JPH09118623A - Human interleukin-6 receptor-developing inhibitor - Google Patents

Human interleukin-6 receptor-developing inhibitor

Info

Publication number
JPH09118623A
JPH09118623A JP7323130A JP32313095A JPH09118623A JP H09118623 A JPH09118623 A JP H09118623A JP 7323130 A JP7323130 A JP 7323130A JP 32313095 A JP32313095 A JP 32313095A JP H09118623 A JPH09118623 A JP H09118623A
Authority
JP
Japan
Prior art keywords
seq
ser
sequence
leu
pro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7323130A
Other languages
Japanese (ja)
Other versions
JP3868021B2 (en
Inventor
Kiyonori Kuromaru
精則 黒丸
Yasuo Koishihara
保夫 小石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Pharmaceutical Co Ltd
Original Assignee
Chugai Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Pharmaceutical Co Ltd filed Critical Chugai Pharmaceutical Co Ltd
Priority to JP32313095A priority Critical patent/JP3868021B2/en
Publication of JPH09118623A publication Critical patent/JPH09118623A/en
Application granted granted Critical
Publication of JP3868021B2 publication Critical patent/JP3868021B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Saccharide Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an expression inhibitor against human interleukin-6 receptor (HIL-6R) which contains antisense oligonucleotide derivative and is useful as an HIL-6R inhibitory agent. SOLUTION: This inhibitor contains, as an active ingredient, an antisense oligonucleotide derivative which hybridize in the region having at least 9, preferably 12-25 base sequence (for example, AGCCTCCTTCCCATGCCAGC), containing the base sequence of the part forming the loop structure of mRNA coding HIL-6R. This derivative acts on the cells producing HIL-6R to bond to the DNA or mRNA coding HIL-6R to inhibit the transcription and translation and inhibit the expression of HIL-6R. The actions of this derivative are, increase in blood platelets, enhancement of antibody production, protein induction in the acute stage, proliferation of tumor cells and differentiation of nerve cells and the like. The dose is 0.1-100mg/kg, preferably 0.1-50mg/kg.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ヒトインターロイ
キン−6レセプター(ヒトIL−6R)の発現を阻害す
る医薬として有用なアンチセンスオリゴヌクレオチド誘
導体に関する。
TECHNICAL FIELD The present invention relates to an antisense oligonucleotide derivative useful as a drug for inhibiting the expression of human interleukin-6 receptor (human IL-6R).

【0002】[0002]

【従来の技術】ヒトインターロイキン−6(ヒトIL−
6)はB細胞の抗体産生細胞への最終段階の分化を誘導
する因子としてクローニングされたサイトカインであり
(Kishimoto T ら、Blood 74, 1-10, 1989) 、現在では
肝臓における急性期蛋白の誘導などさまざまな作用を持
つことが知られている(Kishimoto T ら、Blood 74, 1-
10, 1989) 。
2. Description of the Related Art Human interleukin-6 (human IL-
6) is a cytokine that has been cloned as a factor that induces the final stage of differentiation of B cells into antibody-producing cells (Kishimoto T et al., Blood 74, 1-10, 1989), and currently induces acute phase proteins in the liver. (Kishimoto T et al., Blood 74, 1-
10, 1989).

【0003】またヒトIL−6はリンパ系細胞のみにか
ぎらず、線維芽細胞、血管内皮細胞、膀胱癌細胞株T2
4やグリオブラストーマなどにおいても産生されている
ことが報告され(Kohase M. ら、J. Cell Physiol. 13
2, 271-278, 1978; Meir EVら、Cancer Res. 50, 6683-
6688, 1990)、さらにその標的細胞も多種類にわたって
いる(Kishimoto T ら、Blood 74, 1-10, 1989) 。
Human IL-6 is not limited to only lymphoid cells, but fibroblasts, vascular endothelial cells, and bladder cancer cell line T2.
4 and glioblastoma have been reported (Kohase M. et al., J. Cell Physiol. 13
2, 271-278, 1978; Meir EV et al., Cancer Res. 50, 6683-.
6688, 1990) and its target cells are diverse (Kishimoto T et al., Blood 74, 1-10, 1989).

【0004】近年Kawano MらによりヒトIL−6が骨髄
腫細胞ではautocrine growth factor として機能してい
ることが報告され(Kawano Mら、Nature, 332, 83-85,
1988) 、さらに腎細胞癌においても同様のことが報告さ
れた(Miki Sら、FEBS Letter 250, 607-610, 1989)。
Recently, Kawano M et al. Reported that human IL-6 functions as an autocrine growth factor in myeloma cells (Kawano M et al., Nature, 332, 83-85,
1988), and the same was also reported in renal cell carcinoma (Miki S et al., FEBS Letter 250, 607-610, 1989).

【0005】一方、ヒトIL−6による細胞の増殖ある
いは分化のシグナルは細胞表面に存在するヒトIL−6
R及び糖蛋白質gp130を介して細胞に伝達されるこ
とが知られている。(Taga T. ら、Cell 58, 573-581,
1989; Hibi Mら、Cell 68, 1149-1157, 1990) 。近年、
病態の原因となっている遺伝子の働きを抑制する方法と
して、DNAから転写されたmRNAに相補的なオリゴ
ヌクレオチド(アンチセンスオリゴヌクレオチド)を用
いて、該蛋白質の発現を抑制することが提案されている
(村上、化学、46巻681−684頁、1991)。
On the other hand, signals for cell proliferation or differentiation by human IL-6 are present on the cell surface.
It is known to be transmitted to cells via R and glycoprotein gp130. (Taga T. et al., Cell 58, 573-581,
1989; Hibi M et al., Cell 68, 1149-1157, 1990). recent years,
As a method of suppressing the action of the gene causing the pathological condition, it has been proposed to suppress the expression of the protein by using an oligonucleotide (antisense oligonucleotide) complementary to mRNA transcribed from DNA. (Murakami, Kagaku, 46, 681-684, 1991).

【0006】さらには、アンチセンスオリゴヌクレオチ
ドの寿命、安定性、細胞への取り込み効率などの問題点
を解消する方法としてヌクレオチドのリン酸基の酸素を
メチル基に置換したメチルホスホネート型誘導体やイオ
ウに置換したホスホロチオエート型誘導体などの修飾ア
ンチセンスオリゴヌクレオチドが知られており(村上、
前述)、実際これらのアンチセンスオリゴヌクレオチド
がウィルスの蛋白質合成を阻害することが認められてい
る(Agris, C.H. ら、Biochemistry, 25, 6268-6275, 1
986)。
[0006] Furthermore, as a method for solving problems such as lifespan, stability, and cell uptake efficiency of antisense oligonucleotides, a methylphosphonate derivative or sulfur in which the oxygen of the phosphate group of the nucleotide is replaced with a methyl group is used. Modified antisense oligonucleotides such as substituted phosphorothioate derivatives are known (Murakami,
In fact, these antisense oligonucleotides were found to inhibit viral protein synthesis (Agris, CH et al., Biochemistry, 25, 6268-6275, 1).
986).

【0007】このような考えをもとにLevy Yらは、ヒト
IL−6のmRNAの翻訳をアンチセンスオリゴヌクレ
オチドによって阻害することにより、ヒトIL−6を増
殖因子としている骨髄腫細胞株の増殖が抑制されること
を確認した(Levy Yら、J.Clin. Invest., 88, 696-69
9, 1991) 。しかしながら、ヒトIL−6Rが発現する
種々の細胞においてIL−6Rの発現を有意に抑制する
ようなアンチセンスオリゴヌクレオチド誘導体について
は知られていない。
[0007] Based on this idea, Levy Y et al. Proliferate myeloma cell lines using human IL-6 as a growth factor by inhibiting the translation of human IL-6 mRNA with an antisense oligonucleotide. Were confirmed to be suppressed (Levy Y et al., J. Clin. Invest., 88, 696-69).
9, 1991). However, an antisense oligonucleotide derivative that significantly suppresses IL-6R expression in various cells expressing human IL-6R is not known.

【0008】[0008]

【発明が解決しようとする課題】従って本発明は、ヒト
IL−6Rの発現を阻害するアンチセンスオリゴヌクレ
オチド誘導体を提供しようとするものである。
Accordingly, the present invention is intended to provide an antisense oligonucleotide derivative that inhibits the expression of human IL-6R.

【0009】[0009]

【課題を解決するための手段】さらに詳しくは、本発明
は、ヒトIL−6RをコードするmRNAのループ構造
を形成しうる可能性の高い部分の塩基配列を含む少なく
とも9個の連続する塩基配列に対するアンチセンスオリ
ゴヌクレオチド誘導体を含んで成るヒトIL−6Rの発
現阻害剤を提供する。
More specifically, the present invention provides at least 9 contiguous base sequences containing a base sequence of a part that is likely to form a loop structure of mRNA encoding human IL-6R. An expression inhibitor of human IL-6R comprising an antisense oligonucleotide derivative against

【0010】[0010]

【具体的な説明】本発明者は、市販の自由エネルギー計
算用コンピューターソフト(たとえばGenetyx 、ソフト
ウエア開発(株)社製のSecondary Structure Searchお
よびHairpin Loop-Stem Parts Searchなど)を用いてヒ
トIL−6RmRNAの中で自由エネルギー及び構造上
からループ構造を形成しやすいと考えられる塩基配列を
探り、そのループ構造を含む塩基配列に対するアンチセ
ンスオリゴヌクレオチド誘導体を合成したところ、ヒト
可溶性IL−6R(sIL−6R)の発現を抑制するこ
とを見い出し本発明を完成した。本発明の好ましい態様
においては、ヒトIL−6RをコードするmRNAのル
ープ構造を形成しうる塩基配列を含む9〜30個、より
好ましくは12〜25個の連続する塩基配列に対するア
ンチセンスオリゴヌクレオチド誘導体を用いる。
[Detailed Description] The present inventor used human IL- using commercially available computer software for free energy calculation (eg, Genetyx, Secondary Structure Search and Hairpin Loop-Stem Parts Search manufactured by Software Development Co., Ltd.). In 6RmRNA, a base sequence that is considered to easily form a loop structure was sought from the viewpoint of free energy and structure, and an antisense oligonucleotide derivative against the base sequence containing the loop structure was synthesized. As a result, human soluble IL-6R (sIL- The inventors have found that the expression of 6R) is suppressed and completed the present invention. In a preferred embodiment of the present invention, an antisense oligonucleotide derivative for 9 to 30, more preferably 12 to 25 consecutive base sequences containing a base sequence capable of forming a loop structure of mRNA encoding human IL-6R To use.

【0011】ここでいう「アンチセンスオリゴヌクレオ
チド」とは、DNA又はmRNAの所定の領域を構成す
るヌクレオチドに対応するヌクレオチドがすべて相補的
であるもののみならず、DNA又はmRNAとオリゴヌ
クレオチドとが安定にハイブリダイズできる限り、多少
のミスマッチが存在してもよい。ヒトIL−6RのcD
NAの塩基配列は次の通りである(たとえば特開平2−
288,898号公報または、Science,24
1,825−828(1988)参照)(配列番号:
1)。
The term "antisense oligonucleotide" as used herein means not only those in which nucleotides corresponding to nucleotides constituting a predetermined region of DNA or mRNA are all complementary, but also DNA or mRNA and oligonucleotide are stable. Some mismatch may be present as long as it can hybridize to Human IL-6R cd
The base sequence of NA is as follows (for example, JP-A-2-
288,898, or Science, 24
1,825-828 (1988)) (SEQ ID NO:
1).

【0012】このうち、本発明のアンチセンスオリゴヌ
クレオチド誘導体の塩基配列は、上記の方法によって見
い出されたループ構造を形成しうる、連続する塩基配列
から適宜選択できるものである。ここでいうmRNAの
ループ構造を形成しうる部分とは、mRNAの分子内水
素結合が存在しにくく、一本鎖の状態になりやすい部分
をいう。具体的には、上記のコンピューターソフトを用
いてmRNAの安定な構造をとった時においても一本鎖
の状態になりやすい部分を見つけ出すことができる。本
発明において、前記のループ構造を形成しうる部分は、
配列番号1に示す塩基配列において、例えば、640−
685,770−810,1340−1375,460
−475,535−560及び925−960,815
−840付近が挙げられる。
Of these, the base sequence of the antisense oligonucleotide derivative of the present invention can be appropriately selected from a continuous base sequence capable of forming the loop structure found by the above method. The term "portion capable of forming a loop structure of mRNA" as used herein refers to a portion which is unlikely to have intramolecular hydrogen bonds of mRNA and is likely to be in a single-stranded state. Specifically, the above-mentioned computer software can be used to find a portion that tends to be in a single-stranded state even when the stable structure of mRNA is taken. In the present invention, the portion capable of forming the loop structure is
In the base sequence shown in SEQ ID NO: 1, for example, 640-
685, 770-810, 1340-1375, 460
-475,535-560 and 925-960,815
Around -840 can be mentioned.

【0013】従って、本発明のオリゴヌクレオチドは、
例えば上記の領域中の連続する少なくとも9個のヌクレ
オチドから成るオリゴヌクレオチドである。本発明の1
つの態様によれば、発現阻害オリゴヌクレオチドは、配
列番号:1における例えば第75位のAla から第81位
のLeu までをコードするコドンの塩基配列に相補的なヌ
クレオチド配列、すなわち、5′−AGCCTCCTTCCCATGCCA
GC−3′(配列番号:2)を有するものである。
Therefore, the oligonucleotide of the present invention is
For example, an oligonucleotide consisting of at least 9 consecutive nucleotides in the above region. 1 of the present invention
According to one embodiment, the expression-inhibiting oligonucleotide is a nucleotide sequence complementary to the nucleotide sequence of the codon encoding, for example, Ala at position 75 to Leu at position 81 in SEQ ID NO: 1, that is, 5'-AGCCTCCTTCCCATGCCA.
It has GC-3 ′ (SEQ ID NO: 2).

【0014】他のオリゴヌクレオチドの例として第12
7位のLeu から第133位のGlu までをコードするコド
ンの塩基配列に対して相補的な塩基配列、すなわち5′
−CTCACAAACAACATTGCTGA−3′(配列番号:3)を有す
るもの、第70位のHis から第77位のMet までをコー
ドするコドンの塩基配列に対して相補的な塩基配列、す
なわち5′−TGCCAGCCCATCTGCTGGGG−3′(配列番号:
4)を有するもの、第34位のVal から第41位のAsp
までをコードするコドンの塩基配列に対して相補的な塩
基配列、すなわち5′−CTCCTGGCAGACTGGTCAGC−3′
(配列番号:5)を有するもの、
No. 12 as an example of another oligonucleotide
A base sequence complementary to the base sequence of the codon encoding from Leu at position 7 to Glu at position 133, ie, 5 '
-Having a base of CTCACAAACAACATTGCTGA-3 '(SEQ ID NO: 3), a base sequence complementary to the base sequence of the codon encoding His at position 70 to Met at position 77, that is, 5'-TGCCAGCCCATCTGCTGGGG-3 ′ (SEQ ID NO:
With 4), Val from 34th to Asp of 41st
Nucleotide sequences complementary to the nucleotide sequences of the codons encoding up to, ie, 5'-CTCCTGGCAGACTGGTCAGC-3 '
Having (SEQ ID NO: 5),

【0015】第118位のGln から第124位のLys ま
でをコードするコドンの塩基配列に対し相補的な塩基配
列、すなわち5′−TTCCGGAAGCAGGAGAGCTG−3′(配列
番号:6)を有するもの及び第164位のPro から第1
70位のGlu までをコードするコドンの塩基配列に対し
て相補的な塩基配列、すなわち5 ′−TCCTGGGAATACTGGC
ACGG−3′(配列番号:7)を有するもの、第75位の
Ala から第82位のLeu までをコードするコドンの塩基
配列に相補的なヌクレオチド配列、すなわち、5′−GC
AGCCTCCTTCCCATGCCA−3′(配列番号:9)を有するも
の、第74位のTrp から第80位のArg までをコードす
るコドンの塩基配列に相補的なヌクレオチド配列、すな
わち、5′−CTCCTTCCCATGCCAGCCCA−3′(配列番号:
10)を有するものが挙げられる。
The nucleotide sequence complementary to the nucleotide sequence of the codon encoding Gln at the 118th position to Lys at the 124th position, ie, having 5'-TTCCGGAAGCAGGAGAGCTG-3 '(SEQ ID NO: 6) and 164th 1st from Pro in rank
A nucleotide sequence complementary to the nucleotide sequence of the codon encoding up to 70th Glu, that is, 5'-TCCTGGGAATACTGGC
Having ACGG-3 ′ (SEQ ID NO: 7), at position 75
A nucleotide sequence complementary to the base sequence of the codon encoding from Ala to Leu at position 82, ie, 5'-GC
Those having AGCCTCCTTCCCATGCCA-3 '(SEQ ID NO: 9), a nucleotide sequence complementary to the nucleotide sequence of the codon encoding Trp at the 74th position to Arg at the 80th position, that is, 5'-CTCCTTCCCATGCCAGCCCA-3' ( Sequence number:
10) are mentioned.

【0016】本発明において使用されるオリゴヌクレオ
チド誘導体がデオキシリボヌクレオチドの場合それぞれ
の構造は、化1に示したとおりであるが、Xは独立して
酸素(O)、イオウ(S)、低級アルキル基あるいは一
級アミンまたは二級アミンのいずれでもよい。Yは独立
して酸素(O)あるいはイオウ(S)のいずれでもよ
い。Bはアデニン、グアニン、チミン、あるいはシトシ
ンのいずれかから選ばれ、主としてヒトIL−6Rをコ
ードするDNA又はmRNAの相補的オリゴヌクレオチ
ドである。Rは独立して水素またはジメトキシトリチル
基あるいは低級アルキル基である。nは7−28であ
る。
When the oligonucleotide derivative used in the present invention is a deoxyribonucleotide, each structure is as shown in Chemical formula 1, wherein X is independently oxygen (O), sulfur (S), a lower alkyl group. Alternatively, it may be either a primary amine or a secondary amine. Y may independently be either oxygen (O) or sulfur (S). B is selected from any of adenine, guanine, thymine, or cytosine, and is a complementary oligonucleotide of DNA or mRNA mainly encoding human IL-6R. R is independently hydrogen or a dimethoxytrityl group or a lower alkyl group. n is 7-28.

【0017】好ましいオリゴヌクレオチド誘導体として
は修飾されていないオリゴヌクレオチドだけでなく、修
飾されたオリゴヌクレオチドでもよい。この様な修飾体
として、例えば前述のメチルホスホネート型又はエチル
ホスホネート型のような低級アルキルホスホネート修飾
体、その他ホスホロチオエート修飾体あるいはホスホロ
アミデート修飾体等が挙げられる(化2参照)。
Preferred oligonucleotide derivatives are not only unmodified oligonucleotides but also modified oligonucleotides. Examples of such modified products include lower alkyl phosphonate modified products such as the above-mentioned methyl phosphonate type or ethyl phosphonate type, and other phosphorothioate modified products or phosphoroamidate modified products (see Chemical Formula 2).

【0018】[0018]

【化1】 Embedded image

【0019】[0019]

【化2】 Embedded image

【0020】これらのオリゴヌクレオチド誘導体は次の
とおり常法によって得ることができる。化1のX及びY
がOであるオリゴヌクレオチドは市販のDNA合成装置
(例えばApplied Biosystems社製など)によって容易に
合成される。合成法はホスホロアミダイトを用いた固相
合成法、ハイドロジェンホスホネートを用いた固相合成
法などで得ることができる。
These oligonucleotide derivatives can be obtained by a conventional method as follows. X and Y in formula 1
The oligonucleotide in which O is O is easily synthesized by a commercially available DNA synthesizer (for example, manufactured by Applied Biosystems). The synthesis method can be obtained by a solid phase synthesis method using phosphoramidite, a solid phase synthesis method using hydrogen phosphonate, and the like.

【0021】例えば、T. Atkinson, M. Smith, in Olig
onucleotide Synthesis: A Practical Approach, ed.
M. J. Gait, IRL Press, 35-81(1984); M. H. Caruther
s, Science, 230, 281(1985); A. Kume, M. Fujii, M.
Sekine, M. Hata, J. Org. Chem., 49, 2139(1984); B.
C. Froehler, M. Matteucci, Tetrahedron Lett., 27,
469(1986); P. J. Garegg, I. Lindh, T. Regberg, J.
Stawinski, R. Stromberg, C. Henrichson, ibid., 2
7, 4051(1986);
For example, T. Atkinson, M. Smith, in Olig
nucleotide Synthesis: A Practical Approach, ed.
MJ Gait, IRL Press, 35-81 (1984); MH Caruther
s, Science, 230, 281 (1985); A. Kume, M. Fujii, M.
Sekine, M. Hata, J. Org. Chem., 49, 2139 (1984); B.
C. Froehler, M. Matteucci, Tetrahedron Lett., 27,
469 (1986); PJ Garegg, I. Lindh, T. Regberg, J.
Stawinski, R. Stromberg, C. Henrichson, ibid., 2
7, 4051 (1986);

【0022】B. S. Sproat, M. J. Gait, in Oligonucl
eotide Synthesis: A Practical Approach, ed. M. J.
Gait. IRL Press, 83-115(1984); S. L. Beaucage and
M. H. Caruthers, Tetrahedron Lett., 22, 1859-1862
(1981); M. D. Matteucci andM. H. Caruthers, Tetrah
edron Lett., 21, 719-722(1980); M. D. Matteucciand
M. H. Caruthers, J. Am. Chem. Soc., 103, 3185-319
1(1981)を参照のこと。
BS Sproat, MJ Gait, in Oligonucl
eotide Synthesis: A Practical Approach, ed. MJ
Gait. IRL Press, 83-115 (1984); SL Beaucage and
MH Caruthers, Tetrahedron Lett., 22, 1859-1862
(1981); MD Matteucci and M. H. Caruthers, Tetrah
edron Lett., 21, 719-722 (1980); MD Matteucciand
MH Caruthers, J. Am. Chem. Soc., 103, 3185-319
See 1 (1981).

【0023】Xが低級アルコキシ基であるリン酸トリエ
ステル修飾体は、常法、例えば化学合成で得られたオリ
ゴヌクレオチドをトシルクロリドのDMF/メタノール
/2,6−ルチジン溶液で処理することにより得ること
ができる(Moody H. M., etal., Nucleic Acids Res.,
17, 4769-4782(1989)) 。Xがアルキル基であるアルキ
ルホスホネート修飾体は、常法、例えばホスホアミダイ
トを用いて得ることができる(M. A. Dorman, et. al.,
Tetrahedron, 40, 95-102(1984); K. L. Agarwal and
F. Riftina, Nucleic Acids Res., 6, 3009-3024(197
9)) 。
The modified phosphate triester in which X is a lower alkoxy group can be obtained by a conventional method, for example, by treating the oligonucleotide obtained by chemical synthesis with a solution of tosyl chloride in DMF / methanol / 2,6-lutidine. Can (Moody HM, et al., Nucleic Acids Res.,
17, 4769-4782 (1989)). A modified alkylphosphonate in which X is an alkyl group can be obtained by a conventional method, for example, using a phosphoamidite (MA Dorman, et. Al.,
Tetrahedron, 40, 95-102 (1984); KL Agarwal and
F. Riftina, Nucleic Acids Res., 6, 3009-3024 (197
9)).

【0024】XがSであるホスホロチオエート修飾体
は、常法、例えばイオウを用いた固相合成法(C. A. St
ein, et. al., Nucleic Acids Res., 16, 3209-3221(19
88))あるいはテトラエチルチウラム ジスルフィドを用
いて、固相合成法により得ることができる(H. Vu and
B. L. Hirschbein, Tetrahedron Letters, 32, 3005-30
08(1991)) 。X,YがともにSであるホスホロジチオエ
ート修飾体は、例えばビスアミダイトをチオアミダイト
に変換しイオウを作用させることにより固相合成法によ
り得ることができる(W. K. -D. Brill, et. al., J. A
m. Chem. Soc., 111, 2321-2322(1989))。
The phosphorothioate modified product in which X is S can be prepared by a conventional method, for example, a solid phase synthesis method using sulfur (CA St
ein, et.al., Nucleic Acids Res., 16, 3209-3221 (19
88)) or tetraethylthiuram disulfide, and can be obtained by solid phase synthesis (H. Vu and
BL Hirschbein, Tetrahedron Letters, 32, 3005-30
08 (1991)). The phosphorodithioate modified product in which both X and Y are S can be obtained by a solid phase synthesis method, for example, by converting a bisamidite into a thioamidite and reacting with sulfur (WK-D. Brill, et. Al. ., J. A
m. Chem. Soc., 111, 2321-2322 (1989)).

【0025】Xが一級アミンあるいは二級アミンである
ホスホロアミデート修飾体は、例えばハイドロジェンホ
スホネートを一級あるいは二級アミンで処理することに
より固相合成法で得ることができる(B. Froehler, et.
al. Nucleic Acids Res., 16, 4831-4839(1988)) 。あ
るいは、アミダイトをtert−ブチルハイドロパーオ
キサイドで酸化しても得ることができる(H. Ozaki, e
t. al., Tetrahedron Lett., 30, 5899-5902(1989))。
The phosphoramidate modified product in which X is a primary amine or a secondary amine can be obtained by a solid phase synthesis method, for example, by treating a hydrogenphosphonate with a primary or secondary amine (B. Froehler, et.
al. Nucleic Acids Res., 16, 4831-4839 (1988)). Alternatively, it can also be obtained by oxidizing amidite with tert-butyl hydroperoxide (H. Ozaki, e.
t. al., Tetrahedron Lett., 30, 5899-5902 (1989)).

【0026】精製および純度確認は、高速液体クロマト
グラフィー、ポリアクリルアミドゲル電気泳動で行うこ
とができる。分子量の確認は、Electrospray Ionizatio
n Mass Spectrometry 又はFast Atom Bonbardment-Mass
Spectrometry で行うことができる。本発明のアンチセ
ンスオリゴヌクレオチド誘導体はヒトIL−6Rをコド
するDNA又はmRNAの塩基配列にハイブリダイズす
る配列を有するものであれば、その合成法や由来はいず
れでもよい。
Purification and confirmation of purity can be carried out by high performance liquid chromatography or polyacrylamide gel electrophoresis. Confirm molecular weight by Electrospray Ionizatio
n Mass Spectrometry or Fast Atom Bonbardment-Mass
It can be done with Spectrometry. The antisense oligonucleotide derivative of the present invention may be synthesized or derived from any method as long as it has a sequence that hybridizes to the base sequence of DNA or mRNA encoding human IL-6R.

【0027】本発明のアンチセンスオリゴヌクレオチド
誘導体は、ヒトIL−6Rの産生細胞に作用して、ヒト
IL−6RをコードするDNA又はmRNAに結合する
ことにより、その転写又は翻訳を阻害し、ヒトIL−6
Rの発現を抑制することによって結果的にヒトIL−6
の作用を抑制する効果を有する。本発明のアンチセンス
オリゴヌクレオチド誘導体により抑制されるヒトIL−
6の作用としては、血小板増多作用、抗体産生増強作
用、急性期蛋白誘導作用、腫瘍細胞増殖作用、神経細胞
分化作用等が挙げられる。
The antisense oligonucleotide derivative of the present invention acts on human IL-6R-producing cells and binds to human IL-6R-encoding DNA or mRNA to inhibit its transcription or translation, IL-6
Suppressing the expression of R results in human IL-6
Has the effect of suppressing the action of. Human IL-suppressed by the antisense oligonucleotide derivative of the present invention
Examples of the action of 6 include a platelet increasing action, an antibody production enhancing action, an acute phase protein inducing action, a tumor cell proliferation action, a nerve cell differentiation action and the like.

【0028】従って、これらの作用に起因する疾患、例
えば腎癌、ミエローマ、レンネルトTリンパ腫、カポジ
肉腫などの癌、慢性関節リウマチ等の自己免疫疾患、メ
サンギウム増殖性腎炎、乾癬、癌性悪液質、感染症にお
けるエンドトキシンショック等の治療において本発明の
アンチセンスオリゴヌクレオチド誘導体は有効であると
考えられる。本発明のアンチセンスオリゴヌクレオチド
誘導体は、それらに対して不活性な適当な基剤と混和し
て塗布剤、パップ剤などの外用剤とすることができる。
Therefore, diseases caused by these effects, for example, cancers such as renal cancer, myeloma, Rennelt T lymphoma, Kaposi's sarcoma, autoimmune diseases such as rheumatoid arthritis, mesangial proliferative nephritis, psoriasis, cancer cachexia, The antisense oligonucleotide derivative of the present invention is considered to be effective in treating endotoxin shock in infectious diseases. The antisense oligonucleotide derivative of the present invention can be mixed with a suitable base material that is inactive against them to be used as an external preparation such as a coating agent and a poultice.

【0029】また、必要に応じて、賦形剤、等張化剤、
溶解補助剤、安定化剤、防腐剤、無痛化剤等を加えて錠
剤、散剤、顆粒剤、カプセル剤、リポソームカプセル
剤、注射剤、液剤、点鼻剤など、さらに凍結乾燥剤とす
ることができる。これらは常法に従って調製することが
できる。本発明のアンチセンスオリゴヌクレオチド誘導
体は患者の患部に直接適用するか、または血管内に投与
するなどして結果的に患部に到達し得るように患者に適
応させる。さらに持続性、膜透過性を高めるアンチセン
ス封入素材を用いることもできる。例えば、リポソー
ム、ポリ−L−リジン、リピッド、コレステロール、リ
ポフェクチン又はこれらの誘導体が挙げられる。
If necessary, an excipient, a tonicity agent,
Tablets, powders, granules, capsules, liposome capsules, injections, solutions, nasal drops, etc., and lyophilization agents can be prepared by adding solubilizers, stabilizers, preservatives, soothing agents, etc. it can. These can be prepared according to a conventional method. The antisense oligonucleotide derivative of the present invention is applied to a patient's affected area directly, or is administered to a patient so as to be able to reach the affected area as a result of intravascular administration. Furthermore, an antisense encapsulating material that enhances durability and membrane permeability can also be used. Examples thereof include liposomes, poly-L-lysine, lipids, cholesterol, lipofectin or derivatives thereof.

【0030】本発明のアンチセンスオリゴヌクレオチド
誘導体の投与量は、患者の状態に応じて適宜調整し好ま
しい量を用いることができる。例えば、0.1〜100
mg/kg好ましくは0.1〜50mg/kgの範囲で投与する
ことができる。以下本発明を実施例において詳しく説明
する。
The dose of the antisense oligonucleotide derivative of the present invention can be adjusted appropriately according to the patient's condition and used in a preferable amount. For example, 0.1-100
The dose can be administered in the range of mg / kg, preferably 0.1 to 50 mg / kg. Hereinafter, the present invention will be described in detail with reference to Examples.

【0031】[0031]

【実施例】合成例15′−AGCCTCCTTCCCATGCCAGC−3′(配列番
号:2)(ホスホロチオエート修飾体)の合成 3′−水酸基が支持体に結合した5′−ジメトキシトリ
チル−2′−デオキシシチジン(1μmol )のジメトキ
シトリチル基をトリクロロ酢酸によって脱保護し、その
5′−水酸基に5′−ジメトキシトリチル−2′−デオ
キシグアノシンβ−シアノエチルホスホアミダイト誘導
体をテトラゾールにより縮合し、テトラエチルチウラム
ジスルフィドによってリンをイオウ化した後、未反応
の5′−水酸基を無水酢酸とジメチルアミノピリジンで
アセチル化する。
EXAMPLES Synthesis Example 1 5'-AGCCTCCTTCCCATGCCAGC-3 '(Sequence number
No. 2) (Synthesis of phosphorothioate modified product ) The dimethoxytrityl group of 5′-dimethoxytrityl-2′-deoxycytidine (1 μmol) having a 3′-hydroxyl group bound to a support is deprotected with trichloroacetic acid, and then 5 ′. -Condensation of 5'-dimethoxytrityl-2'-deoxyguanosine β-cyanoethylphosphoamidite derivative with hydroxyl group with tetrazole, sulfurization of phosphorus with tetraethylthiuram disulfide, and reaction of unreacted 5'-hydroxyl group with acetic anhydride and dimethylamino Acetylate with pyridine.

【0032】同様に脱保護、縮合、イオウ化、アセチル
化を繰り返す。最後の5′−ジメトキシトリチル−2′
−デオキシアデノシン β−シアノエチルホスホアミダ
イト誘導体を縮合し、イオウ化して得られた20−me
rのホスホロチオエート修飾体(以上までの工程はAppl
ied Biosystems社製381A型DNA合成装置により行
った。)を濃アンモニア水2mlによって支持体から切り
出すと共に、リンからシアノエチル基をはずし、さらに
アデニン、グアニン、シトシンに付いている保護基をは
ずす。
Similarly, deprotection, condensation, sulfurization and acetylation are repeated. The last 5'-dimethoxytrityl-2 '
20-me obtained by condensing a deoxyadenosine β-cyanoethylphosphoamidite derivative and converting to sulfur
Modified phosphorothioate of r
It was carried out by a 381A type DNA synthesizer manufactured by ied Biosystems. ) Is cleaved from the support with 2 ml of concentrated aqueous ammonia, the cyanoethyl group is removed from phosphorus, and the protective groups attached to adenine, guanine and cytosine are removed.

【0033】得られた5′−ジメトキシトリチルオリゴ
ヌクレオチドホスホロチオエートは未精製のまま、また
は高速液体クロマトグラフィーにより精製した後、ある
いは、合成DNA精製用カートリッジカラム(例えば、
日本ミリポア社製オリゴパックSPなど)に保持した
後、トリフルオロ酢酸によって5′−ジメトキシトリチ
ル保護基をはずす。得られたオリゴヌクレオチドホスホ
ロチオエートを必要があれば高速液体クロマトグラフィ
ーで精製し、目的5′−AGCCTCCTTCCCATGCCAGC−3′
(配列番号:2)(ホスホロチオエート修飾体)約1.
37mgを得る。
The resulting 5'-dimethoxytrityl oligonucleotide phosphorothioate is unpurified, or after purification by high performance liquid chromatography, or a synthetic DNA purification cartridge column (for example,
After holding it on an oligo pack SP manufactured by Millipore Japan, etc., the 5'-dimethoxytrityl protecting group is removed with trifluoroacetic acid. If necessary, the obtained oligonucleotide phosphorothioate is purified by high performance liquid chromatography to obtain the desired 5′-AGCCTCCTTCCCATGCCAGC-3 ′.
(SEQ ID NO: 2) (phosphorothioate modified product) About 1.
37 mg are obtained.

【0034】合成例25′−CTCACAAACAACATTGCTGA−
3′(配列番号:3)(ホスホロチオエート修飾体)の
合成 合成例1と同様にして、目的の5′−CTCACAAACAACATTG
CTGA−3′(配列番号:3)(ホスホロチオエート修飾
体)約0.65mgを得る。
Synthesis Example 2 5'-CTCACAAACAACATTGCTGA-
3 '(SEQ ID NO: 3) (modified phosphorothioate)
Synthesis In the same manner as in Synthesis Example 1, the desired 5'-CTCACAAACAACATTG
About 0.65 mg of CTGA-3 '(SEQ ID NO: 3) (phosphorothioate modification) is obtained.

【0035】合成例35′−TGCCAGCCCATCTGCTGGGG−
3′(配列番号:4)(ホスホロチオエート修飾体)の
合成 合成例1と同様にして、目的の5′−TGCCAGCCCATCTGCT
GGGG−3′(配列番号:4)(ホスホロチオエート修飾
体)約0.98mgを得る。
Synthesis Example 3 5'-TGCCAGCCCATCTGCTGGGG-
3 '(SEQ ID NO: 4) (phosphorothioate modified)
Synthesis In the same manner as in Synthesis Example 1, the desired 5'-TGCCAGCCCATCTGCT
About 0.98 mg of GGGG-3 '(SEQ ID NO: 4) (phosphorothioate modification) is obtained.

【0036】合成例45′−CTCCTGGCAGACTGGTCAGC−
3′(配列番号:5)(ホスホロチオエート修飾体)の
合成 合成例1と同様にして、目的の5′−CTCCTGGCAGACTGGT
CAGC−3′(配列番号:5)(ホスホロチオエート修飾
体)約1.61mgを得る。
Synthesis Example 4 5'-CTCCTGGCAGACTGGTCAGC-
Of 3 '(SEQ ID NO: 5) (modified phosphorothioate)
Synthesis In the same manner as in Synthesis Example 1, the target 5'-CTCCTGGCAGACTGGT
About 1.61 mg of CAGC-3 ′ (SEQ ID NO: 5) (phosphorothioate modified product) is obtained.

【0037】合成例55′−TTCCGGAAGCAGGAGAGCTG−
3′(配列番号:6)(ホスホロチオエート修飾体)の
合成 合成例1と同様にして、目的の5′−TTCCGGAAGCAGGAGA
GCTG−3′(配列番号:6)(ホスホロチオエート修飾
体)約1.47mgを得る。
Synthesis Example 5 5'-TTCCGGAAGCAGGAGAGCTG-
Of 3 '(SEQ ID NO: 6) (modified phosphorothioate)
Synthesis In the same manner as in Synthesis Example 1, the target 5′-TTCCGGAAGCAGGAGA
About 1.47 mg of GCTG-3 ′ (SEQ ID NO: 6) (phosphorothioate modified product) is obtained.

【0038】合成例65′−TCCTGGGAATACTGGCACGG−
3′(配列番号:7)(ホスホロチオエート修飾体)の
合成 合成例1と同様にして、目的の5′−TCCTGGGAATACTGGC
ACGG−3′(配列番号:7)(ホスホロチオエート修飾
体)約1.64mgを得る。
Synthesis Example 6 5'-TCCTGGGAATACTGGCACGG-
Of 3 '(SEQ ID NO: 7) (modified phosphorothioate)
Synthesis In the same manner as in Synthesis Example 1, the desired 5'-TCCTGGGAATACTGGC
About 1.64 mg of ACGG-3 '(SEQ ID NO: 7) (phosphorothioate modification) is obtained.

【0039】合成例75′−GCAGCCTCCTTCCCATGCCA−
3′(配列番号:9)(ホスホロチオエート修飾体)の
合成 合成例1と同様にして、目的の5′−GCAGCCTCCTTCCCAT
GCCA−3′(配列番号:9)(ホスホロチオエート修飾
体)約2.47mgを得る。
Synthesis Example 7 5'-GCAGCCTCCTTCCCATGCCA-
Of 3 '(SEQ ID NO: 9) (modified phosphorothioate)
Synthesis In the same manner as in Synthesis Example 1, the desired 5′-GCAGCCTCCTTCCCAT
About 2.47 mg of GCCA-3 ′ (SEQ ID NO: 9) (phosphorothioate modified product) is obtained.

【0040】合成例85′−CTCCTTCCCATGCCAGCCCA−
3′(配列番号:10)(ホスホロチオエート修飾体)
の合成 合成例1と同様にして、目的の5′−CTCCTTCCCATGCCAG
CCCA−3′(配列番号:10)(ホスホロチオエート修
飾体)約2.06mgを得る。
Synthesis Example 8 5'-CTCCTTCCCATGCCAGCCCA-
3 '(SEQ ID NO: 10) (modified phosphorothioate)
Synthesis of the target 5′-CTCCTTCCCATGCCAG in the same manner as in Synthesis Example 1
About 2.06 mg of CCCA-3 ′ (SEQ ID NO: 10) (phosphorothioate modification) is obtained.

【0041】参考例15′−CCCCAGCAGATGGGCTGGCA−
3′(配列番号:8)(ホスホロチオエート修飾体:配
列番号:4のセンス配列)の合成 合成例1と同様にして目的の5′−CCCCAGCAGATGGGCTGG
CA−3′(配列番号:8)(ホスホロチオエート修飾
体)約0.53mgを得る。
Reference Example 1 5'-CCCCAGCAGATGGGCTGGCA-
3 '(SEQ ID NO: 8) (phosphorothioate modified product:
Synthesis of (sense sequence of column number: 4) The desired 5'-CCCCAGCAGATGGGCTGG was prepared in the same manner as in Synthesis Example 1.
About 0.53 mg of CA-3 '(SEQ ID NO: 8) (phosphorothioate modification) is obtained.

【0042】参考例25′−GCTGGCATGGGAAGGAGGCT−
3′(配列番号:11)(ホスホロチオエート修飾体:
配列番号:2のセンス配列)の合成 合成例1と同様にして、目的の5′−GCTGGCATGGGAAGGA
GGCT−3′(配列番号:11)(ホスホロチオエート修
飾体)約1.91mgを得る。
Reference Example 2 5'-GCTGGCATGGGAAGGAGGCT-
3 '(SEQ ID NO: 11) (modified phosphorothioate:
Synthesis of (sense sequence of SEQ ID NO: 2) In the same manner as in Synthesis Example 1, the desired 5'-GCTGGCATGGGAAGGA
About 1.91 mg of GGCT-3 ′ (SEQ ID NO: 11) (phosphorothioate modified product) is obtained.

【0043】実験例1ヒト可溶性IL−6R(sIL
−6R)の発現抑制効果 (1)COH.SR344細胞の作製 pBSF2R.236(Science, 241, 825-828(1988))
をSphIで切断し、1205bpのIL−6RcDN
A断片をmp18(Amersham社製)に挿入し
た。sIL−6RcDNAは5′−ATATTCTAGAGAGCTTCT
−3′の合成オリゴヌクレオチドを作製し、in vitro m
utagenesis system (Amersham社製) を用いて
調製した。その結果、termination cordonはアミノ酸配
列の345番目となった。
Experimental Example 1 Human soluble IL-6R (sIL
-6R) expression suppression effect (1) COH. Preparation of SR344 cells pBSF2R. 236 (Science, 241, 825-828 (1988))
Was cleaved with SphI and 1205 bp of IL-6RcDN
The A fragment was inserted into mp18 (Amersham). sIL-6R cDNA is 5'-ATATTCTAGAGAGCTTCT
-3 'synthetic oligonucleotide was prepared and
It was prepared using an utagenesis system (manufactured by Amersham). As a result, the termination cordon was the 345th amino acid sequence.

【0044】dhfr−cDNAはplasmid pECE(Cel
l, 45, 721-735(1986))のPvu IIsiteに挿入し、
plasmid pECEdhfrを作製した。sIL−6RのHind
III−SalI断片をplasmid pECEdhfrに挿入し、可溶
性IL−6R発現ベクターplasmid pECEdhfr344を作
製した。
Dhfr-cDNA is a plasmid pECE (Cel
l, 45, 721-735 (1986)) Pvu II site,
Plasmid pECEdhfr was prepared. Hind of sIL-6R
The III-SalI fragment was inserted into plasmid pECEdhfr to prepare a soluble IL-6R expression vector plasmid pECEdhfr344.

【0045】pECEdhfr344をdhfr−CH
O細胞DXB−11(Pro. Natl. Acad. Sci. U.S.A.,
77, 4216-4220(1980))にリン酸カルシウム法により導入
し、MTXにて増幅した。最終的に200nMMTX耐
性sIL−6R産生CHO細胞(CHO.SR344)
を作製した(J. Biochem., 108, 673-676(1990))。細胞
の通常の培養は5%FCS(Xavier Investments社製)
および200nMMTXを含むIMDM培地(Gibc
o)で行った。
PECEdhfr344 was replaced with dhfr-CH
O cell DXB-11 (Pro. Natl. Acad. Sci. USA,
77, 4216-4220 (1980)) by the calcium phosphate method and amplified by MTX. Finally, 200 nMMTX resistant sIL-6R producing CHO cells (CHO.SR344)
Was prepared (J. Biochem., 108, 673-676 (1990)). Normal cell culture is 5% FCS (Xavier Investments)
And IMDM medium containing 200 nMMTX (Gibc
o).

【0046】(2)CHO.SR344細胞のsIL−
6R産生に対するIL−6Rアンチセンスオリゴヌクレ
オチドの効果 CHO.SR344細胞はtrypsin−EDTA
(Gibco社製)で培養dishから剥がし、培養液
で洗浄後、更に無血清培地ノンセラム(日本全薬工業
製)で洗浄し、200nMMTXを含む無血清培地ノン
セラムに懸濁した。96穴の培養プレートにCHO.S
R344細胞懸濁液100μl(5x104個/ml)に
2μMのIL−6Rアンチセンスオリゴヌクレオチド1
00μlを加え、37℃、5%CO2 下でインキュベー
ターで培養した。
(2) CHO. SIL-of SR344 cells
IL-6R antisense oligonucleotides for 6R production
Effect of Ochid CHO. SR344 cells are trypsin-EDTA
It was peeled from the culture dish with (Gibco), washed with a culture solution, further washed with serum-free medium non-serum (manufactured by Nippon Zenyaku Kogyo), and suspended in serum-free medium non-serum containing 200 nMMTX. Add CHO. S
2 μM of IL-6R antisense oligonucleotide 1 in 100 μl of R344 cell suspension (5 × 10 4 cells / ml)
00 μl was added, and the cells were cultured in an incubator at 37 ° C. under 5% CO 2 .

【0047】24時間培養後、その培養上清の可溶性I
L−6R量をマウス抗IL−6Rモノクローナル抗体
(MT18)(特開平2−288898)及びウサギ抗
IL−6Rポリクローナル抗体を用いたサンドイッチE
LISA法によって測定した。なお、対照(コントロー
ル)としては、配列番号:4に対するセンスオリゴヌク
レオチド誘導体(配列番号:8)または配列番号:2に
対するセンスオリゴヌクレオチド誘導体(配列番号:1
1)を用いて測定した。ヒトIL−6Rアンチセンスオ
リゴヌクレオチドは可溶性IL−6Rの発現抑制効果を
示した(図1、図2)。
After culturing for 24 hours, the soluble I of the culture supernatant was
Sandwich E using the amount of L-6R as a mouse anti-IL-6R monoclonal antibody (MT18) (JP-A-2-288898) and a rabbit anti-IL-6R polyclonal antibody
It was measured by the LISA method. As a control, the sense oligonucleotide derivative for SEQ ID NO: 4 (SEQ ID NO: 8) or the sense oligonucleotide derivative for SEQ ID NO: 2 (SEQ ID NO: 1)
It measured using 1). Human IL-6R antisense oligonucleotide showed the effect of suppressing the expression of soluble IL-6R (Figs. 1 and 2).

【0048】[0048]

【配列表】[Sequence list]

配列番号:1 配列の長さ:3319 配列の型:核酸 鎖の数:一本鎖 配列の種類:cDNA 配列 GGCGGTCCCC TGTTCTCCCC GCTCAGGTGC GGCGCTGTGG CAGGAAGCCA CCCCCTCGGT 60 CGGCCGGTGC GCGGGGCTGT TGCGCCATCC GCTCCGGCTT TCGTAACCGC ACCCTGGGAC 120 GGCCCAGAGA CGCTCCAGCG CGAGTTCCTC AAATGTTTTC CTGCGTTGCC AGGACCGTCC 180 GCCGCTCTGA GTCATGTGCG AGTGGGAAGT CGCACTGACA CTGAGCCGGG CCAGAGGGAG 240 AGGAGCCGAG CGCGGCGCGG GGCCGAGGGA CTCGCAGTGT GTGTAGAGAG CCGGGCTCCT 300 GCGGATGGGG GCTGCCCCCG GGGCCTGAGC CCGCCTGCCC GCCCACCGCC CCGCCCCGCC 360 CCTGCCACCC CTGCCGCCCG GTTCCCATTA GCCTGTCCGC CTCTGCGGGA CCATGGAGTG 420 GTAGCCGAGG AGGAAGC ATG CTG GCC GTC GGC TGC GCG CTG CTG GCT GCC 470 Met Leu Ala Val Gly Cys Ala Leu Leu Ala Ala 1 5 10 CTG CTG GCC GCG CCG GGA GCG GCG CTG GCC CCA AGG CGC TGC CCT GCG 518 Leu Leu Ala Ala Pro Gly Ala Ala Leu Ala Pro Arg Arg Cys Pro Ala 15 20 25 CAG GAG GTG GCA AGA GGC GTG CTG ACC AGT CTG CCA GGA GAC AGC GTG 566 Gln Glu Val Ala Arg Gly Val Leu Thr Ser Leu Pro Gly Asp Ser Val 30 35 40 ACT CTG ACC TGC CCG GGG GTA GAG CCG GAA GAC AAT GCC ACT GTT CAC 614 Thr Leu Thr Cys Pro Gly Val Glu Pro Glu Asp Asn Ala Thr Val His 45 50 55  SEQ ID NO: 1 Sequence length: 3319 Sequence type: Nucleic acid Number of strands: Single-stranded Sequence type: cDNA sequence GGCGGTCCCC TGTTCTCCCC GCTCAGGTGC GGCGCTGTGG CAGGAAGCCA CCCCCTCGGT 60 CGGCCGGTGCCGCGGGGGGCTGT CCGCGACTGCTCCGGACGTCTCCGGACGTCTCCGACACCTC ACGGACGTCTCCGGACGTCTCCGGACGTCTCCGACACCGC ACTC GTCATGTGCG AGTGGGAAGT CGCACTGACA CTGAGCCGGG CCAGAGGGAG 240 AGGAGCCGAG CGCGGCGCGG GGCCGAGGGA CTCGCAGTGT GTGTAGAGAG CCGGGCTCCT 300 GCGGATGGGG GCTGCCCCCG GGGCCTGAGC CCGCCTGCCC GCCCACCGCC CCGCCCCGCC 360 CCTGCCACCC CTGCCGCCCG GTTCCCATTA GCCTGTCCGC CTCTGCGGGA CCATGGAGTG 420 GTAGCCGAGG AGGAAGC ATG CTG GCC GTC GGC TGC GCG CTG CTG GCT GCC 470 Met Leu Ala Val Gly Cys Ala Leu Leu Ala Ala 1 5 10 CTG CTG GCC GCG CCG GGA GCG GCG CTG GCC CCA AGG CGC TGC CCT GCG 518 Leu Leu Ala Ala Pro Gly Ala Ala Leu Ala Pro Arg Arg Cys Pro Ala 15 20 25 CAG GAG GTG GCA AGA GGC GTG CTG ACC AGT CTG CCA GGA GAC AGC GTG 566 Gln Glu Val Ala Arg Gly Val Leu Thr Ser Leu Pro Gly Asp Ser Val 30 35 40 ACT CTG ACC TGC CCG GGG GTA GAG CCG GAA GAC AAT GCC ACT GTT CAC 614 Thr Leu Thr Cys Pro Gly Val Glu Pro Glu Asp Asn Ala Thr Val His 45 50 55

【0049】 TGG GTG CTC AGG AAG CCG GCT GCA GGC TCC CAC CCC AGC AGA TGG GCT 662 Trp Val Leu Arg Lys Pro Ala Ala Gly Ser His Pro Ser Arg Trp Ala 60 65 70 75 GGC ATG GGA AGG AGG CTG CTG CTG AGG TCG GTG CAG CTC CAC GAC TCT 710 Gly Met Gly Arg Arg Leu Leu Leu Arg Ser Val Gln Leu His Asp Ser 80 85 90 GGA AAC TAT TCA TGC TAC CGG GCC GGC CGC CCA GCT GGG ACT GTG CAC 758 Gly Asn Tyr Ser Cys Tyr Arg Ala Gly Arg Pro Ala Gly Thr Val His 95 100 105 TTG CTG GTG GAT GTT CCC CCC GAG GAG CCC CAG CTC TCC TGC TTC CGG 806 Leu Leu Val Asp Val Pro Pro Glu Glu Pro Gln Leu Ser Cys Phe Arg 110 115 120 AAG AGC CCC CTC AGC AAT GTT GTT TGT GAG TGG GGT CCT CGG AGC ACC 854 Lys Ser Pro Leu Ser Asn Val Val Cys Glu Trp Gly Pro Arg Ser Thr 125 130 135 CCA TCC CTG ACG ACA AAG GCT GTG CTC TTG GTG AGG AAG TTT CAG AAC 902 Pro Ser Leu Thr Thr Lys Ala Val Leu Leu Val Arg Lys Phe Gln Asn 140 145 150 155 AGT CCG GCC GAA GAC TTC CAG GAG CCG TGC CAG TAT TCC CAG GAG TCC 950 Ser Pro Ala Glu Asp Phe Gln Glu Pro Cys Gln Tyr Ser Gln Glu Ser 160 165 170 CAG AAG TTC TCC TGC CAG TTA GCA GTC CCG GAG GGA GAC AGC TCT TTC 998 Gln Lys Phe Ser Cys Gln Leu Ala Val Pro Glu Gly Asp Ser Ser Phe 175 180 185 TAC ATA GTG TCC ATG TGC GTC GCC AGT AGT GTC GGG AGC AAG TTC AGC 1046 Tyr Ile Val Ser Met Cys Val Ala Ser Ser Val Gly Ser Lys Phe Ser 190 195 200 TGG GTG CTC AGG AAG CCG GCT GCA GGC TCC CAC CCC AGC AGA TGG GCT 662 Trp Val Leu Arg Lys Pro Ala Ala Gly Ser His Pro Ser Arg Trp Ala 60 65 70 75 GGC ATG GGA AGG AGG CTG CTG CTG AGG TCG GTG CAG CTC CAC GAC TCT 710 Gly Met Gly Arg Arg Leu Leu Leu Arg Ser Val Gln Leu His Asp Ser 80 85 90 GGA AAC TAT TCA TGC TAC CGG GCC GGC CGC CCA GCT GGG ACT GTG CAC 758 Gly Asn Tyr Ser Cys Tyr Arg Ala Gly Arg Pro Ala Gly Thr Val His 95 100 105 TTG CTG GTG GAT GTT CCC CCC GAG GAG CCC CAG CTC TCC TGC TTC CGG 806 Leu Leu Val Asp Val Pro Pro Glu Glu Pro Gln Leu Ser Cys Phe Arg 110 115 120 AAG AGC CCC CTC AGC AAT GTT GTT TGT GAG TGG GGT CCT CGG AGC ACC 854 Lys Ser Pro Leu Ser Asn Val Val Cys Glu Trp Gly Pro Arg Ser Thr 125 130 135 CCA TCC CTG ACG ACA AAG GCT GTG CTC TTG GTG AGG AAG TTT CAG AAC 902 Pro Ser Leu Thr Thr Lys Ala Val Leu Leu Val Arg Lys Phe Gln Asn 140 145 150 155 AGT CCG GCC GAA GAC TTC CAG GAG CCG TGC CAG TAT TCC CAG GAG TCC 950 Ser Pro Ala Glu Asp Phe Gln Glu Pro Cys Gln Tyr S er Gln Glu Ser 160 165 170 CAG AAG TTC TCC TGC CAG TTA GCA GTC CCG GAG GGA GAC AGC TCT TTC 998 Gln Lys Phe Ser Cys Gln Leu Ala Val Pro Glu Gly Asp Ser Ser Phe 175 180 185 TAC ATA GTG TCC ATG TGC GTC GCC AGT AGT GTC GGG AGC AAG TTC AGC 1046 Tyr Ile Val Ser Met Cys Val Ala Ser Ser Val Gly Ser Lys Phe Ser 190 195 200

【0050】 AAA ACT CAA ACC TTT CAG GGT TGT GGA ATC TTG CAG CCT GAT CCG CCT 1094 Lys Thr Gln Thr Phe Gln Gly Cys Gly Ile Leu Gln Pro Asp Pro Pro 205 210 215 GCC AAC ATC ACA GTC ACT GCC GTG GCC AGA AAC CCC CGC TGG CTC AGT 1142 Ala Asn Ile Thr Val Thr Ala Val Ala Arg Asn Pro Arg Trp Leu Ser 220 225 230 235 GTC ACC TGG CAA GAC CCC CAC TCC TGG AAC TCA TCT TTC TAC AGA CTA 1190 Val Thr Trp Gln Asp Pro His Ser Trp Asn Ser Ser Phe Tyr Arg Leu 240 245 250 CGG TTT GAG CTC AGA TAT CGG GCT GAA CGG TCA AAG ACA TTC ACA ACA 1238 Arg Phe Glu Leu Arg Tyr Arg Ala Glu Arg Ser Lys Thr Phe Thr Thr 255 260 265 TGG ATG GTC AAG GAC CTC CAG CAT CAC TGT GTC ATC CAC GAC GCC TGG 1286 Trp Met Val Lys Asp Leu Gln His His Cys Val Ile His Asp Ala Trp 270 275 280 AGC GGC CTG AGG CAC GTG GTG CAG CTT CGT GCC CAG GAG GAG TTC GGG 1334 Ser Gly Leu Arg His Val Val Gln Leu Arg Ala Gln Glu Glu Phe Gly 285 290 295 CAA GGC GAG TGG AGC GAG TGG AGC CCG GAG GCC ATG GGC ACG CCT TGG 1382 Gln Gly Glu Trp Ser Glu Trp Ser Pro Glu Ala Met Gly Thr Pro Trp 300 305 310 315 ACA GAA TCC AGG AGT CCT CCA GCT GAG AAC GAG GTG TCC ACC CCC ATG 1430 Thr Glu Ser Arg Ser Pro Pro Ala Glu Asn Glu Val Ser Thr Pro Met 320 325 330 CAG GCA CTT ACT ACT AAT AAA GAC GAT GAT AAT ATT CTC TTC AGA GAT 1478 Gln Ala Leu Thr Thr Asn Lys Asp Asp Asp Asn Ile Leu Phe Arg Asp 335 340 345 AAA ACT CAA ACC TTT CAG GGT TGT GGA ATC TTG CAG CCT GAT CCG CCT 1094 Lys Thr Gln Thr Phe Gln Gly Cys Gly Ile Leu Gln Pro Asp Pro Pro 205 210 215 GCC AAC ATC ACA GTC ACT GCC GTG GCC AGA AAC CCC CGC TGG CTC AGT 1142 Ala Asn Ile Thr Val Thr Ala Val Ala Arg Asn Pro Arg Trp Leu Ser 220 225 230 235 GTC ACC TGG CAA GAC CCC CAC TCC TGG AAC TCA TCT TTC TAC AGA CTA 1190 Val Thr Trp Gln Asp Pro His Ser Trp Asn Ser Ser Phe Tyr Arg Leu 240 245 250 CGG TTT GAG CTC AGA TAT CGG GCT GAA CGG TCA AAG ACA TTC ACA ACA 1238 Arg Phe Glu Leu Arg Tyr Arg Ala Glu Arg Ser Lys Thr Phe Thr Thr 255 260 265 TGG ATG GTC AAG GAC CTC CAG CAT CAC TGT GTC ATC CAC GAC GCC TGG 1286 Trp Met Val Lys Asp Leu Gln His His Cys Val Ile His Asp Ala Trp 270 275 280 AGC GGC CTG AGG CAC GTG GTG CAG CTT CGT GCC CAG GAG GAG TTC GGG 1334 Ser Gly Leu Arg His Val Val Gln Leu Arg Ala Gln Glu Glu Phe Gly 285 290 295 CAA GGC GAG TGG AGC GAG TGG AGC CCG GAG GCC ATG GGC ACG CCT TGG 1382 Gln Gly Glu Trp Ser Glu Trp Ser Pro Gl u Ala Met Gly Thr Pro Trp 300 305 310 315 ACA GAA TCC AGG AGT CCT CCA GCT GAG AAC GAG GTG TCC ACC CCC ATG 1430 Thr Glu Ser Arg Ser Pro Pro Ala Glu Asn Glu Val Ser Thr Pro Met 320 325 330 CAG GCA CTT ACT ACT AAT AAA GAC GAT GAT AAT ATT CTC TTC AGA GAT 1478 Gln Ala Leu Thr Thr Asn Lys Asp Asp Asp Asn Ile Leu Phe Arg Asp 335 340 345

【0051】 TCT GCA AAT GCG ACA AGC CTC CCA GTG CAA GAT TCT TCT TCA GTA CCA 1526 Ser Ala Asn Ala Thr Ser Leu Pro Val Gln Asp Ser Ser Ser Val Pro 350 355 360 CTG CCC ACA TTC CTG GTT GCT GGA GGG AGC CTG GCC TTC GGA ACG CTC 1574 Leu Pro Thr Phe Leu Val Ala Gly Gly Ser Leu Ala Phe Gly Thr Leu 365 370 375 CTC TGC ATT GCC ATT GTT CTG AGG TTC AAG AAG ACG TGG AAG CTG CGG 1622 Leu Cys Ile Ala Ile Val Leu Arg Phe Lys Lys Thr Trp Lys Leu Arg 380 385 390 395 GCT CTG AAG GAA GGC AAG ACA AGC ATG CAT CCG CCG TAC TCT TTG GGG 1670 Ala Leu Lys Glu Gly Lys Thr Ser Met His Pro Pro Tyr Ser Leu Gly 400 405 410 CAG CTG GTC CCG GAG AGG CCT CGA CCC ACC CCA GTG CTT GTT CCT CTC 1718 Gln Leu Val Pro Glu Arg Pro Arg Pro Thr Pro Val Leu Val Pro Leu 415 420 425 ATC TCC CCA CCG GTG TCC CCC AGC AGC CTG GGG TCT GAC AAT ACC TCG 1766 Ile Ser Pro Pro Val Ser Pro Ser Ser Leu Gly Ser Asp Asn Thr Ser 430 435 440 AGC CAC AAC CGA CCA GAT GCC AGG GAC CCA CGG AGC CCT TAT GAC ATC 1814 Ser His Asn Arg Pro Asp Ala Arg Asp Pro Arg Ser Pro Tyr Asp Ile 445 450 455 AGC AAT ACA GAC TAC TTC TTC CCC AGA TAG CTGGCTGGGT GGCACCAGCA 1864 Ser Asn Thr Asp Tyr Phe Phe Pro Arg --- 460 465 GCCTGGACCC TGTGGATGAC AAAACACAAA CGGGCTCAGC AAAAGATGCT TCTCACTGCC 1924 ATGCCAGCTT ATCTCAGGGG TGTGCGGCCT TTGGCTTCAC GGAAGAGCCT TGCGGAAGGT 1984 TCTACGCCAG GGGAAAATCA GCCTGCTCCA GCTGTTCAGC TGGTTGAGGT TTCAAACCTC 2044 CCTTTCCAAA TGCCCAGCTT AAAGGGGTTA GAGTGAACTT GGGCCACTGT GAAGAGAACC 2104TCT GCA AAT GCG ACA AGC CTC CCA GTG CAA GAT TCT TCT TCA GTA CCA 1526 Ser Ala Asn Ala Thr Ser Leu Pro Val Gln Asp Ser Ser Ser Val Pro 350 355 360 CTG CCC ACA TTC CTG GTT GCT GGA GGG AGC CTG GCC TTC GGA ACG CTC 1574 Leu Pro Thr Phe Leu Val Ala Gly Gly Ser Leu Ala Phe Gly Thr Leu 365 370 375 CTC TGC ATT GCC ATT GTT CTG AGG TTC AAG AAG ACG TGG AAG CTG CGG 1622 Leu Cys Ile Ala Ile Val Leu Arg Phe Lys Lys Thr Trp Lys Leu Arg 380 385 390 395 GCT CTG AAG GAA GGC AAG ACA AGC ATG CAT CCG CCG TAC TCT TTG GGG 1670 Ala Leu Lys Glu Gly Lys Thr Ser Met His Pro Pro Tyr Ser Leu Gly 400 405 410 CAG CTG GTC CCG GAG AGG CCT CGA CCC ACC CCA GTG CTT GTT CCT CTC 1718 Gln Leu Val Pro Glu Arg Pro Arg Pro Thr Pro Val Leu Val Pro Leu 415 420 425 ATC TCC CCA CCG GTG TCC CCC AGC AGC CTG GGG TCT GAC AAT ACC TCG 1766 Ile Ser Pro Pro Val Ser Pro Ser Ser Leu Gly Ser Asp Asn Thr Ser 430 435 440 AGC CAC AAC CGA CCA GAT GCC AGG GAC CCA CGG AGC CCT TAT GAC ATC 1814 Ser His Asn Arg Pro Asp Ala Arg Asp Pr o Arg Ser Pro Tyr Asp Ile 445 450 455 AGC AAT ACA GAC TAC TTC TTC CCC AGA TAG CTGGCTGGGT GGCACCAGCA 1864 Ser Asn Thr Asp Tyr Phe Phe Pro Arg --- 460 465 CGCTGGACCCTGTGCATGCTGCTCACTACTGACCCT AAAGCAGCACT 1984 TCTACGCCAG GGGAAAATCA GCCTGCTCCA GCTGTTCAGC TGGTTGAGGT TTCAAACCTC 2044 CCTTTCCAAA TGCCCAGCTT AAAGGGGTTA GAGTGAACTT GGGCCACTGT GAAGAGAACC 2104

【0052】 ATATCAAGAC TCTTTGGACA CTCACACGGA CACTCAAAAG CTGGGCAGGT TGGTGGGGGC 2164 CTCGGTGTGG AGAAGCGGCT GGCAGCCCAC CCCTCAACAC CTCTGCACAA GCTGCACCCT 2224 CAGGCAGGTG GGATGGATTT CCAGCCAAAG CCTCCTCCAG CCGCCATGCT CCTGGCCCAC 2284 TGCATCGTTT CATCTTCCAA CTCAAACTCT TAAAACCCAA GTGCCCTTAG CAAATTCTGT 2344 TTTTCTAGGC CTGGGGACGG CTTTTACTTA AACGCCAAGG CCTGGGGGAA GAAGCTCTCT 2404 CCTCCCTTTC TTCCCTACAG TTCAAAAACA GCTGAGGGTG AGTGGGTGAA TAATACAGTA 2464 TGTCAGGGCC TGGTCGTTTT CAACAGAATT ATAATTAGTT CCTCATTAGC AGTTTTGCCT 2524 AAATGTGAAT GATGATCCTA GGCATTTGCT GAATACAGAG GCAACTGCAT TGGCTTTGGG 2584 TTGCAGGACC TCAGGTGAGA AGCAGAGGAA GGAGAGGAGA GGGGCACAGG GTCTCTACCA 2644 TCCCCTGTAG AGTGGGAGCT GAGTGGGGGA TCACAGCCTC TGAAAACCAA TGTTCTCTCT 2704 TCTCCACCTC CCACAAAGGA GAGCTAGCAG CAGGGAGGGC TTCTGCCATT TCTGAGATCA 2764 AAACGGTTTT ACTGCAGCTT TGTTTGTTGT CAGCTGAACC TGGGTAACTA GGGAAGATAA 2824 TATTAAGGAA GACAATGTGA AAAGAAAAAT GAGCCTGGCA AGAATGCGTT TAAACTTGGT 2884 TTTTAAAAAA CTGCTGACTG TTTTCTCTTG AGAGGGTGGA ATATCCAATA TTCGCTGTGT 2944 CAGCATAGAA GTAACTTACT TAGGTGTGGG GGAAGCACCA TAACTTTGTT TAGCCCAAAA 3004 CCAAGTCAAG TGAAAAAGGA GGAAGAGAAA AAATATTTTC CTGCCAGGCA TGGAGGCCCA 3064 CGCACTTCGG GAGGTCGAGG CAGGAGGATC ACTTGAGTCC AGAAGTTTGA GATCAGCCTG 3124 GGCAATGTGA TAAAACCCCA TCTCTACAAA AAGCATAAAA ATTAGCCAAG TGTGGTAGAG 3184 TGTGCCTGAA GTCCCAGATA CTTGGGGGGC TGAGGTGGGA GGATCTCTTG AGCCTGGGAG 3244 GTCAAGGCTG CAGTGAGCCG AGATTGCACC ACTGCACTCC AGCCTGGGGT GACAGAGCAA 3304 GTGAGACCCT GTCTC 3319[0052] ATATCAAGAC TCTTTGGACA CTCACACGGA CACTCAAAAG CTGGGCAGGT TGGTGGGGGC 2164 CTCGGTGTGG AGAAGCGGCT GGCAGCCCAC CCCTCAACAC CTCTGCACAA GCTGCACCCT 2224 CAGGCAGGTG GGATGGATTT CCAGCCAAAG CCTCCTCCAG CCGCCATGCT CCTGGCCCAC 2284 TGCATCGTTT CATCTTCCAA CTCAAACTCT TAAAACCCAA GTGCCCTTAG CAAATTCTGT 2344 TTTTCTAGGC CTGGGGACGG CTTTTACTTA AACGCCAAGG CCTGGGGGAA GAAGCTCTCT 2404 CCTCCCTTTC TTCCCTACAG TTCAAAAACA GCTGAGGGTG AGTGGGTGAA TAATACAGTA 2464 TGTCAGGGCC TGGTCGTTTT CAACAGAATT ATAATTAGTT CCTCATTAGC AGTTTTGCCT 2524 AAATGTGAAT GATGATCCTA GGCATTTGCT GAATACAGAG GCAACTGCAT TGGCTTTGGG 2584 TTGCAGGACC TCAGGTGAGA AGCAGAGGAA GGAGAGGAGA GGGGCACAGG GTCTCTACCA 2644 TCCCCTGTAG AGTGGGAGCT GAGTGGGGGA TCACAGCCTC TGAAAACCAA TGTTCTCTCT 2704 TCTCCACCTC CCACAAAGGA GAGCTAGCAG CAGGGAGGGC TTCTGCCATT TCTGAGATCA 2764 AAACGGTTTT ACTGCAGCTT TGTTTGTTGT CAGCTGAACC TGGGTAACTA GGGAAGATAA 2824 TATTAAGGAA GACAATGTGA AAAGAAAAAT GAGCCTGGCA AGAATGCGTT TAAACTTGGT 2884 TTTTAAAAAA CTGCTGACTG TTTTCTCTTG AGAGGGTGGA ATATCCAATA TTC GCTGTGT 2944 CAGCATAGAA GTAACTTACT TAGGTGTGGG GGAAGCACCA TAACTTTGTT TAGCCCAAAA 3004 CCAAGTCAAG TGAAAAAGGA GGAAGAGAAA AAATATTTTC CTGCCAGGCA TGGAGGCCCA 3064 CGCACTTCGG GAGGTCGAGG CAGGAGGATC ACTTGAGTCC AGAAGTTTGA GATCAGCCTG 3124 GGCAATGTGA TAAAACCCCA TCTCTACAAA AAGCATAAAA ATTAGCCAAG TGTGGTAGAG 3184 TGTGCCTGAA GTCCCAGATA CTTGGGGGGC TGAGGTGGGA GGATCTCTTG AGCCTGGGAG 3244 GTCAAGGCTG CAGTGAGCCG AGATTGCACC ACTGCACTCC AGCCTGGGGT GACAGAGCAA 3304 GTGAGACCCT GTCTC 3319

【0053】配列番号:2 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖 配列の種類:合成DNA 配列 AGCCTCCTTC CCATGCCAGC 20SEQ ID NO: 2 Sequence length: 20 Sequence type: Nucleic acid Number of strands: Single strand Sequence type: Synthetic DNA Sequence AGCCTCCTTC CCATGCCAGC 20

【0054】配列番号:3 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖 配列の種類: 配列 CTCACAAACA ACATTGCTGA 20SEQ ID NO: 3 Sequence length: 20 Sequence type: Nucleic acid Number of strands: Single strand Sequence type: Sequence CTCACAAACA ACATTGCTGA 20

【0055】配列番号:4 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖 配列の種類:合成DNA 配列 TGCCAGCCCA TCTGCTGGGG 20SEQ ID NO: 4 Sequence length: 20 Sequence type: Nucleic acid Number of strands: Single strand Sequence type: Synthetic DNA Sequence TGCCAGCCCA TCTGCTGGGG 20

【0056】配列番号:5 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖 配列の種類: 配列 CTCCTGGCAG ACTGGTCAGC 20SEQ ID NO: 5 Sequence length: 20 Sequence type: Nucleic acid Number of strands: Single strand Sequence type: Sequence CTCCTGGCAG ACTGGTCAGC 20

【0057】配列番号:6 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖 配列の種類:合成DNA 配列 TTCCGGAAGC AGGAGAGCTG 20SEQ ID NO: 6 Sequence length: 20 Sequence type: Nucleic acid Number of strands: Single strand Sequence type: Synthetic DNA Sequence TTCCGGAAGC AGGAGAGCTG 20

【0058】配列番号:7 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖 配列の種類:合成DNA 配列 TCCTGGGAAT ACTGGCACGG 20SEQ ID NO: 7 Sequence length: 20 Sequence type: Nucleic acid Number of strands: Single strand Sequence type: Synthetic DNA Sequence TCCTGGGAAT ACTGGCACGG 20

【0059】配列番号:8 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖 配列の種類:合成DNA 配列 CCCCAGCAGA TGGGCTGGCA 20SEQ ID NO: 8 Sequence length: 20 Sequence type: Nucleic acid Number of strands: Single strand Sequence type: Synthetic DNA Sequence CCCCAGCAGA TGGGCTGGCA 20

【0060】配列番号:9 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖 配列の種類:合成DNA 配列 GCAGCCTCCT TCCCATGCCA 20SEQ ID NO: 9 Sequence length: 20 Sequence type: Nucleic acid Number of strands: Single strand Sequence type: Synthetic DNA Sequence GCAGCCTCCT TCCCATGCCA 20

【0061】配列番号:10 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖 配列の種類:合成DNA 配列 CTCCTTCCCA TGCCAGCCCA 20SEQ ID NO: 10 Sequence length: 20 Sequence type: Nucleic acid Number of strands: Single strand Sequence type: Synthetic DNA Sequence CTCCTTCCCA TGCCAGCCCA 20

【0062】配列番号:11 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖 配列の種類:合成DNA 配列 GCTGGCATGG GAAGGAGGCT 20SEQ ID NO: 11 Sequence length: 20 Sequence type: Nucleic acid Number of strands: Single strand Sequence type: Synthetic DNA Sequence GCTGGCATGG GAAGGAGGCT 20

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は実験例1における本発明のアンチセンス
オリゴヌクレオチド誘導体(配列番号2及び3)が可溶
性IL−6Rの発現を抑制することを示すグラフであ
る。
FIG. 1 is a graph showing that the antisense oligonucleotide derivatives of the present invention (SEQ ID NOS: 2 and 3) in Experimental Example 1 suppress the expression of soluble IL-6R.

【図2】図2は実験例1における本発明のアンチセンス
オリゴヌクレオチド(配列番号2,9及び10)が可溶
性IL−6Rの発現を抑制することを示すグラフであ
る。
FIG. 2 is a graph showing that the antisense oligonucleotides of the present invention (SEQ ID NOS: 2, 9 and 10) in Experimental Example 1 suppress the expression of soluble IL-6R.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ヒトインターロイキン−6レセプター
(ヒトIL−6R)をコードするmRNAのループ構造
を形成しうる部分の塩基配列を含む少なくとも9個の連
続する塩基配列に対するアンチセンスオリゴヌクレオチ
ド誘導体を有効成分とするヒトIL−6Rの発現阻害
剤。
1. An antisense oligonucleotide derivative against at least 9 consecutive base sequences including a base sequence of a portion capable of forming a loop structure of mRNA encoding human interleukin-6 receptor (human IL-6R) is effective. A human IL-6R expression inhibitor as a component.
【請求項2】 配列番号:1における塩基配列中ループ
構造を形成しうる部分の塩基配列に対するアンチセンス
オリゴヌクレオチド誘導体を含んで成る請求項1に記載
の発現阻害剤。
2. The expression inhibitor according to claim 1, which comprises an antisense oligonucleotide derivative against the base sequence of a portion of the base sequence of SEQ ID NO: 1 that can form a loop structure.
【請求項3】 塩基配列がAGCCTCCTTCCCATGCCAGC(配列
番号:2)である請求項2に記載の発現阻害剤。
3. The expression inhibitor according to claim 2, wherein the nucleotide sequence is AGCCTCCTTCCCATGCCAGC (SEQ ID NO: 2).
【請求項4】 塩基配列がCTCACAAACAACATTGCTGA(配列
番号:3)である請求項2に記載の発現阻害剤。
4. The expression inhibitor according to claim 2, wherein the base sequence is CTCACAAACAACATTGCTGA (SEQ ID NO: 3).
JP32313095A 1994-12-16 1995-12-12 Human interleukin-6 receptor expression inhibitor Expired - Fee Related JP3868021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32313095A JP3868021B2 (en) 1994-12-16 1995-12-12 Human interleukin-6 receptor expression inhibitor

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP31316794 1994-12-16
JP6-313167 1994-12-16
JP7-210739 1995-08-18
JP21073995 1995-08-18
JP32313095A JP3868021B2 (en) 1994-12-16 1995-12-12 Human interleukin-6 receptor expression inhibitor

Publications (2)

Publication Number Publication Date
JPH09118623A true JPH09118623A (en) 1997-05-06
JP3868021B2 JP3868021B2 (en) 2007-01-17

Family

ID=27329168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32313095A Expired - Fee Related JP3868021B2 (en) 1994-12-16 1995-12-12 Human interleukin-6 receptor expression inhibitor

Country Status (1)

Country Link
JP (1) JP3868021B2 (en)

Also Published As

Publication number Publication date
JP3868021B2 (en) 2007-01-17

Similar Documents

Publication Publication Date Title
US5681747A (en) Nucleic acid sequences encoding protein kinase C and antisense inhibition of expression thereof
AU680405B2 (en) Nucleozymes
US5747470A (en) Method for inhibiting cellular proliferation using antisense oligonucleotides to gp130 mRNA
EP0736093B1 (en) ANTISENSE NUCLEIC ACIDS FOR THE PREVENTION AND TREATMENT OF DISORDERS IN WHICH EXPRESSION OF c-erbB-2 PLAYS A ROLL
CA2132094A1 (en) Oligonucleotide modulation of protein kinase c
AU673537B2 (en) Antisense polynucleotides
JP2003505080A (en) Oligonucleotide for inhibiting expression of human eg5
WO2000031271A1 (en) Hiv infection inhibitors
KR100199247B1 (en) Antisense oligonucleotide inhibition of the ras gene
TW202102676A (en) Oligonucleotides for modulating atxn2 expression
US5847103A (en) Expression inhibitor comprising an antisense oligonucleotide derivative corresponding to human interleukin-6 receptor
EP0928419A1 (en) Compositions and methods for modulating type i interleukin-1 receptor expression
WO1996040157A1 (en) USE OF ANTISENSE OLIGONUCLEOTIDES TO IL-6 RECEPTOR mRNA TO INHIBIT CELLULAR PROLIFERATION
JP2007104971A (en) Antisense oligonucleotide for splicing control of myostatin
US6596537B1 (en) Human interleukin-6 receptor expression inhibitor
AU646643B2 (en) Antisense oligonucleotides to C-ABL proto-oncogene
JPH09118623A (en) Human interleukin-6 receptor-developing inhibitor
JP2023538630A (en) Use of A1CF inhibitors to treat hepatitis B virus infection
US5716846A (en) Method for inhibiting cellular proliferation using antisense oligonucleotides to interleukin-6 receptor mRNA
Scherr et al. Effective reversal of a transformed phenotype by retrovirus-mediated transfer of a ribozyme directed against mutant N-ras
US5674995A (en) Oligonucleotides specific for cytokine signal transducer gp130 mRNA
AU705122B2 (en) Oligonucleotides specific for cytokine signal transducer gp130 mRNA
KATO et al. Lymphotoxin cDNA clones from a HTLV-I-carrying T cell line HUT-102
JP2002529083A (en) Antisense oligomer
JPH0797337A (en) Manifestation inhibitor containing anti-sense oligonucleotide derivative against human interleukin-6 receptor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061010

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees