiles due to the demand for further improvement in corrosion resistance. However, plated steel sheets are expensive and have drawbacks such as deterioration of hole expandability, reduction of workability due to suppression of blowholes in welds, and enormous cost for measures against blowholes.

【0003】このためメッキ鋼板に替わる、比較的安価
でしかも耐食性に優れた鋼板が要求されている。これら
の要求に応えうる足廻り部品用熱延鋼板としては、優れ
た耐孔あき性および耐二次加工脆性を合わせ持つ必要が
ある。
For this reason, there is a demand for a relatively inexpensive steel sheet which is superior in corrosion resistance, in place of the plated steel sheet. As a hot rolled steel sheet for underbody parts that can meet these requirements, it is necessary to have both excellent perforation resistance and secondary work embrittlement resistance.

【0004】すなわち、耐食性に関しては足廻り部品が
補強部材用途の一つであるため裸での優れた耐孔あき性
が要求され、また、形状が複雑な足廻り部品は苛酷なプ
レス成形をうけることがあり、優れた耐二次加工脆性を
有する必要がある。
That is, as to the corrosion resistance, the underbody parts are one of the uses for the reinforcing member, and therefore, excellent perforation resistance in the bare state is required, and the underbody parts having a complicated shape are subjected to severe press forming. In some cases, it is necessary to have excellent secondary work embrittlement resistance.

【0005】従来技術として、例えば、特開平5−1178
02号公報には耐食性に優れる自動車足廻り用高強度鋼板
として、重量比で、C:0.005 〜0.20%、Si:0.005 〜
1.0 %、Mn:0.1 〜2.5 %、P:0.050 〜0.10%、S:
0.001 〜0.010 %、Al:0.005 〜0.1 %、N:0.0005〜
0.0100%、Cu:0.10〜0.50%、Nb:0.01〜0.05%、Mo:
0.10〜0.20%からなる鋼組成を有する鋼板が提案されて
いる。
As a conventional technique, for example, Japanese Patent Application Laid-Open No. 5-1178
No. 02 discloses a high-strength steel sheet for automobile underbody, which has excellent corrosion resistance, in a weight ratio of C: 0.005 to 0.20%, Si: 0.005 to
1.0%, Mn: 0.1 to 2.5%, P: 0.050 to 0.10%, S:
0.001 to 0.010%, Al: 0.005 to 0.1%, N: 0.0005 to
0.0100%, Cu: 0.10 to 0.50%, Nb: 0.01 to 0.05%, Mo:
A steel sheet having a steel composition of 0.10 to 0.20% has been proposed.

【0006】また、特開平5−171289号公報には、伸び
フランジ性の良好な耐食性熱延鋼板の製造方法として、
重量比で、C:0.05%以下、P:0.03〜0.15%、Mn:0.
5 〜2.5 %、Si:2.0 %以下、Cu:0.05〜0.50%、更に
Ti:0.02〜0.06%、Nb:0.01〜0.04%およびNi:0.050
〜0.50%のうちの1種または2種以上を含む鋼板を熱間
圧延の仕上げ温度を880 ℃以上、700 〜600 ℃までの平
均冷却速度を60℃/s以下、巻取温度を350 〜550 ℃の条
件で製造する方法が開示されている。
Further, Japanese Patent Laid-Open No. 5-171289 discloses a method for producing a corrosion-resistant hot rolled steel sheet having good stretch flangeability.
By weight ratio, C: 0.05% or less, P: 0.03 to 0.15%, Mn: 0.
5 to 2.5%, Si: 2.0% or less, Cu: 0.05 to 0.50%, and
Ti: 0.02-0.06%, Nb: 0.01-0.04% and Ni: 0.050
~ 0.50% of steel sheet containing one or more of them is hot-rolled at a finishing temperature of 880 ° C or more, an average cooling rate of 700-600 ° C is 60 ° C / s or less, and a winding temperature is 350-550. A method of manufacturing under the condition of ° C is disclosed.

【0007】しかして、これらの公報に開示された従来
技術では鋼板の耐食性を向上させるために、Pあるいは
Cuを含有させることが必要であった。しかし、Pを添加
すると粒界にPが偏析し耐二次加工生成が著しく劣化す
る。また、Cuを添加すると熱間脆性による表面疵が発生
する。さらに、このCuに起因する表面疵を防止するため
に高価なNiの添加も合わせて必要となり、結局、高価な
材料とならざるを得ない。
However, in the prior arts disclosed in these publications, in order to improve the corrosion resistance of the steel sheet, P or
It was necessary to include Cu. However, when P is added, P segregates at the grain boundaries, resulting in a marked deterioration in secondary processing resistance. Further, when Cu is added, surface defects due to hot brittleness occur. Furthermore, in order to prevent the surface defects caused by Cu, it is necessary to add expensive Ni together, and eventually, an expensive material cannot be avoided.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、一般
的には、耐二次加工脆性に優れた耐食性熱延鋼板の製造
方法を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is generally to provide a method for producing a corrosion-resistant hot-rolled steel sheet excellent in secondary work embrittlement resistance.

【0009】より具体的には、本発明の目的は、自動車
用足廻り部品用の材料として例えば縦割れ試験で、その
発生温度が−60℃以下というすぐれた耐二次加工脆性お
よび普通鋼の6割以下の腐食深さであるというすぐれた
耐孔あき性を備えた熱延鋼板をより安価に製造する方法
を提供することである。
More specifically, the object of the present invention is, as a material for undercarriage parts for automobiles, for example, in a longitudinal cracking test, the generation temperature thereof is −60 ° C. or less, which is excellent in secondary working brittleness resistance and ordinary steel. It is an object of the present invention to provide a method for manufacturing a hot-rolled steel sheet having excellent corrosion resistance of 60% or less at a low cost at a low cost.

【0010】[0010]

【課題を解決するための手段】そこで、本発明者らは、
材料面および製造工程の面から安価で上述のような特性
を備えた熱延鋼板の製造方法について検討を重ね、次の
ような知見を得た。
Means for Solving the Problems Accordingly, the present inventors have:
The following findings were obtained through repeated studies on a method of manufacturing a hot-rolled steel sheet that is inexpensive and has the above-described characteristics in terms of materials and manufacturing process.

【0011】(1) これまで耐孔あき性の改善に必須と考
えられていたPの添加量を0.04%以下とむしろ抑制し、
C:0.01〜0.07%とCを適量添加して、適切な圧延条件
で製造することにより耐二次加工脆性に優れた熱延鋼板
が製造できる。
(1) The addition amount of P, which was thought to be essential for improving the perforation resistance, was suppressed to 0.04% or less,
C: 0.01 to 0.07% and an appropriate amount of C are added, and a hot rolled steel sheet excellent in secondary work embrittlement resistance can be manufactured by manufacturing under appropriate rolling conditions.

【0012】(2) 表面疵の発生原因となるCuの添加を抑
制しても耐孔あき性を向上させるには、Mn:0.8 〜2.0
%だけ添加するとともに、Cの添加量を0.01〜0.07%に
抑制し、適切な圧延条件で製造することにより耐孔あき
性の改善を図ることができる。
(2) In order to improve the puncture resistance even if the addition of Cu, which causes surface defects, is suppressed, Mn: 0.8-2.0
%, The amount of C added is controlled to 0.01 to 0.07%, and the perforation resistance can be improved by manufacturing under appropriate rolling conditions.

【0013】(3) 熱間圧延終了後に、30℃/sec以上の冷
却速度で急冷し、300 ℃以下の低温巻取りを行うこと
で、結晶粒の微細化が図られ、上述の二つの特性の相乗
的改善が実現される。
(3) After the hot rolling is completed, the material is rapidly cooled at a cooling rate of 30 ° C./sec or more and is wound at a low temperature of 300 ° C. or less, so that the crystal grains can be made finer and the above two characteristics can be achieved. A synergistic improvement of is realized.

【0014】よって、本発明は、重量%で、C:0.01〜
0.07%、 Mn:0.8 〜2.0 %、 P:0.04%以下、
S:0.002 %以下、 Cu:0.05%以下、 Ti:0.
005 %以下、Nb:0.005 %以下、残部が鉄および不可避
的不純物からなる鋼組成を有するスラブを1050〜1300℃
で加熱し、830 ℃以上900 ℃以下で熱間圧延を完了した
のち、35℃/sec以上の冷却速度で冷却し300 ℃以下の温
度で巻取ることを特徴とする、耐二次加工脆性に優れる
耐食性熱延鋼板の製造方法である。
Therefore, in the present invention, in% by weight, C: 0.01 to
0.07%, Mn: 0.8-2.0%, P: 0.04% or less,
S: 0.002% or less, Cu: 0.05% or less, Ti: 0.
1050 to 1300 ° C for a slab having a steel composition of 005% or less, Nb: 0.005% or less, and the balance of iron and unavoidable impurities.
After finishing the hot rolling at 830 ℃ or more and 900 ℃ or less, it is cooled at a cooling rate of 35 ℃ / sec or more and wound at a temperature of 300 ℃ or less. It is a method of manufacturing an excellent corrosion-resistant hot-rolled steel sheet.

【0015】[0015]

【発明の実施の形態】本発明の範囲を上記のように定め
た理由について、以下詳細に説明する。まず、本発明の
対象となる素材鋼の化学組成を定めた理由をその作用効
果とともに述べる。なお、本明細書において「%」は特
にことわりがないかぎり、重量%を意味する。
BEST MODE FOR CARRYING OUT THE INVENTION The reason why the scope of the present invention is defined as described above will be described in detail below. First, the reason for defining the chemical composition of the raw material steel to be the subject of the present invention will be described together with its function and effect. In the present specification, “%” means% by weight unless otherwise specified.

【0016】C:0.010 〜0.07% Cは耐二次加工脆性、耐孔あき性に対して重要な影響を
及ぼす元素である。Cの存在は粒界の結合力を高める効
果を有する。そのためC<0.010 %では粒界に偏析する
Pに起因する耐二次加工脆性の劣化を防ぐことは困難で
ある。一方、0.07%を超えるとパーライトの増大により
耐食性が低下する。このため本発明にあってはCの含有
量を0.010 〜0.070 %とする。好ましくは、0.010 〜0.
030 %である。
C: 0.010 to 0.07% C is an element which has an important influence on secondary work embrittlement resistance and perforation resistance. The presence of C has the effect of increasing the bond strength of the grain boundaries. Therefore, if C <0.010%, it is difficult to prevent the deterioration of the secondary work embrittlement resistance due to P segregated at the grain boundaries. On the other hand, if it exceeds 0.07%, corrosion resistance decreases due to an increase in pearlite. Therefore, in the present invention, the C content is set to 0.010 to 0.070%. Preferably 0.010-0.
It is 030%.

【0017】Mn:0.8 〜2.0 % Mnは耐孔あき性の改善に対し重要な元素であり、特に低
C域 (C:0.07%以下) ではその効果が大きい。Mnが耐
孔あき性を向上させるメカニズムは明確ではないが、Mn
を添加することにより腐食の起点となるパーライトの生
成を抑える作用がある。また、Mnはフェライトに固溶す
るため、ベイナイトにおいて、フェライト−セメンタイ
トの電位差が小さくなり腐食の起点になりにくくなるも
のと思われる。Mnの耐孔あき性向上効果は0.8 %以上で
大きくなる。また、Mnを2.0 %超添加しても耐食性の向
上は見られないだけでなく、成形性が著しく低下する。
このため上限は2.0 %とした。好ましくは、1.0 〜1.5
%である。
Mn: 0.8-2.0% Mn is an important element for improving the puncture resistance, and its effect is particularly large in the low C region (C: 0.07% or less). The mechanism by which Mn improves perforation resistance is not clear, but Mn
The addition of Al has the effect of suppressing the formation of pearlite, which is the starting point of corrosion. In addition, since Mn forms a solid solution in ferrite, it is considered that the potential difference between ferrite and cementite in bainite becomes small and it becomes difficult to become a starting point of corrosion. The effect of improving the perforation resistance of Mn becomes large at 0.8% or more. Further, even if Mn is added in excess of 2.0%, not only the corrosion resistance is not improved but the formability is remarkably lowered.
Therefore, the upper limit was set to 2.0%. Preferably 1.0-1.5
%.

【0018】P:0.040 %以下 Pは好ましくは0.03%以上添加することで耐孔あき性を
向上させる元素である。しかしPは粒界に偏析しやすく
耐二次加工脆性を劣化させる。このためPの含有量は0.
040 %以下とする。より好ましくは0.02%以下に制限す
る。
P: 0.040% or less P is an element which improves the puncture resistance by preferably adding 0.03% or more. However, P easily segregates at the grain boundaries and deteriorates the secondary work embrittlement resistance. Therefore, the content of P is 0.
040% or less. More preferably, it is limited to 0.02% or less.

【0019】S:0.002 %以下 Sは耐孔あき性を劣化させる元素である。特に本発明の
ようにCu、Pの添加量が少ない場合には、Sの存在によ
る耐食性の劣化が大きい。Sが0.002 %以下では腐食の
起点となるMnS は極くわずかとなり耐食性が向上する。
逆にSが0.002%を超えると耐孔あき性の劣化が起こり
始める。よってSの含有量は0.002 %以下とする。好ま
しくは、0.001 %以下である。
S: 0.002% or less S is an element that deteriorates the perforation resistance. Particularly when the addition amount of Cu and P is small as in the present invention, the corrosion resistance is greatly deteriorated due to the presence of S. When S is 0.002% or less, MnS, which is the starting point of corrosion, becomes extremely small, and the corrosion resistance is improved.
On the other hand, when S exceeds 0.002%, deterioration of perforation resistance starts to occur. Therefore, the S content should be 0.002% or less. It is preferably 0.001% or less.

【0020】Cu:0.05%以下 Cuは一般には0.2 %以上添加することで耐孔あき性を向
上させる元素であるが、熱間脆性のため、表面疵発生原
因となり歩留まりを大きく低下させる。また、この表面
疵対策として添加するNiは非常に高価なため、Niを添加
しては製造コストが大幅に上昇する。本発明によれば、
表面疵はCuが0.05%以下ではNiを添加しなくても表面疵
は発生しない。このためCuの添加量は0.05%以下とす
る。
Cu: 0.05% or less Cu is an element that generally improves the puncture resistance by adding 0.2% or more, but due to hot brittleness, it causes surface defects and greatly reduces the yield. Further, since Ni added as a countermeasure against this surface flaw is very expensive, the addition of Ni causes a large increase in manufacturing cost. According to the present invention,
As for surface defects, when Cu is less than 0.05%, surface defects do not occur even if Ni is not added. Therefore, the addition amount of Cu is set to 0.05% or less.

【0021】Ti、Nb:0.005 %以下 Ti、Nbは、本来は、強化元素として添加され、Cu、Pを
積極的に添加する材料においては耐孔あき性に与える影
響が少ない元素であった。しかし、本発明のように、C
u、Pの添加量が少ない場合、Ti、Nbはむしろ耐孔あき
性を劣化させることがわかった。この原因はTi、Nbの炭
窒化物が耐食性を劣化させるためと思われる。このた
め、Ti、Nbの上限をそれぞれ0.005 %とした。好ましく
は、それぞれ0.003 %以下に制限する。その下限につい
ては制限はないが、それぞれ0.001 %以上とするのが好
ましい。
Ti, Nb: 0.005% or less Originally, Ti and Nb were added as strengthening elements, and in a material in which Cu and P were positively added, they had little influence on the puncture resistance. However, as in the present invention, C
It was found that Ti and Nb rather deteriorate the puncture resistance when the amounts of u and P added are small. This is probably because the carbonitrides of Ti and Nb deteriorate the corrosion resistance. Therefore, the upper limits of Ti and Nb are each set to 0.005%. Preferably, each is limited to 0.003% or less. The lower limits are not limited, but preferably 0.001% or more.

【0022】次に、製造条件の限定理由について説明す
る。まず素材鋼スラブは、例えば転炉などで溶製し、連
続鋳造などにより製造した上記成分範囲を満たした素材
鋼スラブであればよい。
Next, the reasons for limiting the manufacturing conditions will be described. First, the raw material steel slab may be, for example, a raw material steel slab that is melted in a converter or the like and that is manufactured by continuous casting or the like and that satisfies the above-mentioned range of components.

【0023】加熱温度は1050〜1300℃とする。これは10
50℃未満では熱間圧延中にエッジなどが部分的にAr3
より低下し、加工性の劣化や形状不良を起こす場合があ
るからである。また、1300℃超では炉の損傷やスケール
ロスが大きくなる。このため加熱温度は1050〜1300℃と
する。好ましくは、1100〜1230℃である。
The heating temperature is 1050-1300 ° C. This is 10
If the temperature is lower than 50 ° C., the edge or the like may be partially lowered from the Ar 3 point during hot rolling, which may cause deterioration of workability or defective shape. If it exceeds 1300 ° C, damage to the furnace and scale loss will increase. Therefore, the heating temperature is set to 1050-1300 ° C. It is preferably 1100 to 1230 ° C.

【0024】仕上げ圧延は830 ℃以上900 ℃以下の温度
域で完了する。これは、830 ℃未満の温度域で圧延を行
うとフェライト変態を起こし、かつそのフェライトが加
工を受け延性を劣化させる場合があるからである。ま
た、900 ℃を超えると、結晶粒が粗大化し耐二次加工脆
性の劣化の原因となるためである。
The finish rolling is completed in the temperature range of 830 ° C to 900 ° C. This is because rolling in a temperature range of less than 830 ° C. may cause ferrite transformation, and the ferrite may be processed and deteriorate ductility. Also, if the temperature exceeds 900 ° C., the crystal grains become coarse, which causes deterioration of the secondary work embrittlement resistance.

【0025】熱間圧延後の平均冷却速度および巻取温度
は耐二次加工脆性、耐孔あき性に関して重要である。耐
二次加工脆性の改善効果に関しては、Cを0.01%以上、
Pを0.04%以下にそれぞれ制限するとともに、平均冷却
速度35℃/sec以上、巻取温度300 ℃以下とすることで、
極めて良好な改善効果を示す。これはPの粒界偏析の防
止効果と結晶粒の微細化の2つ効果が、そのような製造
条件下で相乗的に作用する結果である。
The average cooling rate and coiling temperature after hot rolling are important for secondary work embrittlement resistance and perforation resistance. Regarding the effect of improving the secondary processing brittleness resistance, C is 0.01% or more,
By limiting P to 0.04% or less, and setting an average cooling rate of 35 ° C / sec or more and a winding temperature of 300 ° C or less,
A very good improvement effect is shown. This is a result of the two effects of preventing grain boundary segregation of P and refining the crystal grains to act synergistically under such manufacturing conditions.

【0026】耐孔あき性の改善効果に関しても、C:0.
07%以下、Mn:0.8 %以上にぞれぞれ制限するととも
に、平均冷却速度35℃/sec以上、巻取温度300 ℃以下と
することで、極めて顕著な改善効果を示す。これも、腐
食の起点となるパーライトができにくくなること、ベイ
ナイトでの電位差が小さくなることなどが相乗的に作用
する結果であると考えられる 平均冷却速度を35℃/sec以上、巻取温度を300 ℃以下と
限定したのは、上述のような効果を発揮させるためであ
るが、それぞれの上限、下限は特に制限されない。しか
し、平均冷却速度の場合には、850 ℃から水冷却した場
合に平均冷却速度が40℃/sec程度であるから、実際上の
観点からは、その上限はほぼ50℃/secと考えられる。よ
り好ましくは平均冷却速度は、40〜45℃/secである。ま
た、巻取温度の下限も特に制限はないが、平均冷却速度
との関連で冷却によってマルテンサイトが生成しない程
度の温度までは許容される。したがって、一般にはMs点
まで、具体的にはほぼ100 ℃以上である。
Regarding the effect of improving the perforation resistance, C: 0.
By limiting the amount to 07% or less and Mn: 0.8% or more, and setting the average cooling rate to 35 ° C / sec or more and the coiling temperature to 300 ° C or less, a very remarkable improvement effect is exhibited. This is also considered to be a result of synergistic effects such as difficulty in forming pearlite, which is a starting point of corrosion, and reduction in potential difference in bainite. Average cooling rate of 35 ° C / sec or more, winding temperature The reason why the temperature is limited to 300 ° C. or lower is to exert the above effects, but the upper limit and the lower limit of each are not particularly limited. However, in the case of the average cooling rate, the average cooling rate is about 40 ° C / sec when water is cooled from 850 ° C, so from the practical viewpoint, the upper limit is considered to be approximately 50 ° C / sec. More preferably, the average cooling rate is 40 to 45 ° C / sec. The lower limit of the coiling temperature is not particularly limited, but a temperature up to the point where martensite is not formed by cooling is allowed in relation to the average cooling rate. Therefore, the temperature is generally up to the Ms point, specifically about 100 ° C or higher.

【0027】ここで、本発明において巻取温度、Mn含有
量を上述のように限定した理由についてその作用効果の
点から説明すると次の通りである。表1に示す鋼組成を
もった本発明の成分範囲のスラブまたは本発明成分範囲
外のスラブをそれぞれ用いて熱延鋼板を製造した。この
とき加熱温度は1050〜1300℃、仕上げ温度は830 〜900
℃と本発明範囲内とした。冷却速度は、巻取温度との関
係で決定し、450 ℃以下の巻取温度の場合には35℃/sec
以上、450 ℃超のものについては35℃/sec未満とした。
このようにして得られた板厚2.6 mmの熱延鋼板の定常部
より試験片を採取し評価を実施した。
Here, the reason why the winding temperature and the Mn content are limited as described above in the present invention will be explained from the viewpoint of their action and effect. Hot-rolled steel sheets were manufactured using slabs having the steel composition shown in Table 1 within the composition range of the present invention or slabs outside the composition range of the present invention. At this time, the heating temperature is 1050 to 1300 ℃, and the finishing temperature is 830 to 900.
℃ and within the scope of the present invention. The cooling rate is determined in relation to the coiling temperature. For coiling temperatures below 450 ° C, 35 ° C / sec.
As described above, for those exceeding 450 ° C, it was set to less than 35 ° C / sec.
A test piece was sampled from the steady portion of the hot-rolled steel sheet having a plate thickness of 2.6 mm thus obtained and evaluated.

【0028】[0028]

【表1】 [Table 1]

【0029】図1は、耐食性に及ぼす巻取温度、C、T
i、Nbの各含有量の影響について示したグラフである。
耐孔あき性評価用試験片として、表面に疵などの不良の
ない部分を使用した。腐食試験は、150 ×70(mm)の大き
さの試験片を裏面および側面をシールし、屋外に設置さ
れた地平より30°の角度をなした板の上に置き、NaCl:
5%の塩水を1回/週散布し、6ヶ月実施した。試験終
了後、試験片について腐食の様子を評価した。この場
合、最大孔あき深さとは一つの試験片を10等分し、それ
ぞれの最大孔あき深さの内で最も腐食量の多いものとし
た。
FIG. 1 shows the coiling temperature, C, and T which affect the corrosion resistance.
It is the graph which showed the influence of each content of i and Nb.
As the test piece for evaluating the puncture resistance, a portion having no defect such as a flaw on the surface was used. For the corrosion test, a 150 × 70 (mm) size test piece was sealed on the back and side surfaces and placed on a plate that was placed outdoors at an angle of 30 ° from the horizon, and NaCl:
5% salt water was sprayed once a week for 6 months. After the test, the test pieces were evaluated for corrosion. In this case, the maximum perforation depth was obtained by dividing one test piece into 10 equal parts and determining the largest amount of corrosion among the respective maximum perforation depths.

【0030】図1に示す結果から、巻取温度の低下によ
り、耐食性が向上しているのが判る。本発明範囲の成分
ではその効果が大きく、特に巻取温度が300 ℃以下で
は、耐孔あき性に優れるとされるCu、P添加鋼と同等の
耐食性を有する。一方、Ti、Nb添加鋼では巻取温度低下
の効果は小さいことが判る。
From the results shown in FIG. 1, it can be seen that the corrosion resistance is improved due to the lowering of the winding temperature. The components within the scope of the present invention have a great effect, and particularly at a coiling temperature of 300 ° C. or less, they have corrosion resistance equivalent to that of Cu and P-added steel, which is said to have excellent perforation resistance. On the other hand, it is clear that the effect of lowering the coiling temperature is small for the Ti and Nb added steels.

【0031】図2は、試験片の製造条件はMnを除き、図
1の場合と同様にして行った腐食試験における耐食性に
及ぼすMnの影響を示したものである。耐孔あき性評価法
も図1と同様である。
FIG. 2 shows the influence of Mn on the corrosion resistance in the corrosion test conducted in the same manner as in FIG. 1 except that Mn is the manufacturing condition of the test piece. The method for evaluating perforation resistance is the same as in FIG.

【0032】図2に示す結果より、本発明範囲内の成
分、製造条件においてMnが耐孔あき性に有効であること
が判る。その効果は0.80%以上で大きくなる。しかし、
2.00%を超えて添加してもその効果は飽和することが判
る。
From the results shown in FIG. 2, it is understood that Mn is effective for the perforation resistance under the components and manufacturing conditions within the scope of the present invention. The effect becomes large at 0.80% or more. But,
It can be seen that the effect is saturated even if added over 2.00%.

【0033】図3は、下掲表2に示すようにC、P含有
量を変化させた点以外は上述のようにして製造した熱延
鋼板についての耐二次加工脆性に及ぼす巻取温度、C、
P含有量の影響を示したものである。
FIG. 3 shows the coiling temperature, C, which affects the secondary work embrittlement resistance of the hot-rolled steel sheet produced as described above except that the C and P contents are changed as shown in Table 2 below. ,
It shows the effect of P content.

【0034】[0034]

【表2】 [Table 2]

【0035】耐二次加工脆性を調査するため採取した鋼
板から円盤を加工した後、絞り比1.8 % [=円直径/(ポ
ンチ径+板厚)]にて絞り成形を実施し、続いてその絞り
成形品に、試験温度に冷却後、衝撃を与えその破面の脆
性破面、延性破面の差により耐二次加工脆性を評価し、
脆性破面発生温度を求めた。
After working a disk from a steel sheet taken to investigate the secondary working brittleness resistance, drawing was carried out at a drawing ratio of 1.8% [= circle diameter / (punch diameter + sheet thickness)], and then the The drawn product is cooled to the test temperature and then given an impact to evaluate the secondary work brittleness resistance by the difference between the brittle fracture surface and the ductile fracture surface of the fracture surface.
The brittle fracture surface generation temperature was determined.

【0036】図3に示す結果より、本発明範囲の成分を
有する場合、優れた耐二次加工脆性を示すことが分か
る。しかも巻取温度が300 ℃以下の場合はその効果が著
しい。一方、C=0.008 %およびP=0.07%の比較鋼の
場合、耐二次加工脆性の劣化が見られる。また、巻取温
度感受性が強くなっていることも判る。
From the results shown in FIG. 3, it can be seen that when the components within the scope of the present invention are contained, excellent secondary work embrittlement resistance is exhibited. Moreover, the effect is remarkable when the winding temperature is 300 ° C or lower. On the other hand, in the case of the comparative steels with C = 0.008% and P = 0.07%, deterioration of the secondary work embrittlement resistance is observed. It can also be seen that the winding temperature sensitivity is becoming stronger.

【0037】従って、本発明にあっては、Cu、P添加鋼
と同等の耐食性を与え、合わせて優れた耐二次加工脆性
を有するためには本発明範囲内の成分において巻取温度
を300 ℃以下とするのである。次に、実施例によって本
発明の作用効果をさらに具体的に説明する。
Therefore, in the present invention, in order to give the same corrosion resistance as that of the Cu and P-added steel and to have excellent secondary work embrittlement resistance in combination, the coiling temperature is 300 in the components within the scope of the present invention. It should be below ℃. Next, the working effects of the present invention will be described more specifically by way of examples.

【0038】[0038]

【実施例】本例では、表3に示す組成成分を有するスラ
ブを、同じく表3の加熱温度、圧延仕上げ温度、巻取温
度、冷却速度で、処理して板厚2.6mm の熱延鋼板を製造
した。
Example In this example, a slab having the composition components shown in Table 3 was treated at the heating temperature, rolling finishing temperature, winding temperature and cooling rate shown in Table 3 to obtain a hot rolled steel sheet having a thickness of 2.6 mm. Manufactured.

【0039】このようにして製造された熱延鋼板を用い
て、引張特性、耐孔あき性、耐二次加工脆性、鋼板の表
面疵の有無を調査した。それらの結果を表4にまとめて
示す。
Using the hot-rolled steel sheet produced in this manner, the tensile properties, puncture resistance, secondary work embrittlement resistance, and the presence or absence of surface flaws on the steel sheet were investigated. The results are summarized in Table 4.

【0040】本実施例における引張試験はJIS 5号試験
片により0°方向とした。耐食性の評価は、前述の図
1、図2の場合に同じであった。耐二次加工脆性は、前
述の図3の場合に同じであった。表4に示すごとく、本
発明範囲内では、引張特性、耐食性、耐二次加工脆性、
表面疵のいずれも優れた特性を示すが、発明範囲外で
は、それらのいずれかの特性が劣ることが判る。
In the tensile test in this example, the JIS No. 5 test piece was used in the direction of 0 °. The evaluation of corrosion resistance was the same as in the cases of FIGS. 1 and 2 described above. The secondary work brittleness resistance was the same as in the case of FIG. 3 described above. As shown in Table 4, within the scope of the present invention, tensile properties, corrosion resistance, secondary work embrittlement resistance,
Although all the surface defects show excellent properties, it is understood that any of these properties are inferior outside the scope of the invention.

【0041】[0041]

【表3】 [Table 3]

【0042】[0042]

【表4】 [Table 4]

【0043】[0043]

【発明の効果】以上説明したごとく、本発明によれば、
Pの添加量を抑制し、C、Mnを適量添加し、適切な圧延
条件で製造することにより耐二次加工脆性、耐食性に優
れた熱延鋼板を製造することができる。これはメッキ鋼
板に替わる、比較的安価で耐二次加工脆性、耐食性に優
れた熱延鋼板として、自動車用足廻り部品に適した熱延
鋼板として多大な効果を奏する。
As described above, according to the present invention,
A hot rolled steel sheet excellent in secondary work embrittlement resistance and corrosion resistance can be manufactured by suppressing the addition amount of P, adding an appropriate amount of C and Mn, and manufacturing under appropriate rolling conditions. As a hot-rolled steel sheet which is a comparatively inexpensive alternative to a plated steel sheet and which is excellent in secondary processing brittleness resistance and corrosion resistance, it exhibits a great effect as a hot-rolled steel sheet suitable for undercarriage parts for automobiles.

【図面の簡単な説明】[Brief description of the drawings]

【図1】耐孔あき性に及ぼす巻取温度、C量、Ti、Nbの
影響について示したグラフである。
FIG. 1 is a graph showing the effects of winding temperature, C content, Ti, and Nb on perforation resistance.

【図2】耐孔あき性に及ぼすMnの影響を示したグラフで
ある。
FIG. 2 is a graph showing the effect of Mn on perforation resistance.

【図3】耐二次加工脆性に及ぼす巻取温度、C、Pの影
響を示したグラフである。
FIG. 3 is a graph showing the effects of winding temperature, C, and P on the secondary processing brittleness resistance.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C:0.01〜0.07%、 Mn:0.8 〜2.0 %、 P:0.
04%以下、 S:0.002 %以下、 Cu:0.05%以下、 Ti:0.
005 %以下、 Nb:0.005 %以下、 残部が鉄および不可避的不純物からなる鋼組成を有する
スラブを1050〜1300℃で加熱し、830 ℃以上900 ℃以下
で熱間圧延を完了したのち、35℃/sec以上の冷却速度で
冷却し300 ℃以下の温度で巻取ることを特徴とする、耐
二次加工脆性に優れる耐食性熱延鋼板の製造方法。
1. By weight%, C: 0.01 to 0.07%, Mn: 0.8 to 2.0%, P: 0.
04% or less, S: 0.002% or less, Cu: 0.05% or less, Ti: 0.
005% or less, Nb: 0.005% or less, a slab having a steel composition with the balance being iron and unavoidable impurities is heated at 1050-1300 ° C, and hot rolling is completed at 830 ° C or more and 900 ° C or less, then at 35 ° C. A method for producing a corrosion-resistant hot-rolled steel sheet excellent in secondary work embrittlement resistance, which comprises cooling at a cooling rate of not less than / sec and winding at a temperature of 300 ° C or less.
JP27431595A 1995-10-23 1995-10-23 Manufacture of corrosion resistant hot rolled steel sheet excellent in resistant to secondary operation brittleness Withdrawn JPH09118929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27431595A JPH09118929A (en) 1995-10-23 1995-10-23 Manufacture of corrosion resistant hot rolled steel sheet excellent in resistant to secondary operation brittleness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27431595A JPH09118929A (en) 1995-10-23 1995-10-23 Manufacture of corrosion resistant hot rolled steel sheet excellent in resistant to secondary operation brittleness

Publications (1)

Publication Number Publication Date
JPH09118929A true JPH09118929A (en) 1997-05-06

Family

ID=17539944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27431595A Withdrawn JPH09118929A (en) 1995-10-23 1995-10-23 Manufacture of corrosion resistant hot rolled steel sheet excellent in resistant to secondary operation brittleness

Country Status (1)

Country Link
JP (1) JPH09118929A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102912490A (en) * 2011-08-05 2013-02-06 日本Tmt机械株式会社 Yarn winder, connection member, and yarn winding method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102912490A (en) * 2011-08-05 2013-02-06 日本Tmt机械株式会社 Yarn winder, connection member, and yarn winding method

Similar Documents

Publication Publication Date Title
KR101492753B1 (en) High strength hot rolled steel sheet having excellent fatigue resistance and method for manufacturing the same
WO2019189842A1 (en) High-strength galvanized steel sheet, high-strength member, and manufacturing methods therefor
JP6700398B2 (en) High yield ratio type high strength cold rolled steel sheet and method for producing the same
JP3219820B2 (en) Low yield ratio high strength hot rolled steel sheet and method for producing the same
US20080223491A1 (en) High strength hot rolled steel sheet with excellent press workability and method of manufacturing the same
EP2792762B1 (en) High-yield-ratio high-strength cold-rolled steel sheet and method for producing same
EP3728679B1 (en) Cold rolled and heat treated steel sheet and a method of manufacturing thereof
JP3233743B2 (en) High strength hot rolled steel sheet with excellent stretch flangeability
KR20210091755A (en) Hot rolled steel strip and manufacturing method thereof
KR20200106195A (en) High-strength steel sheet and its manufacturing method
JPH10130776A (en) High ductility type high tensile strength cold rolled steel sheet
JP4772431B2 (en) Manufacturing method of hot-dip galvanized high-strength steel sheet with excellent elongation and hole expansion
KR102153194B1 (en) Ultra high strength and high ductility cold rolled steel sheet with superior resistance to liquid metal embrittlment(lme) cracking, plated steel sheet and method for manufacturing the same
CN112739834A (en) Hot-rolled steel sheet and method for producing same
CN110088331B (en) Hot-rolled steel sheet for electric resistance welded steel pipe having excellent weldability and method for producing same
KR20200080346A (en) High-strength hot-dip galvanized steel sheet and method for manufacturing same
JPH0657375A (en) Ultrahigh tensile strength cold-rolled steel sheet and its production
JP3247907B2 (en) High strength cold rolled steel sheet excellent in ductility and delayed fracture resistance and method for producing the same
EP3964600A1 (en) Ultra-high strength steel sheet having excellent shear workability and method for manufacturing same
JP2009068039A (en) High-strength alloyed-galvanized steel sheet excellent in energy-absorbing characteristics, and production method therefor
EP3901305B1 (en) High-strength structural steel having excellent cold bendability, and manufacturing method therefor
JPH09118952A (en) Member made of high-strength hot rolled steel sheet having lower yield ratio
JP7006849B1 (en) Steel sheets, members and their manufacturing methods
KR20150001469A (en) High strength cold-rolled steel sheet and method of manufacturing the cold-rolled steel sheet
JP2005171319A (en) Method for manufacturing high-strength cold-rolled steel sheet having superior ductility and formability for extension flange

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030107