JPH09115532A - Gas seal method for solid electrolytic fuel cell of internal manifold type - Google Patents

Gas seal method for solid electrolytic fuel cell of internal manifold type

Info

Publication number
JPH09115532A
JPH09115532A JP7270876A JP27087695A JPH09115532A JP H09115532 A JPH09115532 A JP H09115532A JP 7270876 A JP7270876 A JP 7270876A JP 27087695 A JP27087695 A JP 27087695A JP H09115532 A JPH09115532 A JP H09115532A
Authority
JP
Japan
Prior art keywords
gas
fuel
separator
solid electrolyte
internal manifold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7270876A
Other languages
Japanese (ja)
Inventor
Yuichi Hishinuma
祐一 菱沼
Yoshio Matsuzaki
良雄 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP7270876A priority Critical patent/JPH09115532A/en
Publication of JPH09115532A publication Critical patent/JPH09115532A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a simple, highly efficient mechanical seal method excellent in the fuel utilization rate by applying an epoch-making idea to a conventional mechanical seal method currently utilized for prevention of cross leak with a fuel gas and oxidizer gas. SOLUTION: This cell is alternately stacked with a flat unit cell 3 in which an air pole 6 and a fuel pole 5 are respectively disposed on both surfaces of a tabular type solid electrolyte layer 4 and a separator 1 which electrically connects adjoining unit cells in series and distributes a fuel and oxidizer gas to each unit cell. In this composition, the cell has a mechanical seal structure in which a metal mesh or a metal felt 7 is disposed between the fuel pole 5 and the fuel gas circulation passage side of the separator 1 and a spacer 2 is placed between the solid electrolyte layer 4 of the unit cell 3 and the separator 1, and regulates a pressure difference between the air and fuel gas by flowing an oxidizer gas and fuel gas as the parallel flow in a stack and by structurally changing a flow resistance in a circulation groove for the air and fuel gas formed in the separator 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は内部マニホールド方
式の固体電解質燃料電池のガスシール方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas sealing method for an internal manifold type solid oxide fuel cell.

【0002】[0002]

【従来の技術】最近、例えば空気と水素をそれぞれ、酸
化剤ガスおよび燃料ガスとして、燃料が本来持っている
化学エネルギーを直接電気エネルギーに変換する燃料電
池が、省資源、環境保護の観点から注目されており、特
に固体電解質燃料電池は発電効率が高く、廃熱を有効に
利用できるなど多くの利点を有するため研究、開発が進
んでいる。
2. Description of the Related Art Recently, fuel cells which directly convert chemical energy inherent in fuel into electric energy by using, for example, air and hydrogen as oxidizing gas and fuel gas, respectively, have attracted attention from the viewpoint of resource saving and environmental protection. Research and development are progressing because solid electrolyte fuel cells have many advantages such as high power generation efficiency and effective use of waste heat.

【0003】固体電解質燃料電池に燃料ガスと酸化剤ガ
スとを供給するため、固体電解質燃料電池の外周に外部
マニホールドを設ける形式のものと、セパレータおよび
固体電解質層にそれぞれのガスの給排気孔を設け、この
孔から各単電池の各電極面に各ガスを給排気するように
なった内部マニホールド形式のものがある。
In order to supply a fuel gas and an oxidizing gas to a solid electrolyte fuel cell, an external manifold is provided on the outer periphery of the solid electrolyte fuel cell, and a gas supply / exhaust hole for each gas is provided in a separator and a solid electrolyte layer. There is an internal manifold type in which each gas is supplied and exhausted from each hole to each electrode surface of each unit cell through this hole.

【0004】図1は内部マニホールド形式の平板型固体
電解質燃料電池の横断面図、図2は図1に使用されてい
る複合セパレータの斜視図である。
FIG. 1 is a cross-sectional view of a flat plate type solid electrolyte fuel cell of the internal manifold type, and FIG. 2 is a perspective view of the composite separator used in FIG.

【0005】図1、2の内部マニホールド形式の平板型
固体電解質燃料電池は、イットリアなどをドープしたジ
ルコニア焼結体(YSZ)からなる平板型固体電解質層
4の両面に、それぞれ(La、Sr)MnO3 の空気極
6と、Ni/YSZサーメットの燃料極5とを配置して
なる平板状単電池3と、隣接する単電池3同士を電気的
に直列に接続し、かつ各単電池3に燃料ガスと酸化剤ガ
スとを分配するセパレータ1とを交互に積層し、燃料極
5とセパレータ1の燃料ガス流通路側との間に金属メッ
シュ7を介在し、単電池3の固体電解質層4とセパレー
タ1の間にそれぞれシール剤またはスペーサ2を介在し
てスタックに積層したものであり、各単電池3の電極面
にそれぞれ燃料ガスと酸化剤ガスとを接触させることに
より起電力を発生する。
The flat plate type solid electrolyte fuel cell of the internal manifold type shown in FIGS. 1 and 2 has (La, Sr) on both sides of a flat plate type solid electrolyte layer 4 made of a zirconia sintered body (YSZ) doped with yttria or the like. A flat plate-shaped unit cell 3 in which an air electrode 6 of MnO 3 and a fuel electrode 5 of Ni / YSZ cermet are arranged, and adjacent unit cells 3 are electrically connected in series to each other. The separators 1 for distributing the fuel gas and the oxidant gas are alternately laminated, the metal mesh 7 is interposed between the fuel electrode 5 and the fuel gas flow passage side of the separator 1, and the solid electrolyte layer 4 of the unit cell 3 is formed. A separator 1 and a separator 2 are interposed between the separators 1 to form a stack, and an electromotive force is generated by bringing a fuel gas and an oxidant gas into contact with the electrode surface of each unit cell 3. That.

【0006】セパレータ1は燃料極5と空気極6とにそ
れぞれ供給される燃料ガスと酸化剤ガスとを分離してそ
れらのクロスリークを防止する作用と、単電池3同士を
電気的に直列に接続する作用とを有するものである。セ
パレータ1はランタンクロマイト系酸化物または耐熱性
金属、あるいはランタンクロマイト系酸化物と非導電性
酸化物の複合体よりなる。
The separator 1 separates the fuel gas and the oxidant gas supplied to the fuel electrode 5 and the air electrode 6, respectively, to prevent their cross-leakage, and the cells 3 are electrically connected in series. And the action of connecting. The separator 1 is made of a lanthanum chromite oxide or a heat-resistant metal, or a composite of a lanthanum chromite oxide and a non-conductive oxide.

【0007】図1に示すように、セパレータの燃料極側
の面と空気極側の面とは同一の形状及び寸法を有し、セ
パレータの空気極側の表面に空気極6側への酸化剤ガス
分配構造(後述する溝等)が形成され、また、セパレー
タの燃料極側の表面に燃料極5側への燃料ガス分配構造
が形成されている。
As shown in FIG. 1, the fuel electrode side surface and the air electrode side surface of the separator have the same shape and dimensions, and the oxidizer for the air electrode 6 side is provided on the air electrode side surface of the separator. A gas distribution structure (such as a groove described later) is formed, and a fuel gas distribution structure to the fuel electrode 5 side is formed on the surface of the separator on the fuel electrode side.

【0008】セパレータの4隅にガスの給排気孔1aが
開けられ、更に、燃料極5および空気極6の表面にそれ
ぞれ燃料ガスと酸化剤ガスを均等に分配するため、およ
び、隣り合う単電池3を直列に接続するため電極5、6
面に複数列のガス流通溝1cと突起1bが形成されてい
る。
Gas supply / exhaust holes 1a are formed at the four corners of the separator, and the fuel gas and the oxidant gas are evenly distributed to the surfaces of the fuel electrode 5 and the air electrode 6, respectively, and the adjacent unit cells are connected. Electrodes 5 and 6 for connecting 3 in series
A plurality of rows of gas circulation grooves 1c and protrusions 1b are formed on the surface.

【0009】燃料電池が組み立てられたとき、突起1b
は燃料極5または空気極6に接触して電気的に導通して
集電部を形成する。ガス流通溝1cはセパレータ1の表
面に形成されている三角形へこみ1fを通じて、対角線
方向の隅に形成されているガス給排気孔1aに連通して
いる(図2参照)。ガス流通溝1cと三角形へこみ1f
が、燃料ガスおよび酸化剤ガスの分配構造となる。ま
た、セパレータ1の表面の周縁部1dは単電池3の固体
電解質層4やスペーサ2と重なるシール面となる。
When the fuel cell is assembled, the protrusion 1b
Is in contact with the fuel electrode 5 or the air electrode 6 and is electrically conducted to form a current collector. The gas flow groove 1c communicates with a gas supply / exhaust hole 1a formed at a corner in a diagonal direction through a triangular recess 1f formed on the surface of the separator 1 (see FIG. 2). Gas distribution groove 1c and triangular recess 1f
Has a distribution structure for the fuel gas and the oxidant gas. The peripheral edge portion 1d of the surface of the separator 1 serves as a sealing surface that overlaps with the solid electrolyte layer 4 and the spacer 2 of the unit cell 3.

【0010】さて、スタックの内部で燃料ガスと酸化剤
ガスが混合すると、燃料利用率が低下し、燃料電池の効
率が低下するのは勿論、両ガスの混合により燃焼して局
部的な温度上昇を生じ、熱応力分布が不均一となり、ク
ラックや歪みを生じ、スタックの寿命を短縮させる。
When the fuel gas and the oxidant gas are mixed inside the stack, the fuel utilization rate is lowered, and the efficiency of the fuel cell is lowered. Of course, the mixture of both gases causes combustion and a local temperature rise. Occurs, the thermal stress distribution becomes non-uniform, cracks and strains occur, and the stack life is shortened.

【0011】[0011]

【発明が解決しようとする課題】従来、スタックの内部
で燃料と酸化剤ガスが混合しないようにするため、単電
池3とセパレータ1の間のシール面にシール剤を塗布す
る方法や挟む方法があるが、現在、シール剤に適当な材
料が見つからない。例えば、シール剤にセラミック接着
剤を使用すると、構成部材がセラミック接着剤で完全に
接着され、構成部材間の熱膨張差により接着部に歪みを
生じ、単電池3の固体電解質層4に割れを起こすととも
に、サーマルサイクル中に接着剤が劣化し、ガス漏れ発
生の原因となる。また、シール剤としてシリカ系ガラス
を用いると、シール剤中のシリカ成分が長期運転中に蒸
発して低温部に付着、堆積し、その結果、電極5、6の
劣化を引き起こし、長期運転上問題がある。このような
シール剤の欠点は、機械的シール構造の採用により、あ
る程度回避できるようになった。
Conventionally, in order to prevent the fuel and the oxidant gas from being mixed inside the stack, a method of applying a sealing agent to the sealing surface between the unit cells 3 and the separator 1 or a method of sandwiching the sealing agent has been proposed. However, at present, no suitable material for the sealant is found. For example, when a ceramic adhesive is used as the sealant, the constituent members are completely adhered by the ceramic adhesive, and the bonded portion is distorted due to the difference in thermal expansion between the constituent members, causing cracks in the solid electrolyte layer 4 of the unit cell 3. At the same time, the adhesive deteriorates during the thermal cycle, which causes gas leakage. Further, when silica-based glass is used as the sealant, the silica component in the sealant evaporates during long-term operation and adheres to and deposits on the low temperature part, resulting in deterioration of the electrodes 5 and 6, causing problems in long-term operation. There is. The drawback of such a sealant can be avoided to some extent by adopting a mechanical seal structure.

【0012】この機械的シール構造は金属メッシュ7を
燃料極5上に配置し、スペーサ2を燃料極5の周囲に配
置し、このスペーサ2に上部のセパレータ1を介して荷
重をかけて積層することにより、セパレータ1、スペー
サ2および固体電解質層4の面接触により気密性を確保
するものである(図1参照)。しかしながら、面接触の
良否は2面間の接触圧力、接触面積や面の平滑度等に左
右される。図2において、例えばガス流通孔1a(例え
ば燃料ガスが流れている)と三角形へこみ1f(例えば
酸化剤ガスが流れている)との最短距離の部分が燃料ガ
スと酸化剤ガスとが最もクロスリークし易い箇所と考え
られる。このように、構成部材の構造や加工精度の観点
から、従来の機械的シール構造では完全なシールは不可
能であり、また、燃料電池が作動する1000℃という
高温で単電池3とセパレータ1、あるいはそれらの間に
挿入するスペーサ2とが拡散接合し、熱サイクルに弱い
という欠点もある。
In this mechanical seal structure, the metal mesh 7 is arranged on the fuel electrode 5, the spacer 2 is arranged around the fuel electrode 5, and a load is applied to the spacer 2 via the upper separator 1 to laminate them. Thus, the airtightness is secured by the surface contact of the separator 1, the spacer 2 and the solid electrolyte layer 4 (see FIG. 1). However, the quality of surface contact depends on the contact pressure between the two surfaces, the contact area, the smoothness of the surfaces, and the like. In FIG. 2, for example, the portion of the shortest distance between the gas flow hole 1a (for example, fuel gas is flowing) and the triangular depression 1f (for example, oxidant gas is flowing) is the most cross leak between the fuel gas and the oxidant gas. It is considered to be an easy place to do. As described above, from the viewpoint of the structure of the constituent members and the processing accuracy, it is impossible to perform a complete seal with the conventional mechanical seal structure, and the fuel cell operates at a high temperature of 1000 ° C. and the unit cell 3 and the separator 1, Alternatively, there is a drawback that the spacers 2 inserted between them are diffusion-bonded and weak against heat cycles.

【0013】本発明は上述の点にかんがみてなされたも
ので、内部マニホールド形式の平板型固体電解質燃料電
池において燃料ガスと酸化剤ガスとのクロスリークの防
止に使用されている従来の機械的シール方法に画期的な
発想を加えることにより、簡単で燃料利用率の良い、高
性能の機械的シール方法を提供することを目的とするも
のである。
The present invention has been made in view of the above points, and is a conventional mechanical seal used for preventing cross leak between a fuel gas and an oxidant gas in a flat plate type solid electrolyte fuel cell of an internal manifold type. It is an object of the present invention to provide a high-performance mechanical sealing method that is simple and has a good fuel utilization rate by adding a revolutionary idea to the method.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するた
め、本発明は平板状固体電解質層の両面にそれぞれ空気
極と燃料極とを配置してなる平板状単電池と、隣接する
単電池同士を電気的に直列に接続しかつ各単電池に燃料
と酸化剤ガスとを分配するセパレータとを交互に積層し
てスタックにした内部マニホールド方式の固体電解質燃
料電池のガスシール方法において、前記燃料極と前記セ
パレータの燃料ガス流通路側との間に金属メッシュまた
は金属フェルトを介在し、前記単電池の固体電解質層と
前記セパレータの間にスペーサを介在した機械的シール
構造を有し、酸化剤ガスと燃料ガスとをスタックの中で
平行流として流し、前記セパレータに形成された空気お
よび燃料ガスの流通溝での流動抵抗を構造的に変えて空
気と燃料ガスの圧力差を調整することを特徴とする。
In order to achieve the above-mentioned object, the present invention provides a flat plate-shaped cell in which an air electrode and a fuel electrode are arranged on both sides of a plate-shaped solid electrolyte layer, and adjacent cell cells. In a gas sealing method for an internal manifold type solid electrolyte fuel cell, in which fuel cells and separators for distributing a fuel and an oxidant gas are alternately laminated to each unit to form a stack. And a fuel gas flow passage side of the separator, a metal mesh or a metal felt is interposed between the solid electrolyte layer of the unit cell and the separator, and a mechanical seal structure having a spacer is interposed between the separator and the oxidant gas. The fuel gas is caused to flow as a parallel flow in the stack, and the flow resistance in the air and fuel gas flow grooves formed in the separator is structurally changed so that the pressure of the air and the fuel gas is changed. And adjusting the.

【0015】[0015]

【発明の実施の形態】本発明は、平板状固体電解質層4
の両面にそれぞれ空気極6と燃料極5とを配置してなる
平板状単電池3と、隣接する単電池同士を電気的に直列
に接続しかつ各単電池に燃料ガスと酸化剤ガスとを分配
するセパレータ1とを交互に積層してスタックにした内
部マニホールド方式の固体電解質燃料電池のガスシール
方法において、次の点を特徴とするまのである。 (1)燃料極5とセパレータ1の燃料ガス流通路側との
間に金属メッシュ7を介在し、単電池の固体電解質層4
とセパレータ1の間にスペーサ2を介在した機械的シー
ル方法を使用する。 (2)酸化剤ガス例えば空気と燃料ガスをスタックの中
で並行流として流す。 (3)セパレータに形成された空気および燃料ガスの流
通溝1cでの流体抵抗を構造的に調整する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is a flat solid electrolyte layer 4
The flat plate-shaped unit cell 3 in which the air electrode 6 and the fuel electrode 5 are arranged on both sides of the unit cell and the adjacent unit cells are electrically connected in series, and the fuel gas and the oxidant gas are connected to each unit cell. The gas sealing method for the solid electrolyte fuel cell of the internal manifold type in which the separators 1 to be distributed are alternately laminated to form a stack is characterized by the following points. (1) The metal mesh 7 is interposed between the fuel electrode 5 and the fuel gas flow passage side of the separator 1 to form the solid electrolyte layer 4 of the unit cell.
The mechanical sealing method in which the spacer 2 is interposed between the separator 1 and the separator 1 is used. (2) Oxidant gas, for example, air and fuel gas are flown as parallel flow in the stack. (3) Structurally adjust the fluid resistance in the air and fuel gas flow grooves 1c formed in the separator.

【0016】図3は金属ガスケットによる機械的シール
方法を行ったときの圧力差と漏れ量の関係を示すグラフ
である。
FIG. 3 is a graph showing the relationship between the pressure difference and the leakage amount when the mechanical sealing method using a metal gasket is performed.

【0017】図3は横軸に圧力差(単位 mmH2
O)、縦軸にヘリウム漏れ量(単位 sccm/cm)
および実流量に対する漏れの割合(単位 %)をとる実
験データである。図中のA線は室温における漏れ量、B
線は室温における漏れの割合、C線は1000℃におけ
る漏れ量、D線は1000℃における漏れの割合を示
す。図3から室温と1000℃のいづれにおいても、圧
力差が大きい程漏れ量、したがって漏れの割合が大きい
ことは明らかである。そのため、内部マニホールド形式
の平板型固体電解質燃料電池の内部において燃料ガスと
酸化剤ガスとのクロスリークを軽減または防止するため
には、これら両ガスの圧力差をできるだけ小さくするこ
とが必要である。ただし、両ガスの圧力は両ガスをスタ
ックの上下方向に流通させねばならない点も考慮して設
計されている。
In FIG. 3, the horizontal axis indicates the pressure difference (unit: mmH 2
O), and the vertical axis shows the amount of helium leakage (unit: sccm / cm)
And the experimental data for the leak rate (unit%) against the actual flow rate. Line A in the figure is the amount of leakage at room temperature, B
The line shows the leak rate at room temperature, the C line shows the leak amount at 1000 ° C., and the D line shows the leak rate at 1000 ° C. From FIG. 3, it is clear that the larger the pressure difference is, the larger the leak amount and hence the leak rate are at both room temperature and 1000 ° C. Therefore, in order to reduce or prevent the cross leak between the fuel gas and the oxidant gas inside the flat type solid oxide fuel cell of the internal manifold type, it is necessary to make the pressure difference between these gases as small as possible. However, the pressure of both gases is designed in consideration of the fact that both gases must be passed in the vertical direction of the stack.

【0018】内部マニホールド形式の平板型固体電解質
燃料電池の内部において両ガスの圧力差をできるだけ小
さくするためには、両ガスの流れを平行流にすることが
必要である。すなわち、単電池3に燃料ガスと酸化剤ガ
スとを分配しているセパレータ1の上側面および下側面
に存在するガス流通溝1cの中の各ガスの流れを同一方
向にする方が良い。そうすることによって、各ガスのガ
ス流通溝1cへの入口(ガス圧力が高い)および出口
(ガス圧力が流通溝1c内の流動抵抗により低くなって
いる)がセパレータ1の上側面および下側面のほぼ同じ
位置になるので圧力差が小さくなり、クロスリークが少
なくなる。逆に、燃料ガスの入口と空気の出口がセパレ
ータ1の上面および下面のほぼ同じ位置にくる(これを
対向流という)と、両ガスの圧力差が大きくなり、クロ
スリークがひどくなる。
In order to minimize the pressure difference between the two gases inside the flat type solid electrolyte fuel cell of the internal manifold type, it is necessary to make the flows of both gases parallel. That is, it is preferable that the flow of each gas in the gas flow grooves 1c existing on the upper side surface and the lower side surface of the separator 1 that distributes the fuel gas and the oxidant gas to the unit cell 3 be in the same direction. By doing so, the inlet (the gas pressure is high) and the outlet (the gas pressure is low due to the flow resistance in the circulation groove 1c) of each gas to the gas circulation groove 1c are located on the upper side surface and the lower side surface of the separator 1, respectively. Since the positions are almost the same, the pressure difference is small and cross leak is small. On the contrary, when the inlet of the fuel gas and the outlet of the air come to almost the same position on the upper surface and the lower surface of the separator 1 (this is called a counterflow), the pressure difference between the two gases becomes large and the cross leak becomes severe.

【0019】以上説明したように、スタック内部におけ
る燃料ガスと酸化剤ガスの流れ方向を並行流にすること
により圧力差を小さくするばかりでなく、本発明のシー
ル方法では次のようにして、燃料ガスと酸化剤ガスの圧
力差をなるべく低くなるよう調整している。
As described above, not only the pressure difference is reduced by making the flow directions of the fuel gas and the oxidant gas inside the stack to be parallel flows, but in the sealing method of the present invention, the fuel is The pressure difference between the gas and the oxidant gas is adjusted to be as low as possible.

【0020】燃料極5側のガス流通溝1cの幅を狭く加
工することにより流動抵抗を増加し、燃料ガスの流量を
絞り、この絞りの程度により燃料の圧力上昇を調節し、
空気極6側との圧力差が小さくなるよう調整した。ガス
流通溝1cの幅の減少はその入口や出口またはその途中
で行ってもよい。
The flow resistance is increased by processing the width of the gas flow groove 1c on the fuel electrode 5 side to be narrow, the flow rate of the fuel gas is reduced, and the pressure rise of the fuel is adjusted by the degree of the reduction.
The pressure difference with the air electrode 6 side was adjusted to be small. The width of the gas flow groove 1c may be reduced at its inlet or outlet, or in the middle thereof.

【0021】電池に供給する空気は酸化剤としての役割
とともに冷却ガスとしての役割もあるため燃料と比べて
流量が多い。そのため、通常空気極入口のガス圧(ほぼ
200mmH2 O)は燃料極入口のガス圧(ほぼ数拾m
mH2 O)より高く、この圧力差により空気が燃料極5
側に漏れる傾向にある。
The air supplied to the battery has a flow rate larger than that of the fuel because it serves as a cooling gas as well as an oxidizing agent. Therefore, the gas pressure at the inlet of the air electrode (approximately 200 mmH 2 O) is usually the gas pressure at the inlet of the fuel electrode (approximately several m
mH 2 O), and this pressure difference causes air to move to the fuel electrode 5
Tends to leak to the side.

【0022】燃料極5側にはセパレータ1との間に金属
メッシュが介在しているので、ガス流通溝1cの幅を変
えても集電効果への影響が少ないので、燃料極5側のガ
ス流通溝1cの幅を加減する方法が好都合である。しか
し、空気極6側のガス流通溝1cの幅は集電効果に影響
するので、これを変化させて圧力差を調節する場合は、
このことを考慮する必要がある。
Since the metal mesh is interposed between the fuel electrode 5 side and the separator 1, even if the width of the gas flow groove 1c is changed, the effect on the current collecting effect is small. A method of adjusting the width of the circulation groove 1c is convenient. However, since the width of the gas flow groove 1c on the side of the air electrode 6 affects the current collecting effect, when changing this to adjust the pressure difference,
This needs to be taken into consideration.

【0023】上記実施例ではガス流通溝1cの幅を加減
して圧力差を調節するように説明したが、ガス流通溝1
cの数や高さ等も変化させて、要するにガス流通溝1c
の総断面積を構造的に調節して燃料ガスを絞るようにす
ればよい。
In the above embodiment, the pressure difference is adjusted by adjusting the width of the gas flow groove 1c, but the gas flow groove 1c is adjusted.
By changing the number and height of c, in essence, the gas distribution groove 1c
The total cross-sectional area may be structurally adjusted to throttle the fuel gas.

【0024】また、上記実施例では燃料ガスの流通溝で
の流体抵抗を構造的に調整するように説明したが、酸化
剤ガスの流通溝での流体抵抗を構造的に調整することに
より、本発明の方法を実施することもできる。
In the above embodiment, the fluid resistance in the flow groove of the fuel gas is structurally adjusted. However, by adjusting the fluid resistance in the flow groove of the oxidant gas structurally, It is also possible to carry out the method of the invention.

【0025】[0025]

【発明の効果】本発明は内部マニホールド方式の固体電
解質燃料電池のガスシール方法において、燃料極とセパ
レータの燃料ガス流通路側との間に金属メッシュを介在
し、単電池の固体電解質層とセパレータの間にスペーサ
を介在した機械的シール方法を使用し、酸化剤ガス例え
ば空気と燃料ガスをスタックの中で並行流として流し、
セパレータに形成された空気および燃料ガスの流通溝で
の流体抵抗を構造的に調整するように構成したので、簡
単で燃料利用率の良い、高性能の機械的シールを実施す
ることができる。
INDUSTRIAL APPLICABILITY The present invention relates to a gas sealing method for an internal manifold type solid electrolyte fuel cell, in which a metal mesh is interposed between the fuel electrode and the fuel gas flow passage side of the separator, and the solid electrolyte layer of the unit cell and the separator are separated. Using a mechanical sealing method with a spacer in between, an oxidant gas such as air and fuel gas is flowed as a parallel flow in the stack,
Since it is configured to structurally adjust the fluid resistance in the air and fuel gas flow grooves formed in the separator, it is possible to implement a high performance mechanical seal that is simple and has a good fuel utilization rate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】内部マニホールド形式の平板型固体電解質燃料
電池の横断面図である。
FIG. 1 is a cross-sectional view of a flat solid electrolyte fuel cell of an internal manifold type.

【図2】図1に使用されている複合セパレータの斜視図
である。
2 is a perspective view of the composite separator used in FIG. 1. FIG.

【図3】金属ガスケットによる機械的シール方法を行っ
たときの圧力差と漏れ量の関係を示すグラフである。
FIG. 3 is a graph showing a relationship between a pressure difference and a leak amount when a mechanical sealing method using a metal gasket is performed.

【符号の説明】[Explanation of symbols]

1 セパレータ 1A 耐熱性金属板 1B 導電性酸化物板 1b 突起 1c 溝 1d 周縁部 1f 三角形へこみ 2 スペーサ 3 平板状単電池 5 燃料極 6 空気極 7 金属メッシュまたは金属フェルト 1 Separator 1A Heat Resistant Metal Plate 1B Conductive Oxide Plate 1b Protrusion 1c Groove 1d Peripheral Edge 1f Triangle Dimple 2 Spacer 3 Flat Single Cell 5 Fuel Electrode 6 Air Electrode 7 Metal Mesh or Metal Felt

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 平板状固体電解質層の両面にそれぞれ空
気極と燃料極とを配置してなる平板状単電池と、隣接す
る単電池同士を電気的に直列に接続しかつ各単電池に燃
料と酸化剤ガスとを分配するセパレータとを交互に積層
してスタックにした内部マニホールド方式の固体電解質
燃料電池のガスシール方法において、前記燃料極と前記
セパレータの燃料ガス流通路側との間に金属メッシュま
たは金属フェルトを介在し、前記単電池の固体電解質層
と前記セパレータの間にスペーサを介在した機械的シー
ル構造を有し、酸化剤ガスと燃料ガスとをスタックの中
で平行流として流し、前記セパレータに形成された空気
および燃料ガスの流通溝での流動抵抗を構造的に変えて
空気と燃料ガスの圧力差を調整することを特徴とする内
部マニホールド方式の固体電解質燃料電池のガスシール
方法。
1. A flat plate type single cell having an air electrode and a fuel electrode arranged on both sides of a flat plate type solid electrolyte layer, and adjacent single cells are electrically connected in series, and a fuel is supplied to each single cell. In a gas sealing method for an internal manifold type solid electrolyte fuel cell in which a separator that distributes a gas and an oxidant gas are alternately stacked to form a stack, a metal mesh is provided between the fuel electrode and the fuel gas flow passage side of the separator. Or, having a mechanical seal structure in which a metal felt is interposed and a spacer is interposed between the solid electrolyte layer of the unit cell and the separator, the oxidant gas and the fuel gas are caused to flow in parallel in the stack, Internal manifold system characterized by adjusting the pressure difference between air and fuel gas by structurally changing the flow resistance in the air and fuel gas flow grooves formed in the separator Gas sealing method for solid electrolyte fuel cell of.
【請求項2】 前記セパレータが導電性酸化物であるこ
とを特徴とする請求項1に記載の内部マニホールド方式
の固体電解質燃料電池のガスシール方法。
2. The gas sealing method for an internal manifold type solid electrolyte fuel cell according to claim 1, wherein the separator is a conductive oxide.
【請求項3】 前記セパレータが耐熱性金属であること
を特徴とする請求項1に記載の内部マニホールド方式の
固体電解質燃料電池のガスシール方法。
3. The gas sealing method for an internal manifold type solid electrolyte fuel cell according to claim 1, wherein the separator is made of a heat resistant metal.
【請求項4】 前記セパレータが導電性酸化物と非導電
性酸化物との複合セパレータであることを特徴とする請
求項1に記載の内部マニホールド方式の固体電解質燃料
電池のガスシール方法。
4. The gas sealing method for a solid electrolyte fuel cell of the internal manifold type according to claim 1, wherein the separator is a composite separator of a conductive oxide and a non-conductive oxide.
【請求項5】 前記セパレータが導電性酸化物と耐熱性
金属との複合セパレータであることを特徴とする請求項
1に記載の内部マニホールド方式の固体電解質燃料電池
のガスシール方法。
5. The gas sealing method for a solid oxide fuel cell of the internal manifold type according to claim 1, wherein the separator is a composite separator of a conductive oxide and a heat resistant metal.
【請求項6】 前記空気と燃料ガスの圧力差が50mm
2 O以下であることを特徴とする請求項1に記載の内
部マニホールド方式の固体電解質燃料電池のガスシール
方法。
6. The pressure difference between the air and the fuel gas is 50 mm.
The gas sealing method for an internal manifold type solid electrolyte fuel cell according to claim 1, wherein the gas sealing method is H 2 O or less.
JP7270876A 1995-10-19 1995-10-19 Gas seal method for solid electrolytic fuel cell of internal manifold type Withdrawn JPH09115532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7270876A JPH09115532A (en) 1995-10-19 1995-10-19 Gas seal method for solid electrolytic fuel cell of internal manifold type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7270876A JPH09115532A (en) 1995-10-19 1995-10-19 Gas seal method for solid electrolytic fuel cell of internal manifold type

Publications (1)

Publication Number Publication Date
JPH09115532A true JPH09115532A (en) 1997-05-02

Family

ID=17492205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7270876A Withdrawn JPH09115532A (en) 1995-10-19 1995-10-19 Gas seal method for solid electrolytic fuel cell of internal manifold type

Country Status (1)

Country Link
JP (1) JPH09115532A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8815463B2 (en) * 2006-07-26 2014-08-26 Toyota Jidosha Kabushiki Kaisha Fuel cell system and its control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8815463B2 (en) * 2006-07-26 2014-08-26 Toyota Jidosha Kabushiki Kaisha Fuel cell system and its control method

Similar Documents

Publication Publication Date Title
KR100341402B1 (en) Single Cell and Stack Structure of Solid Oxide Fuel Cell
US5399442A (en) Solid electrolyte fuel cell
US9608285B2 (en) Stack for a solid oxide fuel cell using a flat tubular structure
KR20060096925A (en) Systems and methods for minimizing temperature differences and gradients in solid oxide fuel cells
JP2007507834A (en) Followable stack of planar solid oxide fuel cells
JP2000048831A (en) Solid electrolyte fuel cell
JPH10189017A (en) Gas seal structure of honeycomb structure solid electrolyte fuel cell
JPH09326259A (en) Solid electrolyte fuel cell
JPH08279364A (en) Solid electrolyte fuel cell
JPH1116585A (en) Flat solid electrolyte fuel cell and its layering method
JP6945035B1 (en) Electrochemical reaction cell stack
JPH09115532A (en) Gas seal method for solid electrolytic fuel cell of internal manifold type
JPH10312818A (en) Solid electrolyte type fuel cell
JPH09231987A (en) Seal structure of solid electrolyte fuel cell and its manufacture
JPH10134828A (en) Current collecting method between fuel electrode and separator of flat solid electrolyte fuel cell
JPH09147884A (en) Flat solid electrolyte fuel cell
JPH09115530A (en) Solid electrolytic fuel cell having mechanical seal structure
JPH02168568A (en) Fuel battery with solid electrolyte
JP6690996B2 (en) Electrochemical reaction cell stack
JP2654502B2 (en) Solid electrolyte fuel cell with mechanical seal structure
JPH06196198A (en) Solid electrolyte type fuel cell
JP2018181405A (en) Fuel cell power generation module
JP7237043B2 (en) Electrochemical reaction cell stack
JP7210509B2 (en) Electrochemical reaction cell stack
JP7232224B2 (en) Electrochemical reaction cell stack

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030107