JPH09117677A - Regeneration of countercurrent ion exchange tower - Google Patents

Regeneration of countercurrent ion exchange tower

Info

Publication number
JPH09117677A
JPH09117677A JP7302307A JP30230795A JPH09117677A JP H09117677 A JPH09117677 A JP H09117677A JP 7302307 A JP7302307 A JP 7302307A JP 30230795 A JP30230795 A JP 30230795A JP H09117677 A JPH09117677 A JP H09117677A
Authority
JP
Japan
Prior art keywords
water
ion exchange
resin
tower
exchange resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7302307A
Other languages
Japanese (ja)
Other versions
JP3162615B2 (en
Inventor
Kanroku Naganami
勘六 長南
Shigeo Miya
茂夫 宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP30230795A priority Critical patent/JP3162615B2/en
Publication of JPH09117677A publication Critical patent/JPH09117677A/en
Application granted granted Critical
Publication of JP3162615B2 publication Critical patent/JP3162615B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable a simple and compact ion exchange tower to be regenerated in a short time and operated stably. SOLUTION: An intermediate diaphragm 2 is installed near an intermediate part, and a strong ion exchange resin is packed in a lower chamber 5 and a weak ion exchange resin is packed in an upper chamber 8. Each of these chambers is filled with free boards 6, 9 and inactive resins with a specific gravity of 1.0 or less on the free boards. In the method for regenerating this countercurrent ion exchange tower, the following steps (a)-(e) are performed: (a) a step to discharge a suspended substance accumulated at the time of water flow by a back wash at a high speed flow velocity from a lower water, collecting device 4 and at the same time, form an ion exchange resin-fixed layer, (b) a step to maintain the fixed layer of (a) in a satisfactory operating state and flow a regenerating agent to the fixed layer from the lower water collecting device, (c) a step to maintain the fixed layer in a satisfactory operating state and extrude the regenerating agent by flowing a treated water from the lower water collecting device, (d) a step to introduce water from below, the intermediate diaphragm 2 at a low flow velocity and back wash only the upper chamber 8, and (e) a step to flow water from an upper water collecting device 3 for cleaning.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、水は通すがイオン
交換樹脂は通さない中間隔壁を塔中間部付近に設け、塔
を弱型イオン交換樹脂を充填した上部室と強型イオン交
換樹脂を充填した下部室の2室に分けた、下降流通水・
上昇流通薬を行う向流式イオン交換塔の再生方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention provides an intermediate partition wall near the middle of a tower that allows water but not an ion exchange resin to pass through the tower, and an upper chamber filled with a weak ion exchange resin and a strong ion exchange resin. Downflow water divided into two filled lower chambers
The present invention relates to a method for regenerating a countercurrent ion exchange tower that performs upflowing medicine.

【0002】[0002]

【従来の技術】最近のイオン交換装置は再生剤が節約で
き、且つ良好な処理水質が得られることから向流式が採
用されることが多い。純水装置の場合、原水水質によっ
ては、強酸性カチオン交換樹脂(以下強型カチオン樹脂
と称す)と弱酸性カチオン交換樹脂(以下弱型カチオン
樹脂と称す)、又同様に強塩基性アニオン交換樹脂(以
下強型アニオン樹脂と称す)と弱塩基性アニオン交換樹
脂(以下弱型アニオン樹脂と称す)とをたくみに組合
せ、通水を弱型から強型へと行い、再生を強型から弱型
に行うことによって、単一の樹脂を用いる場合に比べ、
更に再生剤が節約できる。
2. Description of the Related Art In recent ion exchange apparatuses, a countercurrent type is often adopted because a regenerant can be saved and good treated water quality can be obtained. In the case of a deionizer, depending on the quality of the raw water, strong acid cation exchange resin (hereinafter referred to as strong cation resin) and weak acid cation exchange resin (hereinafter referred to as weak cation resin), or similarly strong basic anion exchange resin (Hereinafter referred to as strong type anion resin) and weakly basic anion exchange resin (hereinafter referred to as weak type anion resin) are combined to make water flow from weak type to strong type and regeneration from strong type to weak type. Compared with the case of using a single resin,
In addition, regenerant can be saved.

【0003】向流式には下降流通水・上昇流通薬を行う
ものと、上昇流通水・下降流通薬を行うものにわけられ
る。何れの方式においても向流式の特長を発揮するには
上昇流の工程中、即ち下降流通水・上昇流通薬方式にお
いては通薬時に、上昇流通水・下降流通薬方式において
は通水時に、イオン交換樹脂を固定層に維持する必要が
ある。上昇流通水・下降流通薬方式は、通水の中断によ
り固定層が、すなわちイオン交換帯が乱れ、処理水質が
悪化し易い。また、通水中にイオン交換樹脂に蓄積した
懸濁物質の排出に、逆洗のための樹脂の移送工程等に特
別の操作が必要である。一方、下降流通水・上昇流通薬
方式では通水の中断による水質悪化は生じないため、採
水時にON−OFF運転が自由にできるメリットがあ
る。また、弱型イオン交換樹脂、及び強型イオン交換樹
脂を使用した複層床では、弱型イオン交換樹脂の方が比
重が小さく、上昇流通水・下降流再生方式では樹脂塔内
部を物理的に仕切らないと複層床を適用できないのに対
し、下降流通水・上昇流通薬では物理的な仕切(中間隔
壁)が無くても、比重差により2層に分離できる特徴が
ある。
The countercurrent type is divided into one for performing descending circulating water and ascending circulating medicine and one for performing ascending circulating water and descending circulating medicine. In order to exert the features of the countercurrent method in any of the methods, during the process of upflow, that is, during the flow of medicine in the descending circulating water / updrafting medicine method, during the passage of water in the rising circulating water / downdrafting medicine method, It is necessary to maintain the ion exchange resin in the fixed bed. In the ascending-flow water / down-flowing chemical method, the fixed bed, that is, the ion exchange zone is disturbed due to the interruption of the water flow, and the treated water quality is likely to deteriorate. Further, a special operation is required for discharging the suspended solids accumulated in the ion-exchange resin in flowing water and for transferring the resin for backwashing. On the other hand, in the descending circulating water / ascending circulating medicine method, the water quality is not deteriorated due to the interruption of the circulating water, so that there is an advantage that the ON-OFF operation can be freely performed at the time of water sampling. In addition, in a multi-layer bed using weak ion exchange resin and strong ion exchange resin, the weak ion exchange resin has a lower specific gravity, and the inside of the resin tower is physically The multi-layer bed cannot be applied without partitioning, whereas the descending flowing water / upflowing drug has a feature that it can be separated into two layers by the difference in specific gravity even if there is no physical partition (intermediate partition wall).

【0004】しかし、下降流通水、上昇流通薬方式を物
理的仕切(中間隔壁)無しで、実施する場合、下記の問
題点がある。 (1)カチオン塔は、〔弱型カチオン樹脂+強型カチオ
ン樹脂〕、アニオン塔は、〔弱型アニオン樹脂+強型ア
ニオン樹脂〕の組合せで使用することになる。弱型と強
型の比重の差は再生形ではかなりあるため再生形での分
離は可能である。 <各樹脂の比重例> 弱型カチオン樹脂 : 1.13〜1.18 強型カチオン樹脂 : 1.25〜1.30 弱型アニオン樹脂 : 1.04 強型アニオン樹脂 : 1.08〜1.10
However, when the descending circulating water and ascending circulating drug methods are carried out without a physical partition (intermediate partition wall), there are the following problems. (1) The cation tower is used in a combination of [weak cation resin + strong cation resin], and the anion tower is used in a combination of [weak anion resin + strong anion resin]. There is a considerable difference in specific gravity between the weak type and the strong type in the regenerated type, so that the regenerated type can be separated. <Specific gravity of each resin> Weak cation resin: 1.13 to 1.18 Strong cation resin: 1.25 to 1.30 Weak anion resin: 1.04 Strong anion resin: 1.08 to 1. 10

【0005】しかし、塩形、あるいは弱型アニオン樹脂
が有機物を吸着すると比重差がほとんどなくなり、弱型
と強型の混合が進み、ついには処理水質不良、採水量が
とれない等の問題が生じる。この対策として、下記の方
法が提案されている。 従来の粒径分布の広い樹脂にかわって粒径分布のせ
まい樹脂(均一粒径が好ましい)を用い、かつ強型イオ
ン樹脂は粒径が大きく、弱型イオン樹脂は粒径が小さい
ものを採用し、分離を良くする。 再生は一般的には図2の如く、弱型イオン交換樹脂
8の上部に中間集水管26を配して、中間集水管下部の
樹脂を塔上部から弁27を開として、加圧水又は加圧空
気を導入して固定層とし、上昇流で通薬していく。そし
て、再生廃液排出弁25を開として再生廃液を排出して
いく。
However, when the salt-type or weak-type anion resin adsorbs an organic substance, the difference in specific gravity is almost eliminated, mixing of the weak-type and strong-type progresses, and finally problems such as poor quality of treated water and inability to collect water amount occur. . The following methods have been proposed as measures against this. A resin with a narrow particle size distribution (preferably a uniform particle size) is used instead of a conventional resin with a wide particle size distribution, and a strong ionic resin has a large particle size and a weak ionic resin has a small particle size. And improve the separation. As shown in FIG. 2, the regeneration is generally performed by arranging an intermediate water collecting pipe 26 on the upper part of the weak ion exchange resin 8 and opening the valve 27 from the tower upper part of the resin at the lower part of the intermediate water collecting pipe to obtain pressurized water or pressurized air. Is introduced to form a fixed bed, and the drug is passed in an upward flow. Then, the recycled waste liquid discharge valve 25 is opened to discharge the recycled waste liquid.

【0006】(2)イオン交換樹脂は再生剤に接触する
と収縮する傾向が有り、特に上昇流通薬時に弱型イオン
交換樹脂では著しい。この収縮現象は主に弱型イオン交
換樹脂が再生されやすいため、イオン形が塩形から再生
形(R−H、R−OH)に、急激に変換するためであ
る。塩形と再生形の体積変化の例を表1に示す。
(2) Ion exchange resins tend to contract when they come into contact with regenerants, especially weak ion exchange resins during up-flow drugs. This shrinkage phenomenon is mainly because the weak ion-exchange resin is easily regenerated, so that the ionic form is rapidly converted from the salt form to the regenerated form (RH, R-OH). Table 1 shows examples of volume changes between the salt form and the regenerated form.

【表1】 [Table 1]

【0007】強型イオン交換樹脂は塩形では小さく、再
生形では体積を増す。反対に弱型イオン交換樹脂では再
生形で小さく塩形になると体積を増す。すなわち再生
時、強型イオン交換樹脂では再生液による若干の収縮、
又、再生されにくい性質を加味しても一般的に再生後は
再生前の4〜10%程度は膨潤する方向にある。しか
し、弱型イオン交換樹脂では、再生されやすいため、塩
形から再生形へほぼ100%近く変換するため通水する
原水のイオン構成によっても異なるが、その体積は一般
に再生後は再生前の約20〜30%体積が減少してしま
う。
Strong ion exchange resins are small in salt form and increase in volume in regenerated form. On the other hand, weak ion-exchange resins increase in volume when they are regenerated and small in salt form. That is, at the time of regeneration, the strong ion exchange resin causes some shrinkage due to the regeneration liquid,
In addition, even if the property of being difficult to be regenerated is taken into consideration, generally, after regeneration, about 4 to 10% of that before regeneration tends to swell. However, since weak ion exchange resins are easily regenerated, the volume of the water after regeneration is generally about the same as that before regeneration, although it varies depending on the ionic composition of the raw water that is passed because it converts nearly 100% from the salt form to the regenerated form. The volume is reduced by 20 to 30%.

【0008】一方、採水時は弱型イオン交換樹脂は再生
形から塩形へ変換していくため、その体積は膨潤してい
き、樹脂層の圧密化が生じやすい。強型イオン交換樹脂
は反対に体積収縮方向となるため、圧密化は生じにくい
と言ってよい。以上に述べた如く、弱型イオン交換樹脂
のイオン形の変化が再生時に大きく、かつ急激に生ずる
ため、弱型と強型の分離界面付近では空隙ができやすく
なり、樹脂の一部が流動化し、再生剤の不均一分散(チ
ャネリング)の危険が増してくる。そして処理水質の悪
化を招くことが多い。
On the other hand, when water is collected, the weak ion exchange resin is converted from the regenerated form to the salt form, so that the volume thereof swells and the resin layer is apt to be consolidated. On the contrary, since the strong ion exchange resin has a volume shrinkage direction, it can be said that compaction hardly occurs. As described above, the change in the ionic form of the weak-type ion exchange resin is large and remarkably occurs at the time of regeneration, so that voids are easily formed near the separation interface between the weak-type and strong-type and the resin is partially fluidized. However, the risk of uneven distribution (channeling) of the regenerant increases. And the quality of treated water often deteriorates.

【0009】(3)(2)で述べた問題点を解決するた
め、従来いろいろの工夫がされてきた。イオン交換樹脂
の収縮による流動化を防止し、再生剤の均一分散を達成
するため、 通薬途中で通薬を中断し、収縮したイオ
ン交換樹脂を沈静させてから通薬を再開することを何回
か繰り返す方法、 低濃度の再生剤を低流速で通薬す
ることにより、収縮の影響を軽減する方法、 上部か
ら導入する加圧水、又は空気量を増す方法が提案されて
いる。これらの方法によって、イオン交換樹脂層の流動
化は一応防止できている。しかし、再生操作の複雑化に
よる再生時間の延長、再生廃液量の増加、装置そのもの
の複雑化、再生コストの増加、等の不利益が生じてい
る。
(3) In order to solve the problems described in (2), various measures have been conventionally made. In order to prevent fluidization due to contraction of the ion exchange resin and to achieve uniform dispersion of the regenerant, it is necessary to suspend the medicine exchange during the medicine passage, allow the contracted ion exchange resin to settle, and then restart the medicine passage. A method of repeating the method once or a time, a method of reducing the influence of contraction by passing a low concentration regenerant at a low flow rate, and a method of increasing the amount of pressurized water or air introduced from above have been proposed. By these methods, fluidization of the ion exchange resin layer can be prevented for the time being. However, there are disadvantages such as extension of regeneration time due to complication of regeneration operation, increase of amount of waste liquid for regeneration, complication of apparatus itself, increase of regeneration cost, and the like.

【0010】(4)図2に示すように、中間集水管26
を設置したものでは、中間集水管26上部の非有効樹脂
28は毎回逆洗しており、中間集水管26下部の樹脂は
通常の再生時は逆洗しない。しかし、この状態で運転を
つづけると懸濁物質の蓄積、及び樹脂粒子の圧密化が生
じるので通常〔再生−採水〕7〜20回に1回程度の割
合で下部からイオン交換樹脂全層を逆洗している。全層
を逆洗した場合にはイオン交換帯が乱れるため、通常再
生の2〜2.5倍の再生剤量が必要となる。そして、弱
型イオン交換樹脂を大部分再生した条件で逆洗分離し、
初期の弱型と強型が十分に分離した条件に戻す必要があ
る。
(4) As shown in FIG. 2, the intermediate water collecting pipe 26
In this case, the ineffective resin 28 on the upper part of the intermediate water collecting pipe 26 is backwashed each time, and the resin on the lower part of the intermediate water collecting pipe 26 is not backwashed during normal regeneration. However, if the operation is continued in this state, accumulation of suspended solids and consolidation of resin particles occur. Therefore, normally, [regeneration-water sampling], once every 7 to 20 times, the entire layer of ion exchange resin is removed from the bottom. I'm backwashing. When all layers are backwashed, the ion exchange zone is disturbed, so that a regenerant amount of 2 to 2.5 times that of normal regeneration is required. Then, the weak ion exchange resin is backwashed and separated under the condition that most of it is regenerated,
It is necessary to return to the condition where the initial weak type and strong type are sufficiently separated.

【0011】(5)しかし前述の如く、(再生−採水)
の工程が進むにつれて、特に塔径が大きい程、弱型と強
型の混合が進み、通薬時のチャンネリング、処理水質の
悪化、採水量の不足を生じることが多い。これを避ける
ため、設計当初から混合することを考慮して必要量の2
0〜30%増しの樹脂を充填しておくことも多い。すな
わち、このような方式は塔径が大きくなる程不適となり
採用できないのが実状である。 (6)中間集水管26が樹脂層内にあるため、採水時の
圧力損失等による繰り返し荷重によって破損事故の生ず
ることもある。
(5) However, as described above, (regeneration-water sampling)
As the process proceeds, the mixing of the weak type and the strong type progresses particularly as the column diameter increases, and channeling during drug passing, deterioration of treated water quality, and insufficient water intake often occur. In order to avoid this, considering the mixing from the beginning of design, the required amount of 2
Often, 0 to 30% more resin is filled in advance. That is, such a system is unsuitable as the tower diameter becomes larger and cannot be adopted in the actual situation. (6) Since the intermediate water collection pipe 26 is inside the resin layer, a damage accident may occur due to repeated load due to pressure loss during water collection.

【0012】(7)塔内に中間隔壁を設ける方法は、上
昇流通水・下降流通薬を行う向流式イオン交換塔におい
て実用化されている。この方式において、図3に示す如
く、基本的に塔は中間隔壁2を2つ設けて、塔を3室に
分割する。下部室21は弱型イオン交換樹脂8が充填さ
れ、中間室29、及び上部室22は強型イオン交換樹脂
5が充填されている。そして、3室とも不活性樹脂30
を有している。下部室21の弱型イオン交換樹脂8は、
ある程度流動層条件で利用され、懸濁物質の蓄積は少な
い。中間室29もある程度の流動層条件で通水するた
め、フリーボード33を有している。上部室22は、強
型イオン交換樹脂5が充満充填されて固定層となってい
る。上部室22を逆洗しようとする時は、同一の樹脂が
入っている中間室29のフリーボード33に樹脂を移送
し、逆洗用のフリーボードを確保して逆洗する。
(7) The method of providing an intermediate partition wall in the tower has been put to practical use in a countercurrent type ion exchange tower in which ascending flowing water and descending flowing chemicals are used. In this system, as shown in FIG. 3, the tower is basically provided with two intermediate partition walls 2 and the tower is divided into three chambers. The lower chamber 21 is filled with the weak ion exchange resin 8, and the intermediate chamber 29 and the upper chamber 22 are filled with the strong ion exchange resin 5. And the inert resin 30 in all three rooms
have. The weak ion exchange resin 8 in the lower chamber 21 is
It is used to some extent in fluidized bed conditions, and there is little accumulation of suspended solids. The intermediate chamber 29 also has a freeboard 33 in order to pass water under a certain fluidized bed condition. The upper chamber 22 is filled with the strong ion exchange resin 5 to form a fixed layer. When the upper chamber 22 is to be backwashed, the resin is transferred to the freeboard 33 of the intermediate chamber 29 containing the same resin, and the freeboard for backwashing is secured and backwashed.

【0013】そして、逆洗終了後再び樹脂を中間室29
から上部室22へ再移送し、充満状態とする。このよう
な塔の設計条件、運転条件では下記のデメリットが生じ
ている。 a)塔内構造が複雑である。 b)塔高が高くなる。 c)上部室と中間室を樹脂が移送、再移送されるため再
生にその分、時間を要する。この方式の逆洗時の再生時
間は通常5〜6時間である。又、樹脂移送に伴う配管、
弁も必要であり、樹脂の摩耗も生じやすい。 d)中間隔壁として用いる、0.2〜0.5mmスリッ
ト付ノズルが懸濁物質等によってつまり易い。以上、述
べた如く、上昇流通水、下降流通薬方式は再生効率はよ
いが装置が複雑で、かつ維持管理上のデメリットが多
い。一方、下降流通水、上昇流通薬方式において、中間
隔壁なしで弱型と強型のイオン交換樹脂を同一塔内で使
用することは、現状では塔径が大きくなる程安定した運
転を達成することは、かなり困難であることが明白にな
ってきた。
Then, after the back washing is completed, the resin is put in the intermediate chamber 29 again.
Is re-transferred from the upper chamber to the upper chamber 22 to be filled. The following disadvantages occur under such tower design and operating conditions. a) The internal structure of the tower is complicated. b) The tower height becomes high. c) Since resin is transferred and retransferred between the upper chamber and the intermediate chamber, it takes time to regenerate the resin. The regeneration time for backwashing in this system is usually 5 to 6 hours. In addition, piping for resin transfer,
A valve is also required, and resin wear is likely to occur. d) The nozzle with a slit of 0.2 to 0.5 mm used as the intermediate partition wall is easily clogged by the suspended substance or the like. As described above, the up-flowing water and down-flowing drug methods have good regeneration efficiency, but have a complicated apparatus and have many demerits in maintenance. On the other hand, using the weak and strong ion-exchange resins in the same column without intermediate partition walls in the descending circulating water and ascending circulating chemical systems is to achieve more stable operation as the column diameter increases. Has turned out to be quite difficult.

【0014】[0014]

【発明が解決しようとする課題】本発明は、下降流通水
・上昇流通薬方式を改良し、前記の問題点、即ち再生時
間の延長、再生廃液量の増加、弱型と強型イオン交換樹
脂の混合、通薬時の諸問題、及び装置・再生操作の複雑
化等を解決し、シンプルでコンパクトなイオン交換塔を
用いて短時間に再生でき、かつ安定した運転のできる向
流式イオン交換塔の再生方法を提供することを目的す
る。
DISCLOSURE OF THE INVENTION The present invention is an improvement of the downward flow water / up flow chemical system, which has the above-mentioned problems, namely, extension of the regeneration time, increase of the amount of waste liquid for regeneration, weak and strong ion exchange resins. Countercurrent ion exchange that solves various problems during mixing, drug passing, and complication of equipment and regeneration operation, can be regenerated in a short time using a simple and compact ion exchange tower, and can be operated stably. It is intended to provide a method for regenerating a tower.

【0015】[0015]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、イオン交換塔を、中間部付近に水は通
すがイオン交換樹脂は通さない中間隔壁を設けて下部室
と上部室の2室に分け、下部室には強型イオン交換樹
脂、上部室には弱型イオン交換樹脂を充填し、下部室の
フリーボードを2〜15%、上部室のフリーボードを1
0〜30%で下部室より大きくし、更に各々のフリーボ
ードの上部に比重1.0以下の不活性樹脂を充填した、
下降流通水、上昇流通薬の向流式イオン交換塔の再生方
法において、下記(a)〜(e)の工程を順次行い樹脂
を再生することとしたものである。 (a)塔下部に設けた下部集水装置からの高流速逆洗に
よりイオン交換樹脂の大部分を不活性樹脂に押しつけ、
通水時に蓄積した懸濁物質を不活性樹脂を経由して塔上
部に設けた上部集水装置から排出すると共に、イオン交
換樹脂の固定層を形成する高流速逆洗工程、(b)高流
速逆洗工程より低速で且つ、(a)で形成された固定層
を維持するに必要な流速で再生剤を下部集水装置から上
昇流で通薬する通薬工程、(c)大部分の前記固定層を
維持できる流速で下部集水装置から処理水を上昇流で通
水し、残留する再生剤を有効に利用する押出工程、
(d)中間隔壁の下から原水又は処理水を低流速で導入
し、上部室のみを逆洗する低流速逆洗工程、(e)上部
集水装置から下降流で通水して、洗浄する洗浄工程。
In order to solve the above problems, according to the present invention, an ion exchange tower is provided with an intermediate partition wall near the middle portion through which water but not ion exchange resin is passed to form a lower chamber and an upper chamber. The lower chamber is filled with strong type ion exchange resin and the upper chamber is filled with weak type ion exchange resin, and the freeboard in the lower chamber is 2 to 15%, and the freeboard in the upper chamber is 1
0 to 30% larger than the lower chamber, and each freeboard was filled with an inert resin with a specific gravity of 1.0 or less.
In the method of regenerating a countercurrent ion exchange tower for descending circulating water and ascending circulating agent, the following steps (a) to (e) are sequentially performed to regenerate the resin. (A) Most of the ion-exchange resin is pressed against the inert resin by high-flow backwashing from a lower water collecting device provided at the lower part of the tower,
A high flow rate backwashing step in which a suspended material accumulated during water passage is discharged from an upper water collecting device provided in the upper part of the tower via an inert resin, and a fixed bed of ion exchange resin is formed, (b) high flow rate A slower than the backwash step, and a replenishing step in which the regenerant is passed from the lower water collecting device in an upward flow at a flow rate necessary to maintain the fixed bed formed in (a), (c) most of the above An extrusion process in which treated water is passed in an upward flow from the lower water collecting device at a flow rate that can maintain a fixed bed, and the remaining regenerant is effectively used,
(D) A low flow rate backwashing step in which raw water or treated water is introduced at a low flow rate from under the intermediate partition wall and only the upper chamber is backwashed, and (e) a downward flow of water is passed from the upper water collecting device for washing. Washing process.

【0016】前記再生方法において、(d)の低流速逆
洗工程後に再度、懸濁物質を上部集水装置から排出する
ため、前記(a)の高流速逆洗工程を下部集水装置、又
は中間隔壁の直ぐ下から行う。ついで、上部集水装置か
ら水を導入し、下部集水装置の洗浄排水弁を開として、
水の下降流を用いて、形成された固定層を塔下部に移動
させる樹脂移動工程を実施してもよい。また、前記
(d)の低流速逆洗工程において、下部集水装置に接続
する洗浄排水弁を開として短時間、原水又は処理水を強
型イオン交換樹脂に通水して、固定層となっている強型
イオン交換樹脂を塔下部に移動させてもよい。また、本
発明においては、採水終了後、懸濁物質の捕捉、又は圧
密化のため圧力損失の増大した弱型イオン交換樹脂の充
填されている上部室のみを中間隔壁の直ぐ下から原水又
は処理水を導入し、低流速逆洗を行い、弱型イオン交換
樹脂をほぐす工程を行い、次いで前記した再生方法を行
うこともできる。この場合、前記(c)の押出工程後に
高流速逆洗工程を行うが、懸濁物質が少ない場合はこの
高流速逆洗工程を省いてもよい。このように、本発明に
おいては、中間隔壁を設け、弱型イオン交換樹脂を上部
室に、強型イオン交換樹脂を下部室に充填し、両樹脂の
混合する条件を全くなくした塔構造として、本発明の好
適な再生工程を適用することによって従来法の諸問題を
解決している。
In the above regenerating method, since the suspended substance is discharged from the upper water collecting device again after the low flow backwashing process of (d), the high flow backwashing process of (a) is performed in the lower water collecting device, or Do from just below the middle partition. Then, water was introduced from the upper water collecting device, and the wash drain valve of the lower water collecting device was opened,
You may implement the resin moving process which moves the formed fixed bed to the lower part of a tower using the descending flow of water. In the low flow rate backwashing step (d), the wash drain valve connected to the lower water collecting device is opened, and raw water or treated water is passed through the strong ion exchange resin for a short time to form a fixed bed. The strong ion exchange resin may be moved to the lower part of the tower. Further, in the present invention, after the completion of water collection, only the upper chamber filled with the weak ion exchange resin having the increased pressure loss due to the trapping of the suspended substance or the consolidation is treated with the raw water or It is also possible to introduce treated water, carry out low-velocity backwashing, loosen the weak ion-exchange resin, and then carry out the above-mentioned regeneration method. In this case, the high flow rate backwashing step is performed after the extrusion step of (c), but this high flow rate backwashing step may be omitted when the suspended solids are small. As described above, in the present invention, the intermediate partition is provided, the weak ion-exchange resin is filled in the upper chamber, the strong ion-exchange resin is filled in the lower chamber, and the tower structure has no mixing conditions of both resins at all, The problems of the conventional method are solved by applying the suitable regeneration process of the present invention.

【0017】[0017]

【発明の実施の形態】以下に、本発明の実施態様例を図
1によって詳細に説明する。本発明ではイオン交換塔の
上下に集水装置3,4を設け、イオン交換塔1の中間部
付近に水は通すがイオン交換樹脂5,8は通さない中間
隔壁2を設け、下部室21と上部室22の2室に分け
る。下部室21には、下部集水装置4の上部に強型イオ
ン交換樹脂5を充填し、その上に若干のフリーボード6
を介して強型イオン交換樹脂5より大粒径で、かつ強型
イオン交換樹脂を保持できる大きさで比重1.0以下の
不活性樹脂7を100〜400mm充填する。上部室2
2も同様に中間隔壁2の上部に弱型イオン交換樹脂8、
若干のフリーボード9を介して不活性樹脂10を充填す
る。上下の集水装置3,4はノズル付きの多孔板方式で
も、又は多孔管方式でもかまわない。中間隔壁2は0.
5mm程度のスリットを有するノズル付多孔板、又は材
質としてSUS316等のフラットなスクリーンでもよ
い。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment of the present invention will be described in detail with reference to FIG. In the present invention, water collecting devices 3 and 4 are provided above and below the ion exchange tower, and an intermediate partition wall 2 that allows water to pass through but does not allow the ion exchange resins 5 and 8 to pass is provided near the middle portion of the ion exchange tower 1. The upper chamber 22 is divided into two chambers. In the lower chamber 21, the strong ion exchange resin 5 is filled on the upper part of the lower water collecting device 4, and some freeboard 6 is placed on the strong ion exchange resin 5.
100 to 400 mm of an inert resin 7 having a larger particle size than the strong ion exchange resin 5 and a size capable of holding the strong ion exchange resin and a specific gravity of 1.0 or less. Upper chamber 2
2 also has a weak ion exchange resin 8 on the upper part of the intermediate partition wall 2,
Inert resin 10 is filled through some freeboard 9. The upper and lower water collecting devices 3 and 4 may be of a perforated plate type with nozzles or a perforated pipe type. The intermediate partition 2 has a thickness of 0.
A perforated plate with a nozzle having a slit of about 5 mm or a flat screen such as SUS316 as a material may be used.

【0018】上部集水装置3には原水流入弁11、再生
廃水排出弁12、下部集水装置4には処理水流出弁1
3、逆洗水流入弁14、再生剤兼押出水流入弁15、洗
浄排水弁16が接続し、又空気抜弁23も塔頂部に設け
られている。又、イオン交換塔壁には、イオン交換樹脂
量、不活性樹脂量を調整できるように手動ボール弁1
7、弁18、弁19、弁20が設けられている。サイト
グラス、マンホール等は適宜適切なところに設けられ
る。サイトグラスは少なくとも弁17、弁18、弁1
9、弁20で樹脂面を調整できる位置に設ける。又マン
ホールは好ましくは塔頂部、塔最下部、下部室21、上
部室22の樹脂面近くに設けるのが好ましい。従来の中
間集水管を持つタイプの向流式は、図2に示すように通
常75〜100%の逆洗用フリーボード33を持つ必要
がある。樹脂を充満充填するタイプの向流式ではフリー
ボードはもたないが、別に逆洗塔を有する必要があるこ
と等、従来の向流式では、装置構成、配管及び運転方式
が複雑となっている。又、塔内の容積はフリーボードが
大きい分、有効に活用されていない。
The upper water collecting device 3 has a raw water inflow valve 11, the recycled wastewater discharging valve 12 and the lower water collecting device 4 has a treated water outflow valve 1.
3, a backwash water inflow valve 14, a regenerant / extruded water inflow valve 15, a wash drainage valve 16 are connected, and an air vent valve 23 is also provided at the top of the tower. Further, on the wall of the ion exchange tower, a manual ball valve 1 is provided so that the amount of ion exchange resin and the amount of inert resin can be adjusted.
7, valve 18, valve 19 and valve 20 are provided. Sight glasses, manholes, etc. will be provided at appropriate places. Sight glass has at least valve 17, valve 18, valve 1
9. The valve 20 is provided at a position where the resin surface can be adjusted. The manhole is preferably provided at the top of the tower, the bottom of the tower, the lower chamber 21 and the upper chamber 22 near the resin surface. The conventional countercurrent type having an intermediate water collecting pipe usually needs to have a backwash freeboard 33 of 75 to 100% as shown in FIG. The countercurrent type of resin-filled type does not have a freeboard, but it requires a separate backwash tower.In the conventional countercurrent type, the device configuration, piping, and operation method are complicated. There is. In addition, the volume in the tower is not effectively utilized because the freeboard is large.

【0019】本発明で用いるイオン交換塔においては、
中間隔壁2を要するがフリーボード6,9が従来より、
はるかに小さくでき、不活性樹脂7,10を加えても塔
内の容積は有効に活用されて、塔高が低くなり、コンパ
クトなものとなっている。本発明の構成において重要な
のは、フリーボード6及び9をいくらにするかである。
本発明において、下部室21の強型イオン交換樹脂5を
充填するフリーボード6は実験の結果、強型カチオン樹
脂、強型アニオン樹脂ともに、各樹脂の最大膨潤時すな
わち再生形充填時の2〜15%とする。好ましくは2〜
8%程度と小さくてよい。このフリーボード6を最大膨
潤した時より小さくとってしまうと最も膨潤した時、す
なわち2〜3倍量の再生を行い、再生形が増した時や、
再生形の樹脂を使用し、交換補給する場合に不都合が生
じる2〜15%の余裕があると維持管理しやすく、かつ
樹脂の膨潤圧が万一にも塔自体にかからないようにし、
塔自体の破壊及び樹脂自体の破砕の危険を避けることが
できるのである。
In the ion exchange column used in the present invention,
An intermediate partition 2 is required, but freeboards 6 and 9 are
It can be made much smaller, and even if the inert resins 7 and 10 are added, the internal volume of the tower is effectively utilized, the tower height is lowered, and it is compact. What is important in the construction of the present invention is how much the freeboards 6 and 9 are made.
In the present invention, as a result of experiments, the freeboard 6 filled with the strong ion exchange resin 5 in the lower chamber 21 shows that the strong cation resin and the strong anion resin 2 to 2 at the time of maximum swelling of each resin, that is, regenerative filling. 15%. Preferably 2
It may be as small as 8%. If this freeboard 6 is taken to be smaller than the maximum swell, it will swell the most, that is, it will be regenerated by 2-3 times, and the regenerated form will increase.
If a regenerated resin is used and there is a margin of 2 to 15% that causes inconvenience when exchanging and replenishing, it is easy to maintain and prevent the swelling pressure of the resin from being applied to the tower itself.
The risk of destroying the tower itself and crushing the resin itself can be avoided.

【0020】本発明においては押出終了後、上部室の低
流速逆洗時の初期に1〜3分間の短時間、洗浄排水弁1
6を開として不活性樹脂7に押しつけられていた強型イ
オン交換樹脂5の固定層をイオン交換帯の乱れを小さく
するべく、原水又は処理水を用いて、下降流によって、
下部室21の下方に移動させてしまう。この移動距離が
短い程、すなわちフリーボード6の割合が小さい程、イ
オン交換帯の乱れは小さい。本発明の如く、強型イオン
交換樹脂5を強制的に下方に移動させないで樹脂を自由
沈降させると、フリーボードが大きい程、又、塔径が大
きい程イオン交換帯の乱れは大きく処理水質の悪化、採
水量不足の危険が増して、運転の安定性に欠けることに
なる。このように強制的に強型イオン交換樹脂5を移動
させると通薬工程、押出工程で膨潤した分、樹脂の圧密
化(圧力損失の増大につながる)が解消しない心配があ
る。しかし、実験の結果、実用的な塔径の大きい、50
0φ以上の場合、充填層高Lと塔径Dの比L/Dが2〜
3以下であれば、押出工程終了時において、樹脂の膨潤
による圧密化は、全く生じないことがわかった。
In the present invention, after the completion of extrusion, the cleaning drain valve 1 for a short time of 1 to 3 minutes at the initial stage of low flow rate backwashing of the upper chamber.
In order to reduce the disturbance of the ion exchange zone, the fixed layer of the strong ion exchange resin 5 which was pressed against the inert resin 7 by opening 6 is used as raw water or treated water by a downward flow,
It is moved below the lower chamber 21. The shorter the moving distance, that is, the smaller the proportion of the freeboard 6, the smaller the disorder of the ion exchange zone. As in the present invention, when the strong ion exchange resin 5 is not allowed to move downward and the resin is allowed to settle freely, the larger the freeboard and the larger the column diameter, the greater the disorder of the ion exchange zone and the greater the treated water quality. The risk of deterioration and shortage of water is increased, resulting in lack of operational stability. If the strong ion-exchange resin 5 is forcibly moved in this way, there is a concern that the resin may not be consolidated (leading to an increase in pressure loss) due to the amount of swelling in the drug passing step and the extrusion step. However, as a result of the experiment, the practical tower diameter is large, 50
When it is 0φ or more, the ratio L / D of the packed bed height L and the tower diameter D is 2 to
It was found that if it is 3 or less, no consolidation due to swelling of the resin occurs at the end of the extrusion process.

【0021】これは下記の理由によると思われる。本発
明で実施する高流速逆洗工程で形成された固定層を維持
する程度の低流速で通薬工程、押出工程を実施するた
め、この強型イオン交換樹脂の膨潤分の体積は、樹脂が
下方に落下する力も作用することによって、塔の横方向
でなく下方に向かっていくため膨潤圧は開放されていく
ものと考えられる。前述した強型イオン交換樹脂5のフ
リーボード6の好ましい値、2〜8%は実用上、樹脂再
生後の再生形が多く、塩形の少ない条件下においても、
押出工程終了時等において弁の故障等により水が停止
し、樹脂が自由落下し、下部室にゆるやかに充填された
場合でも余裕をもった値であり、故障の点検、強型イオ
ン交換樹脂5、不活性樹脂7等のレベル点検及び交換補
給しやすい条件の値である。本発明の上部室22には弱
型イオン交換樹脂8が充填される。最も問題となるのは
原水が最初に流入するカチオン塔の弱型イオン交換樹脂
8のフリーボード9をいくらにするかである。
This may be due to the following reasons. In order to carry out the flow-through step and the extrusion step at a low flow rate such that the fixed bed formed in the high-flow rate backwash step carried out in the present invention is performed, the volume of the swelled portion of this strong ion exchange resin is It is considered that the swelling pressure is released because the downward force acts not on the lateral direction of the tower but also on the downward direction. The preferable value of the free board 6 of the strong ion exchange resin 5 described above, 2 to 8%, is practically the regenerated form after the resin is regenerated, and even under the condition that the salt form is small,
Even when the water stops due to a valve failure at the end of the extrusion process, etc., and the resin falls freely and is slowly filled in the lower chamber, there is a margin to check the failure, strong ion exchange resin 5 It is the value of the condition that it is easy to check the level of the inert resin 7, etc., and replace and replenish it. The upper chamber 22 of the present invention is filled with the weak ion exchange resin 8. The most important issue is how much the freeboard 9 of the weak ion exchange resin 8 of the cation tower into which the raw water first flows is used.

【0022】弱型カチオン樹脂の体積変化は樹脂の種類
や、負荷イオン形によってかなり異なっている。 <イオン形の体積変化例> R−H → R−Ca : + 5〜+15% R−H → R−Na : +40〜+55% それ故、原水のイオン構成も考慮して、そのフリーボー
ドをきめる必要がある。弱型カチオン樹脂8は、原水の
硬度(Ca+Mg)がM−アルカリ度より大きい場合、
採水終了時のイオン形は大部分〔R−Ca+R−Mg〕
となり、一部にR−Na、及び再生形(R−H)がふく
まれる。又、原水の硬度がM−アルカリ度より小さい場
合、原水の硬度分はすべてR−Ca、R−Mgになる
が、〔Mアルカリ度−硬度〕分に相当するNaHCO3
もイオン交換するため、R−Naもかなり生成する。こ
の場合、原水のイオン組成及び1サイクルの各々のイオ
ンの負荷量によって、R−Ca、R−Mg、R−Na、
未利用のR−Hの生成量がきまる。
The volume change of the weak cation resin is considerably different depending on the type of resin and the type of loaded ions. <Example of ionic volume change> RH → R-Ca: +5 to + 15% RH → R-Na: +40 to + 55% Therefore, consider the ionic composition of raw water and decide the freeboard. There is a need. If the hardness (Ca + Mg) of raw water is higher than M-alkalinity, the weak cation resin 8 is
Most of the ionic forms at the end of water sampling are [R-Ca + R-Mg]
And partially contains R-Na and a regenerated form (RH). When the hardness of the raw water is smaller than M-alkalinity, the hardness of the raw water is R-Ca and R-Mg, but NaHCO 3 corresponding to [M alkalinity-hardness]
R-Na is also considerably produced because the ion exchange is also performed. In this case, R-Ca, R-Mg, R-Na, depending on the ion composition of raw water and the loading amount of each ion in one cycle,
The amount of unused RH produced is determined.

【0023】それ故、弱型カチオン樹脂8のフリーボー
ド9は1サイクルの採水終了時の圧密をなくした条件で
の原水水質に対応する平均膨潤体積を基準とし、それに
水質変動すなわち採水終了時の負荷イオン形、各イオン
形の生成量を考慮して採水終了後の平均膨潤体積よりも
若干、大きくした値を基準最大膨潤体積とする。このよ
うにして、きめた基準最大膨潤体積の10〜30%、好
ましくは10〜20%を実際のフリーボード9とする。
そして1サイクルの採水終了時の樹脂レベルをチェック
し、前記の如き10〜20%のフリーボード9が確保さ
れていることを定期的に確認することが重要である。そ
して、本発明においては、広い対応力を持つように毎サ
イクル上部室を逆洗し、弱型カチオン樹脂8に捕捉した
懸濁物質、あるいは樹脂自体の圧密化を解消するように
している。例えば濁度として0.5〜3度程度が流入し
たり、25〜45m/hの高流速採水を行う場合、イオ
ン形は再生形から原水のイオン組成に応じて一定の塩形
に変換するため、膨潤する方向となり、圧密化しやす
い。そのことによって、流入する懸濁物質は表層より4
00〜600mm程度まで入り込むが、それ以上に深く
入り込む量は極くわずかであることがわかっている。し
たがって、下部室21の強型カチオン樹脂5まで入り込
む量は極くわずかである。
Therefore, the freeboard 9 of the weak cation resin 8 is based on the average swelling volume corresponding to the raw water quality under the condition of eliminating the consolidation at the end of one cycle of water sampling, and changes in water quality, that is, the end of water sampling. In consideration of the loaded ion type and the amount of each ion type produced, a value slightly larger than the average swelling volume after the end of water sampling is set as the reference maximum swelling volume. In this way, 10% to 30%, preferably 10% to 20% of the determined standard maximum swelling volume is used as the actual freeboard 9.
It is important to check the resin level at the end of one cycle of water sampling and periodically confirm that the free board 9 of 10 to 20% as described above is secured. Then, in the present invention, the upper chamber is backwashed every cycle so as to have a wide adaptability, so that the suspended substance trapped in the weak cation resin 8 or the consolidation of the resin itself is eliminated. For example, when turbidity of about 0.5 to 3 degrees flows in or when high-speed water sampling of 25 to 45 m / h is performed, the ionic form is converted from the regenerated form to a fixed salt form according to the ionic composition of the raw water. Therefore, it tends to swell and is easily consolidated. As a result, the inflowing suspended matter from the surface is 4
It penetrates up to about 00 to 600 mm, but it is known that the amount of penetration deeper than that is extremely small. Therefore, the amount of the strong cation resin 5 entering the lower chamber 21 is extremely small.

【0024】採水終了後、上部室22の弱型カチオン樹
脂8を毎サイクル逆洗し、捕捉した懸濁物質を排出し、
圧密化を解消することは、安定した運転を行う上で、必
要不可欠であると言ってもよい。この逆洗を本発明では
通薬、押出工程終了後の弱型カチオン樹脂8を再生形と
し、体積を最も小さくした条件、すなわちフリーボード
9を最も大きくした条件で実施するのである。この時の
フリーボード9の割合は例えば表2の如くである。
After the completion of water collection, the weak cationic resin 8 in the upper chamber 22 is backwashed every cycle, and the suspended substances trapped are discharged.
It can be said that eliminating the consolidation is indispensable for stable operation. In the present invention, this backwash is carried out under the condition that the weak cation resin 8 after the completion of extrusion and the extrusion process is regenerated and the volume is minimized, that is, the freeboard 9 is maximized. The proportion of the free board 9 at this time is as shown in Table 2, for example.

【表2】 [Table 2]

【0025】このように再生形になった場合はかなり、
フリーボードに余裕があり、水温、樹脂の種類、イオン
形の割合にもよるが、LV5〜10m/hの低流速逆洗
工程を5〜15分間行い、圧密化の解消、懸濁物質の排
出を行う。逆洗水は原水又は処理水を用い中間隔壁2の
直ぐ下に設けた逆洗水導入管34の低流速逆洗弁24を
開として行う。塔径が小さい場合は逆洗水導入管34を
設けず、直接塔壁に接続した配管に設けた低流速逆洗弁
24を開として行ってもよい。そして、すべて弁を閉と
した沈静工程を行った後、原水流入弁11、洗浄排水弁
16を開として洗浄工程を行う。この低流速逆洗工程に
よって、充分懸濁物質が排出できない時は、更にその
後、再生廃水排出弁12、低流速逆洗弁24を開とし
て、水量を増してLV16〜26m/h以上の上部室の
みの高流速逆洗工程を2〜3分間行ってもよい。
[0025] In the case of the reproduction type as described above,
There is room in the freeboard, and depending on the water temperature, the type of resin, and the ratio of the ionic form, a low flow rate backwash process of LV 5-10 m / h is performed for 5 to 15 minutes to eliminate consolidation and discharge suspended solids. I do. As the backwash water, raw water or treated water is used and the low flow rate backwash valve 24 of the backwash water introduction pipe 34 provided immediately below the intermediate partition wall 2 is opened. When the tower diameter is small, the backwash water introduction pipe 34 may not be provided, and the low flow rate backwash valve 24 provided in the pipe directly connected to the tower wall may be opened. Then, after performing a calming process in which all the valves are closed, the raw water inflow valve 11 and the cleaning drain valve 16 are opened to perform the cleaning process. When the suspended solids cannot be sufficiently discharged by this low flow rate backwashing process, the regeneration wastewater discharge valve 12 and the low flow rate backwash valve 24 are then opened to increase the amount of water so that the upper chamber of LV 16-26 m / h or higher is obtained. The high flow rate backwash step may be performed for 2 to 3 minutes.

【0026】又は、塔下部の集水装置4から、逆洗水流
入弁14を開として行ってもよい。この場合は、逆洗水
として処理水を使用する。この塔下部から高流速逆洗工
程を行うことは強型カチオン樹脂5、不活性樹脂7に蓄
積した懸濁物質、あるいはこれら樹脂の破砕したものの
排出に役立つ。再生時間は若干長くなるが、運転は更に
安定したものとなる。こうした上部室22、下部室21
ともに高流速逆洗工程を行った時はその後、原水流入弁
11、洗浄排水弁16を開として、固定層となった弱
型、強型イオン交換樹脂5、8を水の下降流によって再
度塔下部に固定層を形成させる全樹脂下方移動工程が必
要になる。この工程は0.5〜2分間で終了するため、
塔頂部の空気抜弁23、洗浄排水弁16を開として行っ
てもよい。そしてその後洗浄工程を行う。
Alternatively, the backwash water inflow valve 14 may be opened from the water collecting device 4 at the bottom of the tower. In this case, treated water is used as backwash water. Performing the high flow rate backwashing process from the lower part of the tower is useful for discharging the suspended substances accumulated in the strong cation resin 5, the inert resin 7, or the crushed products of these resins. The regeneration time will be slightly longer, but the operation will be more stable. These upper chamber 22 and lower chamber 21
When the high flow rate backwashing process was performed for both, the raw water inflow valve 11 and the washing and draining valve 16 were then opened, and the weak and strong ion exchange resins 5 and 8 that became the fixed bed were again towered by the descending flow of water. An all resin downward moving step of forming a fixed layer at the bottom is required. Since this process is completed in 0.5 to 2 minutes,
The air vent valve 23 and the cleaning drain valve 16 at the top of the tower may be opened. Then, the cleaning process is performed thereafter.

【0027】アニオン塔の弱型アニオン樹脂8の場合も
そのフリーボード9は、弱型カチオン樹脂と同様に、原
水のイオン組成とその負荷量によって異なってくる。弱
型アニオン樹脂8は一般に脱炭酸塔後の酸性軟水を原水
として用いられることが多いので、その負荷イオン形は
R−Cl、R−SO4 を主体とする。 又、R−HCO3 形では弱型カチオン樹脂と同様のかな
り大きい膨潤率を示す樹脂もある。そして、脱炭酸塔を
設けないでHCO3 - 、CO2 を負荷させる装置もあ
る。したがって、弱型カチオン樹脂と同様に圧密をなく
した条件での1サイクルの採水終了後の平均膨潤体積を
基準としてそれに水質変動、すなわち採水終了時の負荷
イオン形、各イオン形の生成量を考慮して採水終了時の
平均膨潤体積よりも若干、大きくした値を基準最大膨潤
体積とするのがよい。
Even in the case of the weak anion resin 8 of the anion tower, the freeboard 9 thereof varies depending on the ionic composition of the raw water and the load thereof, as in the weak cation resin. Since weak anion resin 8 is generally often used acidic soft water after decarbonation tower as raw water, its load ionic form is R-Cl, the R-SO 4 mainly. Further, in the R-HCO 3 type, there are some resins which show a considerably large swelling ratio similar to the weak type cationic resin. There is also a device for loading HCO 3 and CO 2 without providing a decarbonation tower. Therefore, similar to the weak cation resin, the water quality changes based on the average swelling volume after the end of water sampling for one cycle under the condition that the consolidation is eliminated, that is, the load ion type at the end of water sampling, and the production amount of each ion type. Considering the above, it is preferable that the reference maximum swelling volume be a value slightly larger than the average swelling volume at the end of water sampling.

【0028】このようにしてきめた基準最大膨潤体積の
5〜30%、好ましくは10〜20%を実際のフリーボ
ード9としておく。そして、定期的に1サイクルの採水
終了時の樹脂レベルをチェックし、適正にフリーボード
9が保たれていることを確認することが重要である。そ
して、弱型アニオン樹脂8の場合、弱型カチオン樹脂の
場合と異なり、懸濁物質の流入は極くわずかであるた
め、採水終了後の圧密化の解消が主な目的となる。この
目的のため、弱型カチオン樹脂と同様にLV4〜8m/
hで5〜10分間程度の低流速逆洗工程を行う。そし
て、その後はカチオン塔と同様上部室22の沈整工程、
つづいて上部室22、下部室21の洗浄工程を行えばよ
い。又、必要に応じ、再度の高流速逆洗工程を行う。本
発明においては、更に採水終了後に、上部室22の弱型
イオン交換樹脂8の圧密化解消を主体に前記低流速逆洗
工程を行い、その後本発明の基本工程を行っても、懸濁
物質の排出とともに充分に高い再生効率が得られる。
The actual freeboard 9 is 5 to 30%, preferably 10 to 20% of the standard maximum swelling volume determined in this way. Then, it is important to regularly check the resin level at the end of one cycle of water sampling to confirm that the freeboard 9 is properly maintained. Further, in the case of the weak anion resin 8, unlike the case of the weak cation resin, the inflow of the suspended substance is extremely small, so that the main purpose is to eliminate the consolidation after the end of water sampling. For this purpose, LV4-8m /
The low flow rate backwashing process is performed for about 5 to 10 minutes at h. Then, after that, like the cation tower, the step of adjusting the upper chamber 22 is performed.
Subsequently, the cleaning process for the upper chamber 22 and the lower chamber 21 may be performed. If necessary, the high flow rate backwashing process is performed again. In the present invention, after the completion of water sampling, the low flow rate backwashing step is mainly performed to eliminate the consolidation of the weak ion exchange resin 8 in the upper chamber 22, and the basic step of the present invention is then applied to suspend the suspension. A sufficiently high regeneration efficiency can be obtained with the discharge of the substance.

【0029】この場合、弱型カチオン樹脂については、
圧密化解消とともに捕捉した懸濁物質の上方への移行、
排出の目的のため、採水終了後の平均膨潤体積の10〜
30%、好ましくは15〜30%のフリーボードが得ら
れるように弱型カチオン樹脂8、不活性樹脂10の量を
調整する。そして、LV4〜8m/hの低流速逆洗5〜
10分間を行う。ついで、沈整工程を5分程度行う。こ
の場合、フリーボード割合が小さいかめ充分な逆洗流速
がとれなく、圧密化の解消を主体にするが、懸濁物質へ
の上方への移行もなされる。懸濁物質の排出は、主にそ
のあとの工程である高流速逆洗工程を行うことによって
達成される。弱型アニオン樹脂についても弱型カチオン
樹脂と同様のフリーボードとし、LV3〜6m/hの低
流速逆洗を5〜10分間行い、樹脂の圧密化を解消す
る。そして、カチオン塔と同様に再生していく。更に、
これら上部室22の低流速逆洗工程を効果的にするた
め、逆洗水に空気を混入させ、充填されている弱型イオ
ン交換樹脂を空気スクラビング状態とさせた後、通常の
低流速逆洗工程を行ってもよい。
In this case, regarding the weak cation resin,
Transfer of suspended solids captured upwards with deconsolidation,
For the purpose of drainage, 10 to 10% of the average swelling volume after the end of water sampling
The amounts of the weak cation resin 8 and the inert resin 10 are adjusted so as to obtain a free board of 30%, preferably 15 to 30%. And, low flow backwashing of LV 4-8 m / h 5
Do 10 minutes. Then, the sedimentation step is performed for about 5 minutes. In this case, since the freeboard ratio is small, a sufficient backwashing flow rate cannot be obtained, and the main purpose is to eliminate the consolidation, but the upward movement to the suspended substance is also performed. Discharge of suspended matter is achieved mainly by performing a subsequent step, a high flow rate backwash step. The weak type anion resin is also made into the same freeboard as the weak type cation resin, and the low flow rate backwashing of LV 3 to 6 m / h is performed for 5 to 10 minutes to eliminate the consolidation of the resin. Then, it is regenerated like the cation tower. Furthermore,
In order to effectively perform the low flow rate backwashing process of these upper chambers 22, air is mixed into the backwash water to make the weak ion exchange resin filled into the air scrubbing state, and then the normal low flow rate backwashing is performed. You may perform a process.

【0030】本発明で使用する不活性樹脂の材質は、比
重1.0以下の例えばポリプロピレン等で、再生剤の残
留性のない、洗浄しやすい、かつイオン交換樹脂の膨潤
圧をある程度吸収できる、弾力性のある材質、形状であ
ればよい。その粒径は、捕捉した懸濁物質が排出しやす
いように、イオン交換樹脂の有効径は通常、0.65m
m程度であるので、その2〜8倍程度であればよい。す
なわち、不活性樹脂の粒径としては上部室22、下部室
21ともに、概略1.0〜5.0mmφのものを、好ま
しくは、2〜4mmφ程度のものとするのがよい。この
粒径が小さすぎると、捕捉した懸濁物質の排出が困難と
なる。又、大きすぎると、上昇流の通薬時、押出時等に
イオン交換樹脂5、8が不活性樹脂7、10を通り抜
け、上部集水装置3の集水口(スリット)を防ぎ、設定
流量が流れにくくなる。
The material of the inert resin used in the present invention is, for example, polypropylene having a specific gravity of 1.0 or less, has no residual regenerant, is easy to wash, and can absorb the swelling pressure of the ion exchange resin to some extent. Any elastic material and shape may be used. The particle size of the ion-exchange resin is usually 0.65 m so that the suspended solids can be easily discharged.
Since it is about m, it may be about 2 to 8 times that. That is, the particle size of the inert resin in the upper chamber 22 and the lower chamber 21 is approximately 1.0 to 5.0 mmφ, and preferably approximately 2 to 4 mmφ. If the particle size is too small, it becomes difficult to discharge the trapped suspended matter. On the other hand, if it is too large, the ion exchange resins 5 and 8 will pass through the inert resins 7 and 10 when passing an upward flow, during extrusion, etc., to prevent the water collecting port (slit) of the upper water collecting device 3 and to set the set flow rate. It becomes difficult to flow.

【0031】又、不活性樹脂7、10の層高は、100
〜400mmでよいが、塔径が大きい場合、不活性樹脂
層が均一にフラットになるかどうか考慮し、大き目に設
定しておく。しかし、この層高が大きすぎると、高速逆
洗時の懸濁物質の排出がしにくくなるので注意する。不
活性樹脂自体も、破砕することによって目詰まりの原因
となるので、定検時毎に不活性樹脂全量を排出し、塔内
点検し破砕、粉化した不活性樹脂を除去して、再充填す
ることも考慮しておく必要がある。本発明における高流
速逆洗工程時の懸濁物質の排出状況は従来法とは全く異
なる。原水からの懸濁物質は、大部分カチオン塔の負荷
となりアニオン塔の負荷となることは極めて少ないた
め、代表的にカチオン塔での実施例を示す。
The layer height of the inert resins 7 and 10 is 100.
It may be up to 400 mm, but when the tower diameter is large, it should be set to a large value in consideration of whether or not the inert resin layer becomes flat uniformly. However, be aware that if the bed height is too large, it will be difficult to discharge suspended substances during high-speed backwash. Crushing the inert resin itself also causes clogging, so the entire amount of the inert resin is discharged at every regular inspection, the tower is inspected and crushed, and the powdered inert resin is removed and refilled. It is also necessary to consider what to do. The state of discharge of suspended substances during the high-flow-rate backwash step in the present invention is completely different from the conventional method. Most of the suspended solids from the raw water act as a load on the cation column and very little on the anion column, so an example of a cation column is representatively shown.

【0032】[0032]

【実施例】以下、本発明を実施例で具体的に説明する。 実施例1 内径300φ×2460H(胴長)のイオン交換塔に、
強型カチオン樹脂としてダウエックスHCR−W2を下
部室にR−H形で1065mm、中間隔壁を介して弱型
カチオン樹脂としてレバチットCNP−80を上部室に
R−H形で675mm(R−Ca形で740mm)充填
した。下部室のフリーボードは65mm(R−H形に対
して6.1%)、不活性樹脂はポリプロピレン製の2.
5〜3.5mmの粒状のものを層高で150mm充填し
た。
The present invention will be specifically described below with reference to examples. Example 1 In an ion exchange column having an inner diameter of 300φ × 2460H (body length),
Dowex HCR-W2 as a strong cation resin in the lower chamber is RH type 1065 mm, Levatit CNP-80 as a weak cation resin in the upper chamber is 675 mm in RH type (R-Ca type) 740 mm). The freeboard in the lower chamber is 65 mm (6.1% for RH type), and the inert resin is polypropylene 2.
Granules of 5 to 3.5 mm were packed at a layer height of 150 mm.

【0033】上部室のフリーボードは260mmとし、
下部室と同一の不活性樹脂を150mm充填した。この
イオン交換塔に粉末イオン樹脂14mg/リットル、カ
オリンを1mg/リットル添加した遊離塩素を消した水
道水を1200リットル/hで2.5時間通水した。そ
して、通水後、LV28m/hで3分間高速逆洗を行っ
た。この条件での効果例を図4に示す。逆洗廃水量は約
100リットルであり、高速逆洗20〜40秒後には、
懸濁物質の値は最大5000mg/リットル以上を示し
た。その後急速に低下し2分後には10mg/リットル
以下となった。トータルの懸濁物質の除去率は90〜9
9%が得られた。
The freeboard of the upper chamber is 260 mm,
The same inert resin as the lower chamber was filled to 150 mm. To this ion exchange column, 14 mg / l of a powder ion resin and 1 mg / l of kaolin were added and tap water free of free chlorine was passed at 1200 l / h for 2.5 hours. Then, after passing water, high-speed backwash was performed for 3 minutes at LV 28 m / h. An example of the effect under this condition is shown in FIG. The amount of backwash waste water is about 100 liters, and after 20-40 seconds of high-speed backwash,
The value of the suspended substance was 5000 mg / liter or more at maximum. Then, it rapidly decreased, and after 2 minutes, it became 10 mg / liter or less. Total suspended matter removal rate is 90-9
9% was obtained.

【0034】比較例1 実施例1と同一のカラムに中間隔壁なしで強型カチオン
樹脂としてダウエックス、HGR−W2をR−H形で1
064mm、弱型カチオン樹脂としてレバチットCNP
−80をR−H形で675mm充填した。そして、この
イオン交換塔上部に300φ×1000Hの逆洗塔を設
けた。実施例1と同一の条件で懸濁物質を負荷させた
後、LV13m/hで15分間の通常の逆洗を行った。
この条件での逆洗排水中の懸濁物濃度の変化を図5に示
す。通常の逆洗によっても懸濁物質はトータルとして9
0〜97%除去されている。しかし、逆洗排水量は23
0リットル/cと多く、かつ逆洗排水中の懸濁物質濃度
も逆洗2〜3分後に340mg/リットル程度になる
が、実施例1に比べかなり低い。そしてその後の低下も
ゆるやかで15分後でも60mg/リットル前後を示し
た。
Comparative Example 1 Dowex, HGR-W2 as RH type was used as a strong cation resin in the same column as in Example 1 without intermediate partition walls.
064mm, Levatit CNP as weak cationic resin
-80 was filled with R-H type for 675 mm. Then, a backwash tower of 300φ × 1000H was provided above the ion exchange tower. After the suspension substance was loaded under the same conditions as in Example 1, general backwashing was performed for 15 minutes at LV 13 m / h.
The change in the concentration of the suspension in the backwash drainage under these conditions is shown in FIG. The total amount of suspended matter is 9 even with normal backwash.
0 to 97% removed. However, the backwash drainage is 23
The concentration was as high as 0 liter / c, and the concentration of suspended substances in the backwash wastewater was about 340 mg / liter after 2-3 minutes of backwash, but it was considerably lower than in Example 1. Then, the decrease thereafter was gentle and even after 15 minutes, it was around 60 mg / liter.

【0035】高流速逆洗法は従来法に比べ短時間で懸濁
物質の排出が可能であることがわかった。逆洗排水量も
約1/2と少なくなった。本発明の再生工程を代表的に
まとめると表3の如くである。表3に示したB法におい
て、上部室低流速逆洗工程後、6工程の上部室沈整を省
いて直ちに7工程高流速逆洗を行ってもよい。同様にC
法においても2工程の上部室沈整を省いて直ちに高流速
逆洗を行ってよい。これは前の工程の上部室低流速逆洗
によって懸濁物質の上方への移行、又弱型樹脂の整粒化
が進んでおり、わざわざ沈整工程を行う必要性が小さい
からである。
It was found that the high flow rate backwashing method can discharge suspended substances in a shorter time than the conventional method. The amount of backwash drainage was also reduced to about 1/2. Table 3 shows a typical summary of the regeneration process of the present invention. In Method B shown in Table 3, after the upper chamber low-flow rate backwashing step, the 7-step high-flow rate backwashing may be carried out immediately without the 6th step upper chamber deposition. Similarly C
Also in the method, high-flow backwashing may be carried out immediately by omitting the two-step upper chamber deposition. This is because the suspended substance is moved upward and the weak resin is sized by the backwashing with the low velocity of the upper chamber in the previous step, and the necessity of carrying out the settling step is small.

【0036】[0036]

【表3】 [Table 3]

【0037】純水装置においては、カチオン塔の洗浄後
にカチオン塔の処理水(酸性軟水)を用いてアニオン塔
の洗浄を行っている。それ故、トータルとしては表3の
再生時間より10〜15分長くなる。それ故、本発明に
よる再生時間はトータルとして概略90分〜140分程
度である。従来の中間集水管を用いる方式が、150〜
200分と長いのに比較してかなり短縮されている。上
昇流通水、下向流通薬方式が通常時、90〜150分、
全逆洗時300〜360分かかるのにくらべても、本発
明方法においては毎サイクル、再生しやすい上部室の弱
型イオン交換樹脂を全逆洗し、下部室の再生しにくい強
型イオン交換樹脂を全逆洗する必要性のない再生工程と
しているため、常に一定の短時間再生となっている。再
生効率は毎サイクル、弱型イオン交換樹脂を全逆洗して
も、弱型イオン交換樹脂は再生し易いことから常に80
〜90%以上の値が得られる。
In the pure water apparatus, the anion column is washed with the treated water (acidic soft water) of the cation column after the washing of the cation column. Therefore, the total reproduction time is 10 to 15 minutes longer than the reproduction time shown in Table 3. Therefore, the total reproduction time according to the present invention is about 90 to 140 minutes. The method using the conventional intermediate water collecting pipe is 150-
It is considerably shorter than 200 minutes. Ascending circulation water, downward circulation medicine method is usually 90 to 150 minutes,
Even though it takes 300 to 360 minutes at the time of total backwashing, in the method of the present invention, the weak ion exchange resin in the upper chamber, which is easy to regenerate, is completely backwashed in each cycle, and the strong ion exchange in the lower chamber is difficult to regenerate. Since the process is a regeneration process that does not require total backwashing of the resin, it is always performed for a short period of time. Regeneration efficiency is 80% at every cycle because weak ion exchange resin is easy to regenerate even if it is completely backwashed.
Values of ˜90% or higher are obtained.

【0038】実施例2 表3のA法を用いて実施した。内径1200φ×250
0H(胴長)のイオン交換塔の下部室に、強型カチオン
樹脂としてHCR−W2をR−H形で1065mm、ノ
ズル付中間隔壁を介した上部室に、弱型カチオン樹脂と
してレバチットCNP80をR−H形で675mm充填
した。 上下の集水装置:ノズル付多孔板方式 フリーボード :上部室 24%(採水終了時平均膨潤体積の層高750mm に対して) 下部室 6.1%(再生形に対して) 不活性樹脂 :ポリプロピレン製2.5〜3.5mmφ 上部室 190mm 下部室 190mm 再生レベル :74g/リットル−R(強型カチオン樹脂R−Na)
Example 2 Method A in Table 3 was used. Inner diameter 1200φ x 250
In the lower chamber of the 0H (body length) ion exchange column, HCR-W2 as a strong cation resin is 1065 mm in RH type, and in the upper chamber through an intermediate partition with a nozzle, Levatit CNP80 is used as a weak cation resin. -Filled 675 mm with H form. Upper and lower water collecting device: Perforated plate type with nozzle Freeboard: Upper chamber 24% (for average swelling volume layer height of 750 mm at the end of water sampling) Lower chamber 6.1% (for regenerated type) Inert resin : Polypropylene 2.5-3.5 mmφ Upper chamber 190 mm Lower chamber 190 mm Regeneration level: 74 g / liter-R (strong cationic resin R-Na)

【0039】 原 水 :河川水 凝集ろ過水 処理濃度:0.5度以下 表4に原水イオン組成を示す。Raw water: River water Coagulated filtered water Treatment concentration: 0.5 degrees or less Table 4 shows the raw water ionic composition.

【表4】 [Table 4]

【0040】表5に再生工程(カチオン塔)の処理条件
を示す。
Table 5 shows the treatment conditions in the regeneration step (cation tower).

【表5】 [Table 5]

【0041】 〔結 果〕 1)採水時間 : 18.8時間、採水 30m3 /h 2)採水量 : 564m3 /c アニオン塔出口 エンドポイント:5μS/cm 3)再生効率 : 88.5% 4)処理水質 : 0.2〜5.0μS/cm 5)再生時間 : 84分 6)上部室の低流速時フリーボード% : 約35%[Results] 1) Water sampling time: 18.8 hours, water sampling 30 m 3 / h 2) Water sampling amount: 564 m 3 / c Anion tower outlet end point: 5 μS / cm 3) Regeneration efficiency: 88.5 % 4) Treated water quality: 0.2 to 5.0 μS / cm 5) Regeneration time: 84 minutes 6) Freeboard at low flow rate in upper chamber%: Approx. 35%

【0042】実施例3 表3のB法を用いて下記の如く実施した。実施例2のイ
オン交換塔を用い、原水に河川底泥の懸濁物質を濁度と
して0.5度〜2度の範囲で注入した。表6に再生工程
(カチオン塔)の処理条件を示す。
Example 3 The method B of Table 3 was carried out as follows. Using the ion exchange tower of Example 2, the suspended matter of river bottom mud was injected into raw water in the range of 0.5 to 2 degrees in turbidity. Table 6 shows the treatment conditions of the regeneration step (cation tower).

【表6】 [Table 6]

【0043】 〔結 果〕 1)採水時間 : 18.7時間、採水 30m3 /h 2)採水量 : 561m3 、 アニオン塔出口 エンドポイント:5μS/cm 3)再生効率 : 88.1% 4)処理水質 : 0.2〜5.0μS/cm 5)再生時間 : 87分 6)上部室の低流速時フリーボード% : 約35% 7)圧力損失の上昇はサイクルが進んでも見られなかった。[Results] 1) Water sampling time: 18.7 hours, water sampling 30 m 3 / h 2) Water sampling amount: 561 m 3 , anion tower outlet end point: 5 μS / cm 3) Regeneration efficiency: 88.1% 4) Treated water quality: 0.2-5.0 μS / cm 5) Regeneration time: 87 minutes 6) Freeboard at low flow rate in upper chamber%: Approximately 35% 7) No increase in pressure loss was observed during the cycle. It was

【0044】実施例4 実施例3の条件で表3のC法を行った。表7に再生工程
(カチオン塔)の処理条件を示す。
Example 4 Method C in Table 3 was carried out under the conditions of Example 3. Table 7 shows the processing conditions of the regeneration step (cation tower).

【表7】 [Table 7]

【0045】 〔結 果〕 1)採水時間 : 18.7時間、採水 30m3 /h 2)採水量 : 561m3 、 アニオン塔出口 エンドポイント:5μS/cm 3)再生効率 : 88.1% 4)処理水質 : 0.2〜5.0μS/cm 5)再生時間 : 83分 6)上部室の低流速時フリーボード% : 約24% 7)圧力損失の上昇はサイクルが進んでも見られなかった。[Results] 1) Water sampling time: 18.7 hours, water sampling 30 m 3 / h 2) Water sampling: 561 m 3 , anion tower outlet end point: 5 μS / cm 3) Regeneration efficiency: 88.1% 4) Treated water quality: 0.2-5.0 μS / cm 5) Regeneration time: 83 minutes 6) Freeboard at low flow rate in upper chamber%: Approximately 24% 7) No increase in pressure loss was observed during the cycle. It was

【0046】実施例5 実施例4の条件で上部室低流逆洗工程後、上部室沈整工
程を省いて直ちに純水を用いて下部室水装置から高流速
逆洗工程を行った。すなわち表7において2工程目の上
部室沈整を省いて実施した。 〔結 果〕実施例4と同一の結果が得られた。再生時間
は78分であった。
Example 5 Under the conditions of Example 4, after the upper chamber low-flow backwashing process, the upper chamber sedimentation process was omitted and the high-velocity backwashing process was immediately performed from the lower chamber water device using pure water. That is, in Table 7, the upper chamber deposition in the second step was omitted. [Results] The same results as in Example 4 were obtained. The regeneration time was 78 minutes.

【0047】実施例6 実施例4の処理水を脱炭酸し、原水としてアニオン塔に
通水し、その性能を表3のC法について確認した。 塔 : 内径1300φ×3500(胴長) 中間隔壁あり 上下の集水装置 : ノズル付多孔板方式 上 部 室 : 弱型アニオン樹脂、ダウエックスMWA−1 R−OH形で1500リットル充填した。 フリーボード:R−OH:30.6%(350mm) R−Cl: 25 %(350mm) 不活性樹脂 : 190mm 下 部 室 : 強型アニオン樹脂、マラソンA R−OH形で1500リットル充填した。 フリーボード:約6.1%(70mm) 不活性樹脂 : 190mm 再生剤量 : 72kg/C 100%NaOH 再生レベル : 56.2g/リットル−R(強型アニオン樹脂 R−Cl) 表8に再生工程(アニオン塔)の処理条件を示す。
Example 6 The treated water of Example 4 was decarbonated and passed through the anion tower as raw water, and its performance was confirmed by the method C in Table 3. Tower: Inner diameter 1300φ × 3500 (body length) With intermediate partition Upper and lower water collecting device: Perforated plate system with nozzle Upper chamber: Weak anion resin, Dowex MWA-1 R-OH type 1500 liters were filled. Free board: R-OH: 30.6% (350 mm) R-Cl: 25% (350 mm) Inert resin: 190 mm Lower chamber: Strong anion resin, Marathon A 1500 liters of R-OH type were filled. Freeboard: Approx. 6.1% (70 mm) Inert resin: 190 mm Regenerator amount: 72 kg / C 100% NaOH Regeneration level: 56.2 g / liter-R (strong anion resin R-Cl) The processing conditions of (anion tower) are shown.

【0048】[0048]

【表8】 [Table 8]

【0049】 〔結 果〕 1)採水時間 : 18.7時間、採水 30m3 /h 2)採水量 : 561m3 、 アニオン塔出口 エンドポイント:5μS/cm 3)再生効率 : 89.7% 4)処理水質 : 0.2〜5.0μS/cm、 シリカ 0.01〜0.03mg/リットル 5)再生時間 : 102分 6)上部室の低流速時フリーボード% : 約25% 7)圧力損失の上昇はサイクルが進んでも見られなかった。 8)カチン塔でのブレークであり、アニオン塔は更に採水できる状態であった。[Results] 1) Water sampling time: 18.7 hours, water sampling 30 m 3 / h 2) Water sampling amount: 561 m 3 , anion tower outlet end point: 5 μS / cm 3) Regeneration efficiency: 89.7% 4) Treated water quality: 0.2 to 5.0 μS / cm, silica 0.01 to 0.03 mg / liter 5) Regeneration time: 102 minutes 6) Freeboard% at low flow rate in upper chamber: Approx. 25% 7) Pressure No increase in losses was seen as the cycle progressed. 8) It was a break in the Kachin tower, and the anion tower was in a state where water could be further collected.

【0050】[0050]

【発明の効果】本発明を水は通すがイオン交換樹脂は通
さない中間隔壁によって、イオン交換塔を2室に分け
て、下部室に強型イオン交換樹脂、上部室に弱型イオン
交換樹脂を充填し、下部室のフリーボードを再生形の2
〜15%、上部室のフリーボードを採水終了後の基準最
大膨潤体積の10〜30%と大きくし、上部室の弱型イ
オン交換樹脂を毎サイクル、再生後、又は再生前に逆洗
する表3に代表される再生工程を下降流通水、上昇流再
生方式の向流式イオン交換塔に適用する。この本発明の
再生方法によって、中間隔壁を有しない、中間集水装置
を有する従来法の欠点である、再生時間の延長、再生廃
液量の増加、弱型、強型イオン交換樹脂の混合、及び装
置・再生操作の複雑化が解消され、短時間再生、再生コ
ストの低減、安定した運転を達成できる。
INDUSTRIAL APPLICABILITY According to the present invention, the ion exchange column is divided into two chambers by an intermediate partition through which water is passed but not ion exchange resin is passed, and a strong ion exchange resin is placed in the lower chamber and a weak ion exchange resin is placed in the upper chamber. Filled and recycled freeboard in lower chamber 2
〜15%, the freeboard of the upper chamber is increased to 10-30% of the standard maximum swelling volume after completion of water collection, and the weak ion exchange resin in the upper chamber is backwashed after every cycle, after regeneration, or before regeneration. The regeneration process typified by Table 3 is applied to a countercurrent ion exchange tower of downward flow water and upward flow regeneration system. According to the regeneration method of the present invention, there is no intermediate partition wall, which is a drawback of the conventional method having an intermediate water collecting device, that is, the extension of the regeneration time, the increase of the amount of waste liquid for regeneration, the weak type, the mixing of the strong type ion exchange resin, and The complication of the device / regeneration operation is eliminated, and short-time regeneration, reduction of regeneration cost, and stable operation can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施態様の1例を示すイオン交換塔の
概略構成図。
FIG. 1 is a schematic configuration diagram of an ion exchange column showing an example of an embodiment of the present invention.

【図2】中間集水方式を用いた従来法の一例を示す概略
構成図。
FIG. 2 is a schematic configuration diagram showing an example of a conventional method using an intermediate water collection method.

【図3】上昇流通水、下降流再生の従来法の一例を示す
概略構成図。
FIG. 3 is a schematic configuration diagram showing an example of a conventional method of ascending circulation water and descending flow regeneration.

【図4】逆洗排水中の懸濁物質濃度の経時変化を示すグ
ラフ。
FIG. 4 is a graph showing changes over time in the concentration of suspended substances in backwash wastewater.

【図5】比較例における逆洗排水中の懸濁物質濃度の経
時変化を示すグラフ。
FIG. 5 is a graph showing changes over time in the concentration of suspended substances in backwash waste water in a comparative example.

【符号の説明】[Explanation of symbols]

1:イオン交換塔、2:中間隔壁、3:上部集水装置、
4:下部集水装置、5:強型イオン交換樹脂、6:下部
室フリーボード、7:下部室不活性樹脂、8:弱型イオ
ン交換樹脂、9:上部室フリーボード、10:上部室不
活性樹脂、11:原水流入弁、12:再生廃水排出弁、
13:処理水流出弁、14:逆洗水流入弁、15:再生
剤兼押出水流入弁、16:洗浄排水弁、17:強型イオ
ン交換樹脂量調整弁、18:下部室不活性樹脂量調整
弁、19:弱型イオン交換樹脂量調整弁、20:上部室
不活性樹脂量調整弁、21:下部室、22:上部室、2
3:空気抜弁、24:低流速逆洗弁、25:再生廃水排
出弁、26:中間集水装置、27:加圧水導入弁、2
8:非有効樹脂、29:逆洗水導入弁、30:不活性樹
脂、31:樹脂移送弁、32:樹脂移送用水弁、33:
フリーボード、34:逆洗水導入管
1: Ion exchange tower, 2: Intermediate partition wall, 3: Upper water collecting device,
4: Lower water collecting device, 5: Strong type ion exchange resin, 6: Lower chamber freeboard, 7: Lower chamber inert resin, 8: Weak ion exchange resin, 9: Upper chamber freeboard, 10: Upper chamber free Active resin, 11: Raw water inflow valve, 12: Recycled wastewater discharge valve,
13: Treated water outflow valve, 14: Backwash water inflow valve, 15: Regenerant / extruded water inflow valve, 16: Wash drainage valve, 17: Strong ion exchange resin amount adjusting valve, 18: Lower chamber inert resin amount Adjusting valve, 19: Weak ion exchange resin amount adjusting valve, 20: Upper chamber inert resin amount adjusting valve, 21: Lower chamber, 22: Upper chamber, 2
3: Air vent valve, 24: Low flow rate backwash valve, 25: Recycled wastewater discharge valve, 26: Intermediate water collecting device, 27: Pressurized water introduction valve, 2
8: Ineffective resin, 29: Backwash water introduction valve, 30: Inert resin, 31: Resin transfer valve, 32: Resin transfer water valve, 33:
Free board, 34: Backwash water introduction pipe

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 イオン交換塔を、中間部付近に水は通す
がイオン交換樹脂は通さない中間隔壁を設けて下部室と
上部室の2室に分け、下部室には強型イオン交換樹脂、
上部室には弱型イオン交換樹脂を充填し、下部室のフリ
ーボードを2〜15%、上部室のフリーボードを10〜
30%で下部室より大きくし、更に各々のフリーボード
の上部に比重1.0以下の不活性樹脂を充填した、下降
流通水、上昇流通薬の向流式イオン交換塔の再生方法に
おいて、下記(a)〜(e)の工程を順次行い樹脂を再
生することを特徴とする向流式イオン交換塔の再生方
法。 (a)塔下部に設けた下部集水装置からの高流速逆洗に
よりイオン交換樹脂の大部分を不活性樹脂に押しつけ、
通水時に蓄積した懸濁物質を不活性樹脂を経由して塔上
部に設けた上部集水装置から排出すると共に、イオン交
換樹脂の固定層を形成する高流速逆洗工程、(b)高流
速逆洗工程より低速で且つ、(a)で形成された固定層
を維持するに必要な流速で再生剤を下部集水装置から上
昇流で通薬する通薬工程、(c)大部分の前記固定層を
維持できる流速で下部集水装置から処理水を上昇流で通
水し、残留する再生剤を有効に利用する押出工程、
(d)中間隔壁の下から原水又は処理水を低流速で導入
し、上部室のみを逆洗する低流速逆洗工程、(e)上部
集水装置から下降流で通水して、洗浄する洗浄工程。
1. An ion exchange column is divided into two chambers, a lower chamber and an upper chamber, by providing an intermediate partition near the middle portion through which water is passed but not through the ion exchange resin, and a strong ion exchange resin is provided in the lower chamber.
The upper chamber is filled with weak ion exchange resin, the freeboard in the lower chamber is 2 to 15%, and the freeboard in the upper chamber is 10 to 10.
In the method of regenerating a countercurrent ion exchange tower for descending flowing water and ascending flowing chemicals, which is 30% larger than the lower chamber, and the upper part of each freeboard is filled with an inert resin having a specific gravity of 1.0 or less. A method for regenerating a countercurrent ion exchange tower, characterized in that the resin is regenerated by sequentially performing steps (a) to (e). (A) Most of the ion-exchange resin is pressed against the inert resin by high-flow backwashing from a lower water collecting device provided at the lower part of the tower,
A high-flow-rate backwashing step in which a suspended material accumulated during water passage is discharged from an upper water collecting device provided at the upper part of the tower via an inert resin, and a fixed bed of ion-exchange resin is formed, (b) high-flow rate A slower than the backwash step, and a replenishing step in which the regenerant is passed from the lower water collecting device in an upward flow at a flow rate necessary to maintain the fixed bed formed in (a), (c) most of the above An extrusion process in which treated water is passed in an upward flow from the lower water collecting device at a flow rate that can maintain a fixed bed, and the remaining regenerant is effectively used,
(D) Low-flow backwashing step in which raw water or treated water is introduced at a low flow rate from below the intermediate partition wall, and only the upper chamber is backwashed, (e) water is passed in a downward flow from the upper water collecting device for washing. Washing process.
【請求項2】 前記(d)の低流速逆洗工程後に再度、
懸濁物質を上部集水装置から排出するため、前記(a)
の高流速逆洗工程を下部集水装置、又は中間隔壁の直ぐ
下から行い、ついで、上部集水装置から水を導入し、下
部集水装置の洗浄排水弁を開として、水の下降流を用い
て、形成された固定層を塔下部に移動させる樹脂移動工
程を実施することを特徴とする請求項1記載の向流式イ
オン交換塔の再生方法。
2. After the low flow rate backwashing step of (d) above,
In order to discharge the suspended solids from the upper water collecting device, the above (a)
The high flow rate backwashing process is carried out from the lower water collecting device or directly below the intermediate partition wall, then water is introduced from the upper water collecting device, the washing drain valve of the lower water collecting device is opened, and the downward flow of water is reduced. The method for regenerating a countercurrent ion exchange column according to claim 1, wherein a resin transfer step of moving the formed fixed bed to the lower part of the column is carried out.
【請求項3】 前記(d)の低流速逆洗工程において、
下部集水装置に接続する洗浄排水弁を開として短時間、
原水又は処理水を強型イオン交換樹脂に通水して、固定
層となっている強型イオン交換樹脂を塔下部に移動させ
ることを特徴とする請求項1又は2記載の向流式イオン
交換塔の再生方法。
3. In the low flow rate backwashing step of (d) above,
Open the washing drain valve connected to the lower water collecting device for a short time,
The countercurrent ion exchange according to claim 1 or 2, wherein raw water or treated water is passed through a strong ion exchange resin to move the fixed ion strong exchange resin to the lower part of the tower. How to regenerate the tower.
【請求項4】 採水終了後、懸濁物質の捕捉、又は圧密
化のため圧力損失の増大した弱型イオン交換樹脂の充填
されている上部室のみを中間隔壁の直ぐ下から原水又は
処理水を導入し、低流速逆洗を行い、弱型イオン交換樹
脂をほぐす工程、次いで請求項1、2又は3記載の再生
方法を行うことを特徴とする向流式イオン交換塔の再生
方法。
4. After the completion of water sampling, only the upper chamber filled with the weak ion exchange resin having increased pressure loss due to trapping or consolidation of suspended solids is treated with raw water or treated water from immediately below the intermediate partition wall. The method of regenerating a countercurrent type ion exchange tower, comprising the steps of: (1) introducing low-pressure ion exchange resin, performing backwashing at a low flow rate to loosen the weak ion exchange resin, and then performing the regeneration method according to claim 1, 2 or 3.
JP30230795A 1995-10-27 1995-10-27 Regeneration method of countercurrent ion exchange column Expired - Fee Related JP3162615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30230795A JP3162615B2 (en) 1995-10-27 1995-10-27 Regeneration method of countercurrent ion exchange column

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30230795A JP3162615B2 (en) 1995-10-27 1995-10-27 Regeneration method of countercurrent ion exchange column

Publications (2)

Publication Number Publication Date
JPH09117677A true JPH09117677A (en) 1997-05-06
JP3162615B2 JP3162615B2 (en) 2001-05-08

Family

ID=17907391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30230795A Expired - Fee Related JP3162615B2 (en) 1995-10-27 1995-10-27 Regeneration method of countercurrent ion exchange column

Country Status (1)

Country Link
JP (1) JP3162615B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10176532A (en) * 1996-12-16 1998-06-30 Sanshin Seisakusho:Kk Regenerating method for engine cooling liquid
JPWO2015159948A1 (en) * 2014-04-16 2017-04-13 栗田工業株式会社 Method for regenerating weakly acidic cation exchange resin

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10176532A (en) * 1996-12-16 1998-06-30 Sanshin Seisakusho:Kk Regenerating method for engine cooling liquid
JPWO2015159948A1 (en) * 2014-04-16 2017-04-13 栗田工業株式会社 Method for regenerating weakly acidic cation exchange resin

Also Published As

Publication number Publication date
JP3162615B2 (en) 2001-05-08

Similar Documents

Publication Publication Date Title
JP3145240B2 (en) Continuous ion exchange equipment
US7422691B2 (en) Method and apparatus for the demineralization of water
US3512641A (en) Countercurrent solid-liquid contacting system
JP3162614B2 (en) Regeneration method of high flow backwash type ion exchange column
US4269715A (en) Process and apparatus for treating by ion exchange or adsorption fluids having solid particles suspended therein
JPH09117677A (en) Regeneration of countercurrent ion exchange tower
US20040251191A1 (en) Method of liquid purification using ion exchange resin being kept in a compacted state by means of elastic material
JP3162616B2 (en) Regeneration method of countercurrent ion exchange column
CA1166618A (en) Methods of ion exchange countercurrent regeneration
JP3907012B2 (en) Counter-current regenerative ion exchange apparatus and regeneration method thereof
RU2206520C1 (en) Method of cleaning water to remove dissolved and undissolved impurities
JP3278128B2 (en) Countercurrent ion exchanger
CN208302795U (en) A kind of flat bed as ion-exchange unit
US4193867A (en) Operation of a two-phase reactor
JP3941890B2 (en) Counter-current regenerative ion exchange apparatus and regeneration method thereof
JP4396835B2 (en) Ion exchanger
Vigneswaran et al. Overview of deep bed filtration: different types and mathematical models
JP3963032B2 (en) Ion exchange device and polishing filter
JP3212463B2 (en) Multi-layer ion exchange equipment
WO2024014104A1 (en) Device for removing hard components, and system for producing pure water
CN211546188U (en) Integrated device for advanced treatment of fluorine-containing wastewater
RU2121873C1 (en) Method of water purification by ion exchange with counterflow ion exchanger recovery and device for its realization
JP3907013B2 (en) Countercurrent ion exchange apparatus using resin having uniform particle size and regenerating method thereof
JP3677591B2 (en) Ion exchange method
JPH049583B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees