JPH09118218A - Control method of anti-lock brake system of vehicle - Google Patents

Control method of anti-lock brake system of vehicle

Info

Publication number
JPH09118218A
JPH09118218A JP7314617A JP31461795A JPH09118218A JP H09118218 A JPH09118218 A JP H09118218A JP 7314617 A JP7314617 A JP 7314617A JP 31461795 A JP31461795 A JP 31461795A JP H09118218 A JPH09118218 A JP H09118218A
Authority
JP
Japan
Prior art keywords
road surface
value
control
control method
stress sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7314617A
Other languages
Japanese (ja)
Other versions
JP3584315B2 (en
Inventor
Osao Miyazaki
長生 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NDK Inc
Original Assignee
Nihon Denshi Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Denshi Kogyo KK filed Critical Nihon Denshi Kogyo KK
Priority to JP31461795A priority Critical patent/JP3584315B2/en
Priority to EP03026937A priority patent/EP1403628A3/en
Priority to DE69630865T priority patent/DE69630865T2/en
Priority to EP96114982A priority patent/EP0788955B1/en
Priority to US08/715,730 priority patent/US5979995A/en
Priority claimed from US08/715,730 external-priority patent/US5979995A/en
Publication of JPH09118218A publication Critical patent/JPH09118218A/en
Priority to US08/911,980 priority patent/US6050126A/en
Priority to US09/419,895 priority patent/US6164119A/en
Priority to US09/679,404 priority patent/US6311541B1/en
Application granted granted Critical
Publication of JP3584315B2 publication Critical patent/JP3584315B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Regulating Braking Force (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform an optimum ABS control suitable to a road surface from the start of control by determining the maximum surface frictional coefficient from the peak value of surface friction output of a stress sensor, and automatically selecting a preset control method or controlling set value of brake pressure in conformation to the maximum surface frictional coefficient. SOLUTION: A value of a surface frictional force F is measured by a surface frictional force F detecting means 1 formed of a stress sensor just after start of braking. The moment when the surface frictional force measured value F becomes a peak value is detected by a control timing detecting means 3. The road surface μ is judged on the basis of the magnitude of the detected peak value by a judging means 4. A preliminarily program-set control method or controlling set value of brake pressure is selected by a control switching means 5 in conformation to the judged road surface μ, and an ABS control means 6 formed of an actuator performs a control according to the selected control method or set value. Thus, the optimum ABS control suitable to the road surface μ can be performed from the start of control.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、車両の急制動時に車輪
のロック(固着)を防止するアンチロックブレーキシス
テム(ABS)の制御に関するもので、詳しくはブレー
キトルク等のクロストーク分が混入した路面摩擦力また
は正確な路面摩擦力とブレーキトルクに比例した出力が
得られる応力センサを用いて、ABSの制御開始時点よ
り安定したABS制御判断を行うための路面μ判定方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to control of an antilock brake system (ABS) for preventing wheel lock (sticking) during sudden braking of a vehicle, and more specifically, crosstalk components such as brake torque are mixed therein. The present invention relates to a road surface μ determination method for making a stable ABS control determination from the time when ABS control is started by using a stress sensor that provides an output proportional to the road surface friction force or an accurate road surface friction force and brake torque.

【0002】[0002]

【従来の技術】従来のアンチロックブレーキシステム
(ABS)の制御では、適当に想定した制御方法及び制
御設定値で制御を開始し、制御中に車輪滑りが発生する
頻度を計測することによって路面μを想定しなおし、車
輪滑りが多発する場合にはより低μの制御へ移行し、車
輪滑りが発生しないときは制動力が不足しているとみな
しより高μ用の制御に切り替えている。ところがこのよ
うな制御を行うと低μ路面で車輪滑りが発生している間
の制動力、もしくは高μ路面で制動力を控え目に設定し
ている間の制動力損失が大きく、制動距離が大きくなる
結果をまねき問題となる。
2. Description of the Related Art In the conventional control of an anti-lock brake system (ABS), the road surface μ is determined by starting the control with an appropriately assumed control method and control set value and measuring the frequency of wheel slippage during the control. When the wheel slip frequently occurs, the control is shifted to a lower μ, and when the wheel slip does not occur, it is considered that the braking force is insufficient and the control is switched to a higher μ. However, if such control is performed, the braking force is large while the wheel slip is occurring on the low μ road surface, or the braking force loss is large while the braking force is conservatively set on the high μ road surface, and the braking distance is large. It becomes a problem that leads to the result.

【0003】[0003]

【発明が解決しようとする課題】上記従来例の問題点に
鑑み本発明は、車軸または車軸近傍に穴を設け、この穴
に歪ゲージからなる応力センサを埋め込み、車輪作用力
により車軸又は車軸近傍に生ずる応力が応力センサで直
接検出される路面摩擦力の挙動を監視することによっ
て、ABS制御を開始すると同時、もしくは制御を開始
する以前に路面μを判定し、制御開始当初から路面μに
対応した最適なABS制御を行うことを目的としてい
る。
SUMMARY OF THE INVENTION In view of the above-mentioned problems of the prior art, the present invention provides a hole in the axle or in the vicinity of the axle, and a stress sensor consisting of a strain gauge is embedded in the hole, and the axle or the vicinity of the axle is applied by the wheel action force. By monitoring the behavior of the road surface friction force where the stress generated in the vehicle is directly detected by the stress sensor, the road surface μ can be determined at the same time as the ABS control is started or before the control is started, and the road surface μ can be handled from the beginning of the control. The purpose is to perform the optimum ABS control.

【0004】[0004]

【課題を解決するための手段】請求項1に記載の本発明
は、ブレーキトルク等のクロストーク分が混入した路面
摩擦力または正確な路面摩擦力とブレーキトルクに比例
した出力が得られる応力センサを備えたアンチロックブ
レーキシステムにおいて、応力センサの路面摩擦力出力
のピーク値から最大路面摩擦係数を求め、得られた路面
摩擦係数に対応して予め設定したブレーキ圧の制御方法
または制御用設定値を自動的に選択してABS制御を行
うようになっている。請求項2に記載の本発明は、請求
項1に記載のアンチロックブレーキシステムの制御方法
において、応力センサの路面摩擦力出力の一次微分値が
ピークとなる時点の路面摩擦力値から、センサ出力がピ
ークに達する以前に最大路面摩擦係数の予測を行い、そ
の最大路面摩擦係数予測値に対応して、予め設定したブ
レーキ圧の制御方法または制御用設定値を自動的に選択
してABS制御を行うようになっている。請求項3に記
載の本発明では、請求項1に記載のアンチロックブレー
キシステムの制御方法において、応力センサの路面摩擦
力出力の二次微分値が負の値に変化した時点の路面摩擦
力値から、応力センサ出力がピークに達する以前に最大
路面摩擦係数の予測を行い、その最大路面摩擦係数予測
値に対応して、予め設定したブレーキ圧の制御方法また
は制御用設定値を自動的に選択してABS制御を行うよ
うになっている。
According to a first aspect of the present invention, there is provided a stress sensor capable of obtaining an output proportional to a road friction force or an accurate road friction force and a brake torque in which a crosstalk component such as a brake torque is mixed. In an anti-lock brake system equipped with, the maximum road surface friction coefficient is obtained from the peak value of the road surface frictional force output of the stress sensor, and the brake pressure control method or control set value that is preset according to the obtained road surface friction coefficient is obtained. Is automatically selected to perform ABS control. According to a second aspect of the present invention, in the control method of the anti-lock brake system according to the first aspect, the sensor output is obtained from the road surface friction force value at the time when the first derivative of the road surface friction force output of the stress sensor reaches a peak. The maximum road friction coefficient is predicted before the peak reaches the peak, and the ABS control is performed by automatically selecting the preset brake pressure control method or control set value in accordance with the maximum road friction coefficient predicted value. I am supposed to do it. According to a third aspect of the present invention, in the control method of the anti-lock brake system according to the first aspect, the road surface friction force value at the time when the second derivative of the road surface friction force output of the stress sensor changes to a negative value. From this, the maximum road surface friction coefficient is predicted before the stress sensor output reaches its peak, and the preset braking pressure control method or control set value is automatically selected according to the maximum road surface friction coefficient predicted value. Then, ABS control is performed.

【0005】[0005]

【作用】請求項1に記載の本発明によれば、ブレーキト
ルク等のクロストーク分が混入した路面摩擦力または正
確な路面摩擦力とブレーキトルクに比例した出力が得ら
れる応力センサを備えたアンチロックブレーキシステム
において、応力センサの路面摩擦力出力のピーク値から
路面摩擦係数を求め、路面摩擦係数に対応して予め設定
したブレーキ圧の制御方法または制御用設定値を自動的
に選択することによって制御開始の時点から路面に適応
した最適なABS制御を行うことが実現できる。請求項
2に記載の本発明によれば、請求項1に記載のアンチロ
ックブレーキシステムの制御方法において、応力センサ
の路面摩擦力出力の一次微分値がピークとなる時点の路
面摩擦力値から、応力センサ出力がピークに達する以前
に最大路面摩擦係数の予測を行い、その最大路面摩擦係
数予測値に対応して、予め設定したブレーキ圧の制御方
法または制御用設定値を自動的に選択することによっ
て、制御遅れによって制御開始時点に車輪の滑りが発生
することの無いABS制御を行ことが実現できる。請求
項3に記載の本発明によれば、請求項1に記載のアンチ
ロックブレーキシステムの制御方法において、応力セン
サの路面摩擦力出力の二次微分値が負の値に変化した時
点の路面摩擦力値から、応力センサ出力がピークに達す
る以前に最大路面摩擦係数の予測を行い、その最大路面
摩擦係数予測値に対応して、予め設定したブレーキ圧の
制御方法または制御用設定値を自動的に選択することに
よって、制御遅れによって制御開始時点に車輪の滑りが
発生することの無いABS制御を行うことが実現でき
る。
According to the present invention as set forth in claim 1, an anti-stress sensor is provided which is capable of obtaining a road frictional force mixed with a crosstalk component such as a brake torque or an accurate road frictional force and an output proportional to the brake torque. In the lock brake system, the road surface friction coefficient is obtained from the peak value of the road surface frictional force output of the stress sensor, and the preset braking pressure control method or control setting value is automatically selected according to the road surface friction coefficient. It is possible to realize optimum ABS control adapted to the road surface from the time when the control is started. According to the second aspect of the present invention, in the control method for the antilock brake system according to the first aspect, from the road surface friction force value at the time when the first derivative of the road surface friction force output of the stress sensor reaches a peak, Predict the maximum road surface friction coefficient before the stress sensor output reaches its peak, and automatically select the preset brake pressure control method or control setting value according to the predicted maximum road surface friction coefficient value. As a result, it is possible to implement ABS control in which no wheel slippage occurs at the start of control due to control delay. According to the third aspect of the present invention, in the control method for the anti-lock brake system according to the first aspect, the road surface friction at the time when the second derivative of the road surface frictional force output of the stress sensor changes to a negative value. The maximum road friction coefficient is predicted from the force value before the stress sensor output reaches its peak, and the preset brake pressure control method or control setting value is automatically set according to the maximum road friction coefficient prediction value. By selecting “1”, it is possible to implement ABS control without causing wheel slippage at the start of control due to control delay.

【0006】[0006]

【実施例】ここに示すものは好ましい実施形態の一例で
あって、特許請求の範囲はここに示す実施例に限定され
るものではない。以下に本発明の一実施例を図面に基づ
いて説明する。図1は本発明で使用している応力センサ
から得られたブレーキ加圧開始直後の路面摩擦力測定値
F(a,b,c)及びその一次微分F’、二次微分
F’’のそれぞれの時間変化の例を示している。なお、
測定値Fのa,b,cはそれぞれ走行路面の最大路面摩
擦係数に対応しており、最大路面摩擦係数が高い路面ほ
どピーク信号が大きくなる特性を有している。図2には
機能系統図を示している。図1でt0のブレーキ開始直
後、応力センサからなる路面摩擦力F検出手段1によっ
て測定される路面摩擦力測定値Fは図1に示すように、
低μではa、中μではb、高μではcの様に増加してい
く。しかし、路面から得られる摩擦力が限界になると測
定値Fはt2でピークを示した後、減少してゆく。そこ
で、図2の制御タイミング検出手段3で路面摩擦力測定
値Fがピーク値となった瞬間であるt2を検出する。判
断手段4ではt2時点でのFピーク値が低μ路面(最大
路面摩擦係数が低い路面)ではPa近傍、中μ路面(最
大路面摩擦係数が中程度の路面)ではPb近傍、高μ路
面(最大路面摩擦係数が大きい路面)ではPc近傍のよ
うに変化することから、得られたピーク値の大きさをも
とに路面μを判断する。制御切替手段5は判定されたμ
に対応して予めプログラム設定されたブレーキ圧の制御
方法もしくは制御用の設定値を選択し、アクチュエータ
からなるABS制御手段6は選択された制御方法もしく
は設定値に従って制御を行う。以上は請求項1に対応す
る。なお、上記路面摩擦力F検出手段1の応力センサ
は、本出願人がさきに提案した特願平3−130840
号(特開平4−331336号公報)に開示した、基板
の相対向する上下面に4個の圧抵抗の歪ゲージを各々2
個クロスさせて取着したワンセグメント方式を採用し
て、この応力センサを構造体に設けた孔に装着し、各歪
ゲージをブリッジ回路に組み、その出力を演算処理す
る。構造体にかかる応力は応力センサの基板を通して圧
抵抗の各歪ゲージに伝わり歪ゲージが抵抗変化する。応
力の方向によって歪ゲージの抵抗変化に規則性があり、
この規則性を利用して論理計算を行い、目的とする方向
のせん断応力(路面摩擦力F)を求めるようになってい
る。又、演算手段2、制御タイミング検出手段3、判断
手段4、制御切替手段5はコンピュータとして一体構成
されている。
The present invention is an example of the preferred embodiment, and the scope of the claims is not limited to the embodiment shown here. An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a road surface frictional force measurement value F (a, b, c) immediately after the start of pressurization of a brake obtained from a stress sensor used in the present invention, and its first derivative F ′ and second derivative F ″. The example of the time change of is shown. In addition,
The measured values F, a, b, and c, respectively, correspond to the maximum road surface friction coefficient of the traveling road surface, and have a characteristic that the peak signal increases as the road surface has a higher maximum road surface friction coefficient. FIG. 2 shows a functional system diagram. Immediately after the start of braking at t0 in FIG. 1, the road surface frictional force measurement value F measured by the road surface frictional force F detecting means 1 including a stress sensor is as shown in FIG.
It increases like a for low μ, b for medium μ, and c for high μ. However, when the frictional force obtained from the road surface reaches its limit, the measured value F shows a peak at t2 and then decreases. Therefore, the control timing detection means 3 of FIG. 2 detects t2, which is the moment when the road surface frictional force measurement value F reaches the peak value. In the determination means 4, the F peak value at time t2 is near Pa on a low μ road surface (road surface with a low maximum road surface friction coefficient), near Pb on a medium μ road surface (road surface with a medium maximum road surface friction coefficient), and on a high μ road surface ( On the road surface having a large maximum road surface friction coefficient), the road surface μ changes as in the vicinity of Pc. Therefore, the road surface μ is determined based on the magnitude of the obtained peak value. The control switching means 5 determines μ
A braking pressure control method or a preset value for control which is programmed in advance is selected in accordance with the above, and the ABS control means 6 comprising an actuator performs control according to the selected control method or preset value. The above corresponds to claim 1. The stress sensor of the road surface frictional force F detecting means 1 is described in Japanese Patent Application No. 3-130840 previously proposed by the present applicant.
Japanese Unexamined Patent Publication (Kokai) No. 4-331336 discloses four piezoresistive strain gauges, two on each of the upper and lower surfaces of the substrate facing each other.
The one-segment method, in which the stress sensors are crossed and attached, is installed in the holes provided in the structure, each strain gauge is assembled in a bridge circuit, and the output is processed. The stress applied to the structure is transmitted to each strain gauge of the piezoresistive through the substrate of the stress sensor, and the strain gauge changes its resistance. There is regularity in the resistance change of the strain gauge depending on the direction of stress,
By utilizing this regularity, logical calculation is performed to obtain the shear stress (road surface frictional force F) in the target direction. The computing means 2, the control timing detecting means 3, the judging means 4, and the control switching means 5 are integrally configured as a computer.

【0007】しかし、路面摩擦力Fがピークを示してか
ら制御を開始したのでは機械的な制御遅れがあるため、
実際に制御が効きはじめるころには路面摩擦力が減少し
ており、車輪の滑りが大きくなってしまう。そこで、演
算手段2で路面摩擦力F値の一次微分F’を求め、制御
タイミング検出手段3で一次微分F’がピークを示した
時点t1を検出する。判断手段4で見るt1における路
面摩擦力Fの値はそれぞれa,b,cの場合にYa、Y
b、Ycを得ることから、これらの値と路面μの対応か
ら走行路面のμを予測する。制御切替手段5で、予測さ
れたμに対応した制御方法もしくは制御用の設定値を選
択し、アクチュエータからなるABS制御手段6は選択
された制御方法もしくは設定値に従って制御を行う。以
上によって路面摩擦力がピークに達する以前に路面μの
予測を終え、対応した制御が開始されるため車輪の滑り
が大きくなること無く、最適なABS制御を行うことが
できる。以上は請求項2に対応する。
However, if control is started after the road surface frictional force F reaches a peak, there is a mechanical control delay,
By the time the control actually begins to take effect, the road surface frictional force decreases and the wheel slippage increases. Therefore, the calculating means 2 obtains the primary differential F ′ of the road surface frictional force F value, and the control timing detecting means 3 detects the time point t1 at which the primary differential F ′ shows a peak. The values of the road surface frictional force F at t1 seen by the judging means 4 are Ya and Y in the cases of a, b and c, respectively.
Since b and Yc are obtained, μ of the traveling road surface is predicted from the correspondence between these values and the road surface μ. The control switching means 5 selects a control method or a set value for control corresponding to the predicted μ, and the ABS control means 6 composed of an actuator controls according to the selected control method or set value. As described above, the prediction of the road surface μ is completed before the road surface frictional force reaches its peak and the corresponding control is started, so that the optimum ABS control can be performed without increasing the slippage of the wheels. The above corresponds to claim 2.

【0008】一次微分F’のピーク値がどのような値に
なるか予想することはできない。そこでF’がピークに
なったことを認識するためには、過去のF’の値を保持
して新しく求められたF’との比較を絶えず繰り返さな
ければならない。そこでより容易にF’のピーク位置t
1を求めるために、演算手段2において、路面摩擦係数
のFの二次微分であるF’’を求め、この二次微分
F’’が正値から負値に変化する瞬間を制御タイミング
検出手段3で検知することにより、t1を求めてμ判定
を行なうことができる。(請求項3に対応)この方法で
は一次微分F’の過去の値を保持する必要が無く、二次
微分F’’が零以下になる瞬間を検知するだけであるの
で、より判断が容易になる。
It is impossible to predict what the peak value of the first derivative F'will be. Therefore, in order to recognize that F'has reached the peak, it is necessary to hold the past value of F'and constantly repeat the comparison with the newly obtained F '. Therefore, the peak position t of F ′ can be more easily
In order to obtain 1, the calculating means 2 obtains F ″ which is a second derivative of the road surface friction coefficient F, and the control timing detecting means detects the moment when the second derivative F ″ changes from a positive value to a negative value. By detecting in 3, it is possible to determine t1 and perform μ determination. (Corresponding to claim 3) In this method, it is not necessary to hold the past value of the first derivative F ′, and only the moment when the second derivative F ″ becomes zero or less is detected, so that the determination is easier. Become.

【0009】[0009]

【効果】本発明によれば、ABS制御を開始する以前に
路面のμを予測することができるため、あらかじめ路面
μにあわせた制御方法、あるいは制御用の設定値を選択
することができるため、ABS制御開始当初から車輪の
滑り等が発生することの無い、最適な制御効果を得るこ
とができる。
According to the present invention, since it is possible to predict μ of the road surface before starting the ABS control, it is possible to select a control method or a set value for control that matches the road surface μ in advance. From the beginning of the ABS control, it is possible to obtain the optimum control effect without causing wheel slippage or the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】急ブレーキ開始直後の路面摩擦力測定値F、F
の一次微分値F’、Fの二次微分値F’’の挙動図。
[Fig. 1] Road frictional force measurement values F, F immediately after the start of sudden braking
FIG. 7 is a behavior diagram of the first derivative value F ′ of F, and the second derivative value F ″ of F.

【図2】本発明における機能系統図。FIG. 2 is a functional system diagram of the present invention.

【符号の説明】[Explanation of symbols]

F 路面摩擦力測定値 F’ Fの一次微分値 F’’ Fの二次微分値 a 低μ路面でのFの挙動 b 中μ路面でのFの挙動 c 高μ路面でのFの挙動 Pa 低μ路面でのFピーク値 Pb 中μ路面でのFピーク値 Pc 高μ路面でのFピーク値 Ya 低μ路面でのF’ピーク時のF値 Yb 中μ路面でのF’ピーク時のF値 Yc 高μ路面でのF’ピーク時のF値 t0 急ブレーキ開始時 t1 F’ピーク時 t2 Fピーク時 1 路面摩擦力F検出手段 2 演算手段 3 制御タイミング検出手段 4 判断手段 5 制御切替手段 6 ABS制御手段 F Road friction measurement value F ′ F First derivative value F ″ F Second derivative value of F a Behavior of F on low μ road surface b Behavior of F on medium μ road surface c Behavior of F on high μ road surface Pa F peak value on low μ road surface Pb F peak value on medium μ road surface Pc F peak value on high μ road surface Ya F value at F'peak on low μ road surface Yb F'peak on medium μ road surface F value Yc F value at peak F'on high μ road surface t0 At sudden braking start t1 F'Peak time t2 F Peak time 1 Road surface friction force F detection means 2 Calculation means 3 Control timing detection means 4 Judgment means 5 Control switching Means 6 ABS control means

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】ブレーキトルク等のクロストーク分が混入
した路面摩擦力または正確な路面摩擦力とブレーキトル
クに比例した出力が得られる応力センサを備えたアンチ
ロックブレーキシステムにおいて、応力センサの路面摩
擦力出力のピーク値から最大路面摩擦係数を求め、得ら
れた最大路面摩擦係数に対応して、予め設定したブレー
キ圧の制御方法または制御用設定値を自動的に選択する
ことを特徴とする車両のアンチロックブレーキシステム
の制御方法。
1. An anti-lock brake system equipped with a stress sensor capable of obtaining an output proportional to a road friction force mixed with a crosstalk component such as a brake torque or an accurate road friction force and a brake torque. A vehicle characterized by obtaining a maximum road surface friction coefficient from a peak value of force output and automatically selecting a preset brake pressure control method or a preset value for control in accordance with the obtained maximum road surface friction coefficient. Anti-lock brake system control method.
【請求項2】請求項1に記載のアンチロックブレーキシ
ステムの制御方法において、応力センサの路面摩擦力出
力の一次微分値がピークとなる時点の路面摩擦力値か
ら、応力センサ出力がピークに達する以前に最大路面摩
擦係数の予測を行い、その最大路面摩擦係数予測値に対
応して、予め設定したブレーキ圧の制御方法または制御
用設定値を自動的に選択することを特徴とする車両のア
ンチロックブレーキシステムの制御方法。
2. The anti-lock brake system control method according to claim 1, wherein the stress sensor output reaches a peak from the road surface friction force value at the time when the first derivative of the road surface friction force output of the stress sensor reaches a peak. Anticipating the maximum road friction coefficient previously, and automatically selecting a preset brake pressure control method or control set value in accordance with the maximum road friction coefficient predicted value. Control method of lock brake system.
【請求項3】請求項1に記載のアンチロックブレーキシ
ステムにおいて、応力センサの路面摩擦力出力の二次微
分値が負の値に変化した時点の路面摩擦力値から、応力
センサ出力がピークに達する以前に最大路面摩擦係数の
予測を行い、その最大路面摩擦係数予測値に対応して予
め設定したブレーキ圧の制御方法または制御用設定値を
自動的に選択することを特徴とする車両のアンチロック
ブレーキシステムの制御方法。
3. The anti-lock brake system according to claim 1, wherein the stress sensor output peaks from the road friction force value at the time when the second derivative of the road friction force output of the stress sensor changes to a negative value. The maximum anti-friction coefficient of the road surface is predicted before reaching the maximum value, and the preset method for controlling the brake pressure or the preset value for control is automatically selected corresponding to the predicted value of the maximum road friction coefficient. Control method of lock brake system.
JP31461795A 1995-09-19 1995-10-25 Control method of vehicle anti-lock brake system Expired - Fee Related JP3584315B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP31461795A JP3584315B2 (en) 1995-10-25 1995-10-25 Control method of vehicle anti-lock brake system
DE69630865T DE69630865T2 (en) 1995-09-19 1996-09-18 Control method for anti-lock braking systems
EP96114982A EP0788955B1 (en) 1995-09-19 1996-09-18 Control method for antilock braking systems
EP03026937A EP1403628A3 (en) 1995-09-19 1996-09-18 Stress sensor for measuring vehicle wheel operating forces
US08/715,730 US5979995A (en) 1995-09-19 1996-09-19 Control method for antilock braking systems with stress sensor and measurement device of wheel operating force
US08/911,980 US6050126A (en) 1995-09-19 1997-08-15 Control method for antilock braking systems with stress sensor and measurement device of wheel operating force
US09/419,895 US6164119A (en) 1995-09-19 1999-10-18 Control method for antilock braking systems with stress sensor and measurement device of wheel operating force
US09/679,404 US6311541B1 (en) 1995-09-19 2000-10-04 Control method for antilock braking systems with stress sensor and measurement device of wheel operating force

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP31461795A JP3584315B2 (en) 1995-10-25 1995-10-25 Control method of vehicle anti-lock brake system
US08/715,730 US5979995A (en) 1995-09-19 1996-09-19 Control method for antilock braking systems with stress sensor and measurement device of wheel operating force

Publications (2)

Publication Number Publication Date
JPH09118218A true JPH09118218A (en) 1997-05-06
JP3584315B2 JP3584315B2 (en) 2004-11-04

Family

ID=26568002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31461795A Expired - Fee Related JP3584315B2 (en) 1995-09-19 1995-10-25 Control method of vehicle anti-lock brake system

Country Status (1)

Country Link
JP (1) JP3584315B2 (en)

Also Published As

Publication number Publication date
JP3584315B2 (en) 2004-11-04

Similar Documents

Publication Publication Date Title
JP6921096B2 (en) Devices and methods to improve the performance of vehicle anti-lock braking and anti-slip regulation
US5952564A (en) Anti-lock brake control system for motor vehicle with facility for discriminating vibrations of driving wheels thereof
EP1549536B1 (en) Vehicle stability control enhancement using tire force characteristics
US5164902A (en) Drive slip control system
EP0748730B1 (en) Control method for antilock braking systems with stress sensor
US4965729A (en) Method and apparatus for improving the operational characteristics of a vehicle
EP0788955B1 (en) Control method for antilock braking systems
JP2008168908A (en) Method and device for electrical control of brake system of vehicle
JP2002002470A (en) Traction controller for vehicle
JPS61222854A (en) Method and device for controlling slip of antiskid brake system
CN109305049B (en) Vehicle starting control method and device
US20050182550A1 (en) Braking force distribution control apparatus and method
JP4773665B2 (en) Method and apparatus for determining characteristic value of wheel brake
US6311541B1 (en) Control method for antilock braking systems with stress sensor and measurement device of wheel operating force
US5551769A (en) Method and system for split mu control for anti-lock brake systems
JPH09118218A (en) Control method of anti-lock brake system of vehicle
JP2001199320A (en) Operation method and device for vehicle slip control brake device
JP2002019593A (en) Method and device for determining basic value of at least one variable to be measured in brake device
JP2807288B2 (en) Anti-skid control device
JP2001523617A (en) Method and apparatus for controlling or adjusting braking force distribution
KR100311154B1 (en) Abs controller and method thereof
JP3787609B2 (en) ABS equipment
JP2008162418A (en) Friction state estimating device, automobile, and friction state estimating method
JPH09118210A (en) Method of judging pressure reduction end of brake pressure in abs
US20030139855A1 (en) System and method for monitoring an automotive subsystem

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20011113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040714

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees