JPH09115455A - Microwave ion source - Google Patents

Microwave ion source

Info

Publication number
JPH09115455A
JPH09115455A JP7272290A JP27229095A JPH09115455A JP H09115455 A JPH09115455 A JP H09115455A JP 7272290 A JP7272290 A JP 7272290A JP 27229095 A JP27229095 A JP 27229095A JP H09115455 A JPH09115455 A JP H09115455A
Authority
JP
Japan
Prior art keywords
microwave
plasma
window
introduction window
ion source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7272290A
Other languages
Japanese (ja)
Inventor
Katsumi Tokikuchi
克己 登木口
Takayoshi Seki
関  孝義
Yasuo Yamashita
泰郎 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7272290A priority Critical patent/JPH09115455A/en
Publication of JPH09115455A publication Critical patent/JPH09115455A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a microwave window structure not affected by plasma impendance to stably derive ion beam therefrom by forming the center and the periphery of the microwave guide window of specific material and specifying the thickness of the microwave guide window. SOLUTION: A microwave guide window 3 to a plasma chamber 2 is in a two-layered structure and a silica disc 3A is functioned as a vacuum sealing window to propagate microwaves in the air into a vacuum plasma chamber. The guide window on the plasma contacting side is divided in the radial direction, with the center 3B formed of boron nitride and the periphery 3C formed as the silica disc. A drawing electrode is a porous drawing electrode with ten pores open. Oxygen gas and 500W-1000W microwaves are guided thereto to obtain large current ion beam of oxygen ion drawing current 200mA or more from an ion source.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は大電流のイオン注入
装置のイオン源に使われるマイクロ波イオン源に係り、
特に、100〜200mA級の大電流の酸素イオンビー
ムを安定に引出すに好適なマイクロ波イオン源に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microwave ion source used as an ion source of a high current ion implanter,
In particular, the present invention relates to a microwave ion source suitable for stably extracting a large current oxygen ion beam of 100 to 200 mA class.

【0002】[0002]

【従来の技術】近年、酸化膜を埋め込んだシリコン基板
上に半導体デバイスを作製する需要が増加している。埋
込酸化膜を形成するための方法として、シリコン基板に
100mA級の大電流酸素イオンをシリコン基板にイオ
ン注入する手法が使われている。注入処理能力を上げる
ために、ビーム電流として200mAを越えるイオン注
入の実現が要求されている。この様な大電流酸素イオン
注入装置用のイオン源としては、円筒構造のプラズマ室
に磁場を印加し、低圧の酸素ガスを流し、これにマイク
ロ波を導入して高密度の酸素プラズマを作り、このプラ
ズマから引出し電極を使ってイオンビームを引出すマイ
クロ波イオン源が使われている。大電流酸素イオン生成
用マイクロ波イオン源の従来例の一例(特公平7−46588
号公報を参照)を図2に示す。マイクロ波発振器(図示
省略)で発生した2.45GHzのマイクロ波は導波管
1を介しプラズマ室2に導入される。マイクロ波の導入
窓3は2〜3層のものが使用されている(図では3
層)。プラズマ室2には、コイル4による軸方向磁場が
印加されている。プラズマ室からは、イオン引出し電極
系5を使い、大電流の酸素イオンビーム6が引出され
る。図2の従来例は100mAレベルの酸素ビーム引出
しに使われているマイクロ波イオン源の例である。
2. Description of the Related Art In recent years, the demand for manufacturing semiconductor devices on a silicon substrate having an oxide film embedded therein has been increasing. As a method for forming a buried oxide film, a method of implanting 100 mA-class high-current oxygen ions into a silicon substrate is used. In order to increase the implantation processing capability, it is required to realize ion implantation in which the beam current exceeds 200 mA. As an ion source for such a high-current oxygen ion implanter, a magnetic field is applied to a plasma chamber having a cylindrical structure, low-pressure oxygen gas is caused to flow, and a microwave is introduced into this to create high-density oxygen plasma, A microwave ion source that extracts an ion beam from this plasma using an extraction electrode is used. An example of a conventional microwave ion source for producing high-current oxygen ions (Japanese Patent Publication No. 7-46588)
2) is shown in FIG. A 2.45 GHz microwave generated by a microwave oscillator (not shown) is introduced into the plasma chamber 2 via the waveguide 1. The microwave introduction window 3 has two or three layers (3 in the figure).
layer). An axial magnetic field is applied to the plasma chamber 2 by the coil 4. A large current oxygen ion beam 6 is extracted from the plasma chamber using the ion extraction electrode system 5. The conventional example of FIG. 2 is an example of a microwave ion source used for extracting an oxygen beam of 100 mA level.

【0003】図2で、マイクロ波の導入窓3が軸方向で
複数になっているのは次の理由による。従来の数十mA
級のイオン引出しを目的としたマイクロ波イオン源で
は、マイクロ波の導入窓は石英やアルミナ等で作られた
1枚窓であった。しかるに、図2に示した100mA級
の大電流酸素イオンビームの場合、大電流であることに
起因する問題と酸素であることに固有な問題が発生して
いた。
In FIG. 2, the microwave introduction window 3 is plural in the axial direction for the following reason. Conventional tens of mA
In the microwave ion source for the purpose of extracting ions of the class, the microwave introduction window was a single window made of quartz or alumina. However, in the case of the 100 mA class large current oxygen ion beam shown in FIG. 2, there were problems caused by the large current and problems peculiar to oxygen.

【0004】一般にプラズマからイオンビームを引出す
と、引出し電極系の空間でイオンとガスの衝突でできた
電子やビームのうち一部が引出し電極に衝突してできる
2次電子等が引出し電圧に等しい高エネルギ電子となっ
て、プラズマ室側に逆流する。この高エネルギ電子はマ
イクロ波導入窓に衝突し、熱衝撃でマイクロ波導入窓が
破損する問題があった。このため100mA級の酸素ビ
ーム引出し用の図2の例では窓を多層化するとともにプ
ラズマ室に面した導入窓を熱衝撃に強い誘電体にしてい
る。更に、多層の誘電体を通してマイクロ波を効率良く
プラズマに吸収させるため、各誘電体の厚みは厚くし、
マイクロ波回路的な観点からプラズマとのインピーダン
ス整合をとれる厚みとしていた。酸素イオン引出しに固
有な問題として、逆流電子の照射によりプラズマ酸素と
絶縁物材料の化学反応が増速され、熱衝撃で割れなくて
も誘電体の高速エッチングが起きて、誘電体に貫通孔が
開いて、ついには下地の導入窓の損壊が起きていた。
Generally, when an ion beam is extracted from plasma, electrons or secondary electrons generated by collision of ions and gas in the space of the extraction electrode system with some of the beams collide with the extraction electrode, and the like, are equal to the extraction voltage. It becomes high-energy electrons and flows back to the plasma chamber side. The high-energy electrons collide with the microwave introduction window, and there is a problem that the microwave introduction window is damaged by thermal shock. For this reason, in the example of FIG. 2 for drawing out a 100 mA class oxygen beam, the window is multi-layered and the introduction window facing the plasma chamber is made of a dielectric material that is resistant to thermal shock. Furthermore, in order to efficiently absorb microwaves into the plasma through the multi-layered dielectric, the thickness of each dielectric should be increased,
From the viewpoint of the microwave circuit, the thickness is set so that impedance matching with plasma can be achieved. As a problem inherent to the extraction of oxygen ions, irradiation of backflow electrons accelerates the chemical reaction between plasma oxygen and the insulating material, causing rapid etching of the dielectric without cracking due to thermal shock, resulting in the formation of through holes in the dielectric. When I opened it, the introduction window of the base was finally damaged.

【0005】図2の従来例の場合、逆流電子の衝撃はマ
イクロ波導入窓の中央部分に集中して発生する。マイク
ロ波窓は周辺のフランジにより固定され、半径方向に熱
衝撃を逃げる部分がなかったため、引出し電流を従来の
100mA級から更に高い200mAに上げると、熱衝
撃に強い誘電体でも破損が生じる問題があった。貫通孔
の開口も200mAを越える引出しでは倍の速度で発生
する。割れが発生したり貫通孔が開くと、続いて起きる
下地の導入窓の破損を避けるため、直ちにプラズマに接
する誘電体を交換する必要がある。一方、誘電体は一般
に高価であり、この交換頻度を下げられかつ安価に交換
が行える導入窓構造の採用が、200mAレベルへの酸
素引出し電流の増加のために必要であった。
In the case of the conventional example shown in FIG. 2, the impact of backflow electrons is concentrated on the central portion of the microwave introduction window. Since the microwave window is fixed by the peripheral flange and there is no part that escapes the thermal shock in the radial direction, raising the extraction current from the conventional 100 mA class to a higher value of 200 mA causes a problem that even a dielectric material resistant to thermal shock will be damaged. there were. The opening of the through-hole also occurs at a double speed when the drawing exceeds 200 mA. When a crack occurs or a through hole is opened, it is necessary to immediately replace the dielectric material in contact with the plasma in order to avoid the subsequent damage of the underlying introduction window. On the other hand, the dielectric is generally expensive, and the introduction window structure that can be exchanged at a low frequency and can be exchanged at a low cost was necessary for increasing the oxygen drawing current to the level of 200 mA.

【0006】この他の問題として以下の問題があった。[0006] As other problems, there are the following problems.

【0007】100mA級引出しを目的とした図2の従
来例では、導入窓の設計には自身の誘電率やプラズマの
誘電率等を考慮したインピーダンス整合が必要であっ
た。しかし、プラズマのインピーダンスは吸収されたマ
イクロ波電力により変わるため、インピーダンス整合の
とれるプラズマ条件(プラズマ密度,電子温度等)は限
られてしまう。更に、図2のプラズマ室寸法(直径90
mm程度)で200mA以上の引出しを可能とする高密度
プラズマとの間でインピーダンス整合をとるためには導
入窓の材質や構造を変える必要があった。
In the conventional example shown in FIG. 2 for the purpose of drawing 100 mA class, the impedance of the introduction window must be designed in consideration of its own dielectric constant and plasma dielectric constant. However, since the impedance of plasma changes depending on the absorbed microwave power, plasma conditions (plasma density, electron temperature, etc.) that can achieve impedance matching are limited. Furthermore, the dimensions of the plasma chamber (diameter 90
It was necessary to change the material and structure of the introduction window in order to achieve impedance matching with high-density plasma capable of drawing out 200 mA or more (about mm).

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、酸素
引出しビーム電流を増大した時、プラズマに接するマイ
クロ波導入窓の破損を防ぐために半径方向で熱衝撃を逃
げやすくする構造を提供することにある。また、広い電
流範囲で安定にイオンビームを引出すために、プラズマ
のインピーダンスの影響を受けないマイクロ波窓構造を
提供することが本発明が解決しようとする課題である。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a structure for facilitating thermal shock to escape in the radial direction when the oxygen extraction beam current is increased so as to prevent damage to the microwave introduction window in contact with the plasma. It is in. Another object of the present invention is to provide a microwave window structure that is not affected by plasma impedance in order to stably extract an ion beam in a wide current range.

【0009】[0009]

【課題を解決するための手段】熱衝撃を最も強く受ける
部分は中心部分であり、また貫通孔の開く部分と一致し
ている。従って、中心部分を取外し交換可能な構造で緩
く装着できる構造にすれば熱破損も少なくなり、交換頻
度が下がるとともに材料も安価にできる。即ち、上記課
題を解決するには、プラズマに接する誘電体窓を半径方
向に分割するとともに誘電率の異なる誘電体で構成すれ
ば良い。
The part that is most strongly subjected to thermal shock is the central part, which is also coincident with the part where the through hole opens. Therefore, if the central portion is removed and replaced so that it can be loosely attached, thermal damage is reduced, the frequency of replacement is reduced, and the material can be made inexpensive. That is, in order to solve the above problems, the dielectric window in contact with the plasma may be divided in the radial direction and made of dielectrics having different permittivities.

【0010】また、プラズマのインピーダンスに影響さ
れないマイクロ波導入窓を構成するには、マイクロ波波
長の1/4以下の薄い厚さにし、導入窓の存在がマイク
ロ波の効率的な伝幡のためのインピーダンス整合条件に
与える影響を従来例に比べ相対的に小さくし、無視でき
る程度にしてやれば良い。
In order to construct a microwave introduction window that is not affected by plasma impedance, the thickness of the introduction window is set to a thin thickness of 1/4 or less of the microwave wavelength, and the existence of the introduction window ensures efficient microwave propagation. The effect on the impedance matching condition of 1 may be made relatively small as compared with the conventional example, and can be ignored.

【0011】プラズマに接する誘電体窓を半径方向で分
割し、逆流電子が衝突する中央部分のみを熱衝撃に強い
誘電体とし、これを機械的に緩く設置してやれば、熱衝
撃に伴う半径方向の衝撃が逃げられ、200mA以上の
大電流引出し時にも熱衝撃破損が避けることが可能とな
る。
The dielectric window in contact with the plasma is divided in the radial direction, and only the central portion where the backflow electrons collide is made a dielectric material resistant to thermal shock. If this is installed mechanically loosely, the The shock can escape and thermal shock damage can be avoided even when a large current of 200 mA or more is drawn.

【0012】また、マイクロ波は導波管を使いプラズマ
室に導入されるが、導入窓の厚みが管内波長の1/4以
上では、誘電体の厚み方向について、マイクロ波電界強
度がゼロから最大の部分までが誘電体内に入るため、マ
イクロ波の吸収や反射に与える影響を十分に考慮した設
計が必要となる。具体的には、プラズマとのインピーダ
ンス整合を念頭においた厚みの選択が必要となる。この
様な窓材の影響は厚みを薄くすれば小さくできる。実用
上、管内波長の1/4以下にすれば有効である。窓の厚
みを小さくしても頻繁に窓の破損交換を起こさない構造
であれば良い。
The microwave is introduced into the plasma chamber by using a waveguide. When the thickness of the introduction window is ¼ or more of the guide wavelength, the microwave electric field strength is from zero to the maximum in the thickness direction of the dielectric. Since the part up to is inside the dielectric body, it is necessary to design the device with due consideration of its influence on the absorption and reflection of microwaves. Specifically, it is necessary to select the thickness in consideration of impedance matching with plasma. The influence of such a window material can be reduced by reducing the thickness. Practically, it is effective to set the wavelength to 1/4 or less of the guide wavelength. A structure that does not frequently cause damage and replacement of the window even if the window thickness is reduced may be used.

【0013】[0013]

【発明の実施の形態】以下、本発明の内容を実施例を使
い説明する。図1は本発明に基づく実施例である。図で
はマイクロ波導入窓を2枚重ねとし、3Aは暑さ5〜1
0mmの石英円板で大気中のマイクロ波を真空中のプラズ
マ室に伝幡させるための真空封止窓として機能してい
る。プラズマに接する側の導入窓は、半径方向で2分割
されており、中心部3Bは窒化ボロンとし、周辺部3C
は石英円板である。中心部3Bの窒化ボロンの厚さは5
〜10mmの範囲である。またその直径は約30mmとし
た。一方、周辺部の石英円板の外径はプラズマ室の直径
により変わるが、本実施例では約80mmとした。
BEST MODE FOR CARRYING OUT THE INVENTION The contents of the present invention will be described below with reference to embodiments. FIG. 1 shows an embodiment according to the present invention. In the figure, two microwave introduction windows are stacked, and 3A is the heat of 5 to 1
The 0 mm quartz disk functions as a vacuum sealing window for transmitting microwaves in the atmosphere to the plasma chamber in vacuum. The introduction window on the side in contact with plasma is divided into two in the radial direction, the central portion 3B is made of boron nitride, and the peripheral portion 3C is made.
Is a quartz disk. The thickness of boron nitride in the central portion 3B is 5
It is in the range of 10 mm. The diameter was about 30 mm. On the other hand, although the outer diameter of the quartz disk in the peripheral portion changes depending on the diameter of the plasma chamber, it is set to about 80 mm in this embodiment.

【0014】プラズマ室のマイクロ波導入窓と引出し電
極との距離、即ちプラズマ室の長さは120mmで内径は
80〜120mmの範囲のものについて実施した。3枚の
引出し電極で構成される引出し電極系のうち、プラズマ
に接する加速電極に40〜50kVの電圧を印加し、中
間の電極には−1.5〜−3.0kVの電圧を印加した。
3枚目の電極は接地電位である。引出し電極は直径5mm
の孔を10個開口した多孔型引出し電極である。酸素ガ
スを導入し500W〜1000Wのマイクロ波を導入
し、イオン源からの酸素イオン引出し電流値で210m
Aの値を安定に得た。図1の本実施例の場合、プラズマ
に接するマイクロ波導入窓3B,3Cは数十〜数百時間
の間破損せず安定に使用できた。一方、従来例として、
図1のプラズマに接するマイクロ波導入窓を分割なしの
1枚もののアルミナ円板や窒化ボロン円板を使用した場
合、200mAを越える大電流引出し時では長くても数
十時間程度しか安定にビームは引出せず、熱衝撃と思わ
れる破損に至った。
The distance between the microwave introduction window of the plasma chamber and the extraction electrode, that is, the length of the plasma chamber is 120 mm and the inner diameter is in the range of 80 to 120 mm. In the extraction electrode system composed of three extraction electrodes, a voltage of 40 to 50 kV was applied to the acceleration electrode in contact with plasma, and a voltage of -1.5 to -3.0 kV was applied to the intermediate electrode.
The third electrode is at ground potential. Diameter of extraction electrode is 5mm
It is a porous extraction electrode having 10 holes. Oxygen gas was introduced, and a microwave of 500 W to 1000 W was introduced, and the oxygen ion extraction current value from the ion source was 210 m.
The value of A was stably obtained. In the case of the present embodiment of FIG. 1, the microwave introduction windows 3B and 3C in contact with the plasma could be stably used without being damaged for several tens to several hundred hours. On the other hand, as a conventional example,
When a single alumina disk or boron nitride disk without dividing the microwave introduction window in contact with the plasma shown in FIG. 1 is used, the beam can be stably generated for only a few tens of hours at the time of drawing a large current exceeding 200 mA. It could not be pulled out and it was damaged due to thermal shock.

【0015】図1では中心部の絶縁物3Bに窒化ボロン
の円板を、周辺部3Cには石英板を用いたが、中心部に
石英板を用いた場合は逆流電子による石英板の高速エッ
チングが発生し、長時間運転は困難であった。中心部の
絶縁物は、窒化ボロンの他、アルミナや窒化アルミナが
有効であった。表1には、中心部の絶縁物3B(円板)と
その周辺部の絶縁物3C(円環状)の材質の組合せにつ
いて、200mA以上の引出し時の良否をまとめたもの
である。良否の判断は数十時間以上の安定引出しの可否
を基準とした。
In FIG. 1, a boron nitride disk is used for the insulator 3B in the center part and a quartz plate is used for the peripheral part 3C. When a quartz plate is used in the center part, high-speed etching of the quartz plate by backflow electrons is performed. Occurred and it was difficult to operate for a long time. In addition to boron nitride, alumina and alumina nitride were effective as the insulator at the center. Table 1 summarizes the quality of the combination of the materials of the insulator 3B (disk) in the central portion and the insulator 3C (annular) in the peripheral portion at the time of withdrawing 200 mA or more. The quality was judged based on whether stable withdrawal for several tens of hours or more was possible.

【0016】[0016]

【表1】 [Table 1]

【0017】図1の実施例では、マイクロ波導入窓の全
部の厚みは、10〜15mmの範囲とした。2.45 GH
zに対する管内波長は、導波管の構造にもよるが通常の
導波管では14〜16cm程度である。従って、導入窓の
全厚は、管内波長の1/4よりも十分小さい。図2の従
来例での値に近い30mm程度の厚みにした実験では、2
00mAの引出しに至るまでの調整に10時間以上を要
した。これはインピーダンス整合に適うプラズマパラメ
ータを持つプラズマ発生に時間を要したためである。実
際、マイクロ波を導入すると、導入窓の加熱で不純物ガ
ス等が長時間発生するため、これらの不純物プラズマの
影響がなくなるまでは、所定のプラズマパラメータで決
まるインピーダンスを持つ酸素プラズマが生成されない
からである。また、導入窓もプラズマ照射を受け加熱さ
れるが、加熱により誘電率は変わるから、加熱の度合い
に応じてインピーダンス不整合が起き、再びプラズマ状
態が変わる。このため厚肉のマイクロ波導入窓の場合、
200mAの安定引出しに至る調整に長時間を要したも
のと考えられる。
In the embodiment shown in FIG. 1, the total thickness of the microwave introduction window is in the range of 10 to 15 mm. 2.45 GH
The guide wavelength for z depends on the structure of the waveguide, but is about 14 to 16 cm in a normal waveguide. Therefore, the total thickness of the introduction window is sufficiently smaller than 1/4 of the guide wavelength. In the experiment in which the thickness is about 30 mm, which is close to the value in the conventional example of FIG.
It took 10 hours or more for adjustment until the drawing of 00 mA. This is because it took time to generate plasma having a plasma parameter suitable for impedance matching. In fact, when microwaves are introduced, an impurity gas or the like is generated for a long time due to the heating of the introduction window, so that oxygen plasma having an impedance determined by a predetermined plasma parameter is not generated until the influence of these impurity plasmas disappears. is there. Further, the introduction window is also heated by the plasma irradiation, but since the dielectric constant changes due to the heating, impedance mismatch occurs depending on the degree of heating, and the plasma state changes again. Therefore, in the case of a thick microwave introduction window,
It is considered that it took a long time to adjust the stable withdrawal to 200 mA.

【0018】これに対し図1の実施例では、導入窓が薄
くその誘電体がマイクロ波のインピーダンス整合に与え
る影響が小さいため、数時間以内で安定な200mA引
出しが可能となった。
On the other hand, in the embodiment of FIG. 1, since the introduction window is thin and the influence of the dielectric substance on the impedance matching of microwaves is small, it is possible to stably withdraw 200 mA within a few hours.

【0019】[0019]

【発明の効果】本発明によれば円筒型のマイクロ波プラ
ズマ室から200mA級の大電流酸素イオンビームを引
出すにあたり、マイクロ波導入窓の熱破損のないイオン
引出しが簡単かつ安定に可能となり、イオン注入装置用
のイオン源として適用した場合、簡単かつ安定なイオン
注入が可能となり、40〜50keV以上で100〜2
00mAのイオン注入を実用ならしめる点で効果は著し
く大である。
According to the present invention, when a 200 mA-class high-current oxygen ion beam is extracted from a cylindrical microwave plasma chamber, it is possible to easily and stably extract ions without damaging the microwave introduction window. When applied as an ion source for an implanter, simple and stable ion implantation becomes possible, and 100 to 2 at 40 to 50 keV or more.
The effect is remarkably large in that the ion implantation of 00 mA is practical.

【0020】なお実施例では半径方向の分割の例を示し
たが、3分割以上にしてもその効果があることは発明の
本質からして明らかである。また、実施例では、酸素イ
オンビームを例にしたが、他のイオン種の200mAを
越える引出しにも有効であることは明らかである。
In the embodiment, the example of the division in the radial direction is shown, but it is clear from the essence of the invention that the effect is obtained even if it is divided into three or more. Further, although the oxygen ion beam is taken as an example in the embodiment, it is clear that it is also effective for extraction of other ion species exceeding 200 mA.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の説明図。FIG. 1 is an explanatory diagram of an embodiment of the present invention.

【図2】従来のマイクロ波イオン源の説明図。FIG. 2 is an explanatory diagram of a conventional microwave ion source.

【符号の説明】[Explanation of symbols]

1…マイクロ波導波管、2…プラズマ室、3…マイクロ
波導入窓、3A…真空封止用の絶縁物、3B…導入窓中
心部の絶縁物、3C…導入窓周辺部の絶縁物、4…コイ
ル、5…引出し電極系、6…イオンビーム、7…水冷パ
イプ。
DESCRIPTION OF SYMBOLS 1 ... Microwave waveguide, 2 ... Plasma chamber, 3 ... Microwave introduction window, 3A ... Insulator for vacuum sealing, 3B ... Insulation in central part of introduction window, 3C ... Insulator in peripheral part of introduction window, 4 ... coil, 5 ... extraction electrode system, 6 ... ion beam, 7 ... water cooling pipe.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】磁場中のマイクロ波放電によってプラズマ
を発生させイオン引出し電極を使ってイオンビームを引
出し、マイクロ波発振器からのマイクロ波をプラズマ発
生室に導入するマイクロ波導入窓が複数の絶縁物を重ね
てマイクロ波導入窓となっているマイクロ波イオン源に
おいて、前記プラズマに接触する導入窓を半径方向に誘
電率の異なる複数種類の絶縁物で構成したことを特徴と
するマイクロ波イオン源。
1. An insulator having a plurality of microwave introduction windows for generating plasma by microwave discharge in a magnetic field, extracting an ion beam using an ion extraction electrode, and introducing microwaves from a microwave oscillator into a plasma generation chamber. A microwave ion source having a microwave introduction window formed by stacking the above with each other, wherein the introduction window in contact with the plasma is composed of a plurality of types of insulators having different permittivities in the radial direction.
【請求項2】請求項1において、半径方向に分割された
導入窓を含む複数の導入窓の全厚みをマイクロ波の管内
波長の1/4以下としたマイクロ波イオン源。
2. The microwave ion source according to claim 1, wherein the total thickness of the plurality of introduction windows including the introduction windows divided in the radial direction is set to ¼ or less of the guide wavelength of the microwave.
【請求項3】請求項1において、プラズマに接触する導
入窓の構造として、中心部を窒化ボロンそれ以外の部分
を石英で作り、半径方向に誘電率を変化させたマイクロ
波導入窓を設けたマイクロ波イオン源。
3. The structure of the introduction window in contact with plasma according to claim 1, wherein the central portion is made of boron nitride and the other portions are made of quartz, and a microwave introduction window having a dielectric constant varied in the radial direction is provided. Microwave ion source.
JP7272290A 1995-10-20 1995-10-20 Microwave ion source Pending JPH09115455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7272290A JPH09115455A (en) 1995-10-20 1995-10-20 Microwave ion source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7272290A JPH09115455A (en) 1995-10-20 1995-10-20 Microwave ion source

Publications (1)

Publication Number Publication Date
JPH09115455A true JPH09115455A (en) 1997-05-02

Family

ID=17511805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7272290A Pending JPH09115455A (en) 1995-10-20 1995-10-20 Microwave ion source

Country Status (1)

Country Link
JP (1) JPH09115455A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999067808A1 (en) * 1998-06-23 1999-12-29 Lam Research Corporation High sputter, etch resistant window for plasma processing chambers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999067808A1 (en) * 1998-06-23 1999-12-29 Lam Research Corporation High sputter, etch resistant window for plasma processing chambers
US6074516A (en) * 1998-06-23 2000-06-13 Lam Research Corporation High sputter, etch resistant window for plasma processing chambers

Similar Documents

Publication Publication Date Title
US7363876B2 (en) Multi-core transformer plasma source
US5032205A (en) Plasma etching apparatus with surface magnetic fields
KR100342014B1 (en) Plasma processing apparatus
JP3642809B2 (en) Low pressure inductively coupled plasma ignition device
KR920002864B1 (en) Apparatus for treating matrial by using plasma
US6716762B1 (en) Plasma confinement by use of preferred RF return path
TWI505352B (en) Processing system for producing a negative ion plasma
JP2804879B2 (en) Plasma processing method and apparatus
US4806829A (en) Apparatus utilizing charged particles
US5686796A (en) Ion implantation helicon plasma source with magnetic dipoles
JP3408093B2 (en) Negative ion source for etching high aspect ratio structures
JP2002173768A (en) Embedded plasma source for improving plasma density
KR19990028399A (en) Low Inductance Large Area Coils for Inductively Coupled Plasma Sources
JPS60264032A (en) Microwave ion source
JP2004063415A (en) Method for ion implantation, method for manufacturing silicon-on insulator wafer and apparatus for ion implantation
JP3284886B2 (en) Ion source and ion implanter
JP2019110047A (en) Plasma processing apparatus
EP1057206B1 (en) Low pressure inductively coupled high density plasma reactor
JP2722070B2 (en) Plasma processing apparatus and plasma processing method
JPH09115455A (en) Microwave ion source
JPH10149898A (en) Inductively coupled plasma generator
JP2005093384A (en) Electron flood apparatus and ion implanter
JP2522661B2 (en) Microwave ion source
JP5898433B2 (en) Ion doping apparatus and method for manufacturing semiconductor device
WO2024119782A1 (en) Ion grid structure in ion beam etching

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080227

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20090227

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees