JPH09113885A - Liquid crystal display device and its production - Google Patents

Liquid crystal display device and its production

Info

Publication number
JPH09113885A
JPH09113885A JP26970195A JP26970195A JPH09113885A JP H09113885 A JPH09113885 A JP H09113885A JP 26970195 A JP26970195 A JP 26970195A JP 26970195 A JP26970195 A JP 26970195A JP H09113885 A JPH09113885 A JP H09113885A
Authority
JP
Japan
Prior art keywords
liquid crystal
display device
crystal display
interlayer insulating
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26970195A
Other languages
Japanese (ja)
Inventor
Tomoji Oishi
知司 大石
Daigoro Kamoto
大五郎 嘉本
Takao Ishikawa
敬郎 石川
Ken Takahashi
高橋  研
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP26970195A priority Critical patent/JPH09113885A/en
Publication of JPH09113885A publication Critical patent/JPH09113885A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-performance liquid crystal display device which removes the static electricity generated in a rubbing treatment of oriented films in particular and prevents the electrification of the oriented films. SOLUTION: The surface resistance of the interlayer insulating films 6 of the liquid crystal display device constituted by successively forming transparent electrodes 5, the interlayer insulating films 6 and the alignment layers 7 on substrates is specified to 10<7> to 10<10> Ω/square. These films 6 are formed by spin coating, etc., of a sol soln. contg. conductive particulates or a sol soln. prepd. from metal alkoxide forming metal oxide having electrical conductivity and are irradiated with light of <=254nm. As a result, the liquid crystal display device formed with the interlayer films having the antistatic function in order to remove the static electricity generated at the rubbing treatment of the oriented films is obtd. The problem that the oriented films are destroyed by the generation of the heat by the static electricity generated at the rubbing treatment is averted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、液晶表示装置に関
し、とくに、配向膜をラビング処理する際に発生する静
電気の除去と配向膜の帯電を防止した高性能な液晶表示
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device, and more particularly to a high-performance liquid crystal display device which removes static electricity generated when rubbing an alignment film and prevents the alignment film from being charged.

【0002】[0002]

【従来の技術】従来の液晶表示装置としては、透明電極
の上に配向膜を形成した基板を対向して配置し、その間
隙にスペーサを入れ基板の間隔を一定に保ち、このあい
だに液晶を封入したものが知られている。また、透明電
極と配向膜の間に絶縁性の無機膜を形成したものとして
は、特開平1−150116号及び特開平2−221923号が知られ
ている。
2. Description of the Related Art As a conventional liquid crystal display device, substrates having an alignment film formed on transparent electrodes are arranged to face each other, spacers are inserted in the gaps to keep the gaps between the substrates constant, and liquid crystal is sealed between them. What you have done is known. Further, JP-A-1-150116 and JP-A-2-221923 are known as those in which an insulating inorganic film is formed between the transparent electrode and the alignment film.

【0003】[0003]

【発明が解決しようとする課題】透明電極の上に配向膜
を形成した基板を使用して製造した液晶表示装置では、
液晶内に混入した異物やスペーサによって軟らかい有機
物である配向膜が損傷されることがあり、その際に上下
の電極間が導通して表示不良が生じる問題点があった。
また、配向膜をラビングする際に静電気が発生して発熱
が生じ、配向膜が破壊されるという問題点があった。ま
た、透明電極と配向膜の間に絶縁性の無機膜(層間絶縁
膜)を形成した構造の基板を使用して製造した液晶表示
装置では、配向膜のラビング時に帯電した静電気が除去
できず、配向膜が帯電したままの状態となる。この基板
を使用して液晶表示装置を製造すると、帯電した電荷が
液晶のネジレに悪影響をおよぼし、表示ムラが生じると
いう問題点があった。また、層間絶縁膜の形成に高温を
必要とするため、透明電極の抵抗率の上昇を招くという
問題点があった。
In a liquid crystal display device manufactured by using a substrate having an alignment film formed on a transparent electrode,
There is a problem that the alignment film, which is a soft organic material, may be damaged by foreign substances and spacers mixed in the liquid crystal, and at that time, the upper and lower electrodes are electrically connected to each other to cause a display defect.
In addition, when rubbing the alignment film, static electricity is generated and heat is generated, and the alignment film is destroyed. Further, in a liquid crystal display device manufactured using a substrate having a structure in which an insulating inorganic film (interlayer insulating film) is formed between a transparent electrode and an alignment film, static electricity charged during rubbing of the alignment film cannot be removed, The alignment film remains charged. When a liquid crystal display device is manufactured using this substrate, there is a problem in that the charged electric charge adversely affects the twist of the liquid crystal, resulting in display unevenness. In addition, since a high temperature is required to form the interlayer insulating film, there is a problem that the resistivity of the transparent electrode is increased.

【0004】[0004]

【課題を解決するための手段】本発明は、上記した従来
技術の問題点を解決するために、配向膜のラビング時に
発生する静電気を除去し、配向膜の帯電を防止して高性
能な液晶表示装置を提供するものである。このために、
基板上に透明電極,層間絶縁膜及び配向膜が順次形成さ
れている液晶表示装置において、層間絶縁膜の表面抵抗
が107−1010Ω/□であることを特徴とする液晶表示
装置としたものである。また、基板上に透明電極,層間
絶縁膜及び配向膜を順次形成する液晶表示装置の製造方
法において、層間絶縁膜は導電性を有する微粒子を含有
するゾル溶液を塗布,光照射して形成することを特徴と
する液晶表示装置の製造方法を提供したものである。こ
の光照射して膜を形成する際に光照射するとともに熱処
理して形成することを特徴とする液晶表示装置の製造方
法を提供したものである。層間絶縁膜の形成方法におい
て、光照射の照射波長は、254nm以下であることを
特徴とする方法を用いて膜を形成したものである。この
層間絶縁膜中の導電性を有する微粒子は、In23,S
nO2,ZnO,RuO2のどれか一種を含むことを特徴と
する膜を形成したものである。また、有機金属化合物あ
るいは無機塩を原料としたIn23,SnO2,Zn
O,RuO2のゾル溶液を塗布,光照射して膜を形成し
たものである。
In order to solve the above-mentioned problems of the prior art, the present invention eliminates static electricity generated during rubbing of the alignment film to prevent the alignment film from being charged, thereby providing a high-performance liquid crystal. A display device is provided. For this,
A liquid crystal display device in which a transparent electrode, an interlayer insulating film and an alignment film are sequentially formed on a substrate, wherein the surface resistance of the interlayer insulating film is 10 7 -10 10 Ω / □. It is a thing. In the method of manufacturing a liquid crystal display device in which a transparent electrode, an interlayer insulating film, and an alignment film are sequentially formed on a substrate, the interlayer insulating film is formed by applying a sol solution containing conductive fine particles and irradiating with light. And a method for manufacturing a liquid crystal display device. The present invention provides a method for manufacturing a liquid crystal display device, characterized in that when the film is formed by the light irradiation, the film is irradiated with the light and heat-treated. In the method for forming an interlayer insulating film, the film is formed by a method characterized in that the irradiation wavelength of light irradiation is 254 nm or less. The conductive fine particles in this interlayer insulating film are In 2 O 3 , S
A film is formed which contains any one of nO 2 , ZnO and RuO 2 . Further, an In 2 O 3 with an organometallic compound or an inorganic salt as a raw material, SnO 2, Zn
A sol solution of O and RuO 2 is applied and irradiated with light to form a film.

【0005】本発明による液晶表示装置では、透明電極
と配向膜との間に表面抵抗が107−1010Ω/□であ
る層間絶縁膜を形成している。これにより配向膜のラビ
ング時に生じる静電気を除去し、帯電を防止することが
できる。また、この層間絶縁膜は、In23,Sn
2,ZnO,RuO2などの無機物で形成されているた
め膜の強度も高い。このため、液晶内に混入した異物や
スペーサなどによる透明電極の破壊に対して保護膜の役
目も果たす。この層間絶縁膜の表面抵抗が1010Ω/□
以上だと表面に帯電した静電気の除去が充分でないた
め、液晶の分極への悪影響が生じ、表示画像のムラが発
生する。また、107Ω/□ 以下の抵抗だと膜の絶縁性
が不十分となり、隣接電極間が導通したり、配向膜が損
傷し上下電極間が導通したりして正常な表示ができなく
なるなどの問題が生じる。
In the liquid crystal display device according to the present invention, an interlayer insulating film having a surface resistance of 10 7 -10 10 Ω / □ is formed between the transparent electrode and the alignment film. This makes it possible to remove static electricity generated during rubbing of the alignment film and prevent charging. The interlayer insulating film is made of In 2 O 3 , Sn.
The strength of the film is high because it is formed of an inorganic material such as O 2 , ZnO, and RuO 2 . For this reason, it also serves as a protective film against the destruction of the transparent electrode due to foreign substances mixed into the liquid crystal, spacers, and the like. The surface resistance of this interlayer insulating film is 10 10 Ω / □
If the above is the case, the static electricity charged on the surface is not sufficiently removed, so that the polarization of the liquid crystal is adversely affected and unevenness of the displayed image occurs. Also, if the resistance is 10 7 Ω / □ or less, the insulating property of the film becomes insufficient and the adjacent electrodes are electrically connected, or the alignment film is damaged and the upper and lower electrodes are electrically connected, so that normal display cannot be performed. Problem arises.

【0006】この層間絶縁膜を形成する方法としては、
In23,SnO2,ZnO,RuO2などの導電性微粒子
を含有したゾル溶液、例えば、SiO2 ゾルを使用して
形成される。このゾル溶液をスピンコーティング法,ス
プレーコーティング法あるいはディッピング法で成膜
し、ついで光照射して膜を硬化する。光照射の光の波長
としては254nm以下であることが望ましい。これ
は、この波長の光がSiO2ゾルを含む各種ゾル溶液の原
料物質である金属アルコキシドの金属−アルコキシ基の
吸収波長の位置とほぼ一致しており、これにより膜の硬
化反応であるゾルゲル反応を促進させることができるた
めである。この時使用される導電性微粒子の粒径は、5
00Å以下であることが望ましい。同様な反応は、当然
のことながら導電性微粒子を含まないゾル溶液、すなわ
ちIn23,SnO2,ZnO,RuO2などの原料物質と
なる金属アルコキシドIn(OR)3,Sn(OR)4,Zn
(OR)2,Ru(OR)4(Rはアルキル基)を含むゾル溶
液を用いても生じるため、同様なプロセスにより導電性
の薄膜を形成することができる。また、出発原料として
各種金属無機塩を使用しても、ゾルゲル反応は各種アル
コール溶媒中で進行させるため、溶液中では溶媒置換反
応により金属アルコキシドが生成する。このため各種金
属無機塩を使用しても金属アルコキシドを使用した場合
と同様に膜形成が可能である。
As a method for forming this interlayer insulating film,
It is formed by using a sol solution containing conductive fine particles such as In 2 O 3 , SnO 2 , ZnO and RuO 2 , for example, a SiO 2 sol. This sol solution is formed into a film by a spin coating method, a spray coating method or a dipping method, and then is irradiated with light to cure the film. The wavelength of the light for light irradiation is preferably 254 nm or less. This is because the light of this wavelength almost coincides with the position of the absorption wavelength of the metal-alkoxy group of the metal alkoxide which is the raw material of various sol solutions containing SiO 2 sol. It is because it can promote. The particle size of the conductive fine particles used at this time is 5
It is desirable to be less than 00Å. As a matter of course, the same reaction is carried out in a sol solution containing no conductive fine particles, that is, metal alkoxides In (OR) 3 and Sn (OR) 4 which are raw materials such as In 2 O 3 , SnO 2 , ZnO and RuO 2. , Zn
Since it occurs even when using a sol solution containing (OR) 2 and Ru (OR) 4 (R is an alkyl group), a conductive thin film can be formed by the same process. Even when various metal inorganic salts are used as the starting material, the sol-gel reaction proceeds in various alcohol solvents, so that the metal alkoxide is produced in the solution by the solvent substitution reaction. Therefore, even when various metal inorganic salts are used, a film can be formed as in the case of using metal alkoxide.

【0007】この手法によれば、極めて低温での成膜が
可能となるため、層間絶縁膜形成時における透明電極と
層間絶縁膜との間の熱膨張係数の差による膜の剥がれな
どの膜破壊の問題も回避できる。これにより歩留まりも
向上する。また、低温成膜が可能なため、熱処理による
透明電極の抵抗率の変動も回避できる。従来のゾルゲル
法では、膜の硬化に数百度℃程度の熱処理が必要であ
る。
According to this method, since film formation can be performed at an extremely low temperature, film destruction such as film peeling due to a difference in thermal expansion coefficient between the transparent electrode and the interlayer insulating film during formation of the interlayer insulating film. The problem of can be avoided. This also improves the yield. In addition, since low-temperature film formation is possible, it is possible to avoid fluctuations in the resistivity of the transparent electrode due to heat treatment. The conventional sol-gel method requires heat treatment at about several hundreds of degrees Celsius to cure the film.

【0008】以上のような手法により、透明電極上に導
電性を有する薄膜を低温で成膜できるため配向膜のラビ
ング時に生じる静電気を除去した高性能な液晶表示装置
を作製することができる。
By the above-mentioned method, a thin film having conductivity can be formed on the transparent electrode at a low temperature, so that a high-performance liquid crystal display device in which static electricity generated when rubbing the alignment film is removed can be manufactured.

【0009】[0009]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施例1)ガラス基板上に透明電極であるITO(抵
抗が30−10Ω/□)がパターン形成された透明電極
付ガラス基板の上にSnを1wt%程度含んだITO微
粒子(粒径300Å)をSi(OC25)4を原料にアル
コール中で作製したSiO2ゾル溶液に分散した溶液(濃
度2wt%)をスピンコーティング(回転数150rpm)
して薄膜を形成した。この薄膜に254nm,184n
mの光を100℃で10分間照射した。この膜の表面抵
抗は、7×107Ω/□ であった。この膜の表面にポリ
イミド樹脂(PIQ)の配向膜(膜厚800Å)を形成
し、ついでラビング処理を行った。この膜のサイドは、
アース線と接続されているので、ラビング処理の際に発
生する静電気を速やかに除去することができる。このよ
うにしてガラス基板上に透明電極,層間絶縁膜及び配向
膜が順次形成されている透明電極付基板を作製した。
(Example 1) ITO fine particles (particle size 300 Å) containing about 1 wt% of Sn on a glass substrate with a transparent electrode on which a transparent electrode ITO (resistance of 30-10 Ω / □) was patterned on a glass substrate. Was spin-coated (rotation speed 150 rpm) with a solution (concentration 2 wt%) dispersed in a SiO 2 sol solution prepared in alcohol using Si (OC 2 H 5 ) 4 as a raw material.
To form a thin film. 254nm, 184n on this thin film
m light was irradiated at 100 ° C. for 10 minutes. The surface resistance of this film was 7 × 10 7 Ω / □. An alignment film of polyimide resin (PIQ) (film thickness 800Å) was formed on the surface of this film, and then rubbing treatment was performed. The sides of this membrane are
Since it is connected to the ground wire, it is possible to quickly remove the static electricity generated during the rubbing process. In this way, a substrate with a transparent electrode in which a transparent electrode, an interlayer insulating film and an alignment film were sequentially formed on the glass substrate was produced.

【0010】一方、対向する基板には、印刷法によりカ
ラーフィルタ(R,G,B)を形成し、この上に有機保
護膜を形成した。この膜の上層に透明電極であるITO
をパターン形成し、ついで先述した方法により層間絶縁
膜及び配向膜を形成した。
On the other hand, color filters (R, G, B) were formed on the opposing substrate by a printing method, and an organic protective film was formed thereon. ITO as a transparent electrode is formed on the upper layer of this film.
Then, an interlayer insulating film and an alignment film were formed by the method described above.

【0011】以上のようにして作製した基板をお互いに
スペーサを介して対向させ、その間隙にSTN液晶を封
入し、ついで周辺部をシーリング剤で封着,密閉して液
晶表示装置を作製した。図1は、このようにして作製し
た液晶表示装置の断面図である。
The substrates manufactured as described above were opposed to each other with a spacer interposed therebetween, STN liquid crystal was sealed in the gap, and then the peripheral portion was sealed and sealed with a sealing agent to manufacture a liquid crystal display device. FIG. 1 is a sectional view of the liquid crystal display device manufactured in this manner.

【0012】表面抵抗が107−1010Ω/□ である層
間絶縁膜を持つこの液晶表示装置は、配向膜のラビング
処理時に発生した静電気の除去が完全になされているた
め、帯電した電荷が液晶のネジレに悪影響をおよぼし、
表示ムラが生じるという問題を回避することができた。
また、配向膜をラビング処理する際に静電気が発生して
発熱が生じ、配向膜が破壊されるという問題も生じなか
った。層間絶縁膜形成時における熱処理温度も低いた
め、熱処理による透明電極の抵抗率の上昇の問題も生じ
なかった。一方、表面抵抗が8×106Ω/□ である層
間絶縁膜を有する液晶表示装置を作製したが、透明電極
間が導通して表示に不具合を生じた。また、2×1011
Ω/□以上の層間絶縁膜を形成した液晶表示装置を作製
したが、配向膜のラビング時に静電気による熱発生によ
り配向膜が破壊され、表示に不具合を生じた。
This liquid crystal display device having an interlayer insulating film having a surface resistance of 10 7 -10 10 Ω / □ completely removes the static electricity generated during the rubbing treatment of the alignment film, so that the charged electric charge is eliminated. It adversely affects the twist of the liquid crystal,
It was possible to avoid the problem of display unevenness.
In addition, there was no problem that the alignment film was destroyed by the generation of static electricity when the alignment film was rubbed and heat was generated. Since the heat treatment temperature at the time of forming the interlayer insulating film is low, the problem of the increase in the resistivity of the transparent electrode due to the heat treatment did not occur. On the other hand, a liquid crystal display device having an interlayer insulating film having a surface resistance of 8 × 10 6 Ω / □ was produced, but the transparent electrodes were electrically connected to each other, resulting in a display defect. Also, 2 × 10 11
A liquid crystal display device in which an interlayer insulating film of Ω / □ or more was formed was manufactured, but the alignment film was destroyed due to heat generation due to static electricity during rubbing of the alignment film, resulting in a display defect.

【0013】(実施例2)実施例1で作製した液晶表示
装置において、層間絶縁膜形成の際の材料を次の様に変
更することにより、同様な手法で静電気を除去する帯電
防止機能を有する膜を形成することができる。すなわ
ち、Sbを0.5wt% 程度含んだSnO2微粒子をS
i(OC25)4 を原料にアルコール中で作製したSiO
2 ゾル溶液に分散した溶液(濃度2wt%)をスピンコ
ーティング(回転数150rpm)して薄膜を形成した。こ
の薄膜に254nm,184nmの光を100℃で10
分間照射した。この膜の表面抵抗は、9×108Ω/□
であった。この膜を形成した層間絶縁膜を有する液晶表
示装置を実施例1と同様な手法により作製した。表面抵
抗が107−1010Ω/□ である層間絶縁膜を持つこの
液晶表示装置は、配向膜のラビング処理時に発生した静
電気の除去が完全になされているため、帯電した電荷が
液晶のネジレに悪影響をおよぼし、表示ムラが生じると
いう問題を回避することができた。また、配向膜をラビ
ング処理する際に静電気が発生して発熱が生じ、配向膜
が破壊されるという問題も生じなかった。層間絶縁膜形
成時における熱処理温度も低いため、熱処理による透明
電極の抵抗率の上昇の問題も生じなかった。
(Embodiment 2) The liquid crystal display device manufactured in Embodiment 1 has an antistatic function of removing static electricity by a similar method by changing the material for forming the interlayer insulating film as follows. A film can be formed. That is, SnO 2 fine particles containing about 0.5 wt% of Sb are added to S
SiO produced in alcohol from i (OC 2 H 5 ) 4 as a raw material
2 A solution (concentration: 2 wt%) dispersed in a sol solution was spin-coated (rotation speed: 150 rpm) to form a thin film. Light of 254 nm and 184 nm was applied to this thin film at 100 ° C for 10
Irradiated for minutes. The surface resistance of this film is 9 × 10 8 Ω / □
Met. A liquid crystal display device having an interlayer insulating film formed with this film was manufactured by the same method as in Example 1. In this liquid crystal display device having an interlayer insulating film having a surface resistance of 10 7 -10 10 Ω / □, static electricity generated during the rubbing treatment of the alignment film is completely removed, so that the charged charge is twisted by the liquid crystal. It was possible to avoid the problem that the display was unevenly affected. In addition, there was no problem that the alignment film was destroyed by the generation of static electricity when the alignment film was rubbed and heat was generated. Since the heat treatment temperature at the time of forming the interlayer insulating film is low, the problem of the increase in the resistivity of the transparent electrode due to the heat treatment did not occur.

【0014】(実施例3)実施例1で作製した液晶表示
装置において、層間絶縁膜形成の際の材料を次の様に変
更することにより、同様な手法で静電気を除去する帯電
防止機能を有する膜を形成することができる。すなわ
ち、Alを0.7wt% 程度含んだZnO微粒子をSi
(OC25)4 を原料にアルコール中で作製したSiO2
ゾル溶液に分散した溶液(濃度2wt%)をスピンコー
ティング(回転数150rpm)して薄膜を形成した。この
薄膜に254nm,184nmの光を100℃で10分
間照射した。この膜の表面抵抗は、1×108Ω/□ で
あった。この膜を形成した層間絶縁膜を有する液晶表示
装置を実施例1と同様な手法により作製した。表面抵抗
が107−1010Ω/□ である層間絶縁膜を持つこの液
晶表示装置は、配向膜のラビング処理時に発生した静電
気の除去が完全になされているため、帯電した電荷が液
晶のネジレに悪影響をおよぼし、表示ムラが生じるとい
う問題を回避することができた。また、配向膜をラビン
グ処理する際に静電気が発生して発熱が生じ、配向膜が
破壊されるという問題も生じなかった。層間絶縁膜形成
時における熱処理温度も低いため、熱処理による透明電
極の抵抗率の上昇の問題も生じなかった。
(Embodiment 3) The liquid crystal display device manufactured in Embodiment 1 has an antistatic function of removing static electricity by a similar method by changing the material for forming the interlayer insulating film as follows. A film can be formed. That is, ZnO fine particles containing about 0.7 wt% of Al are used as Si.
SiO 2 prepared in alcohol from (OC 2 H 5 ) 4 as a raw material
A solution (concentration 2 wt%) dispersed in a sol solution was spin-coated (rotation speed 150 rpm) to form a thin film. This thin film was irradiated with light of 254 nm and 184 nm at 100 ° C. for 10 minutes. The surface resistance of this film was 1 × 10 8 Ω / □. A liquid crystal display device having an interlayer insulating film formed with this film was manufactured by the same method as in Example 1. In this liquid crystal display device having an interlayer insulating film having a surface resistance of 10 7 -10 10 Ω / □, static electricity generated during the rubbing treatment of the alignment film is completely removed, so that the charged charge is twisted by the liquid crystal. It was possible to avoid the problem that the display was unevenly affected. In addition, there was no problem that the alignment film was destroyed by the generation of static electricity when the alignment film was rubbed and heat was generated. Since the heat treatment temperature at the time of forming the interlayer insulating film is also low, the problem of the increase in the resistivity of the transparent electrode due to the heat treatment did not occur.

【0015】(実施例4)実施例1で作製した液晶表示
装置において、層間絶縁膜形成の際の材料を次の様に変
更することにより、同様な手法で静電気を除去する帯電
防止機能を有する膜を形成することができる。すなわ
ち、RuO2 微粒子をSi(OC25)4 を原料にアルコ
ール中で作製したSiO2 ゾル溶液に分散した溶液(濃
度2wt%)をスピンコーティング(回転数150rpm)
して薄膜を形成した。この薄膜に254nm,184nm
の光を100℃で10分間照射した。この膜の表面抵抗
は、2×109Ω/□ であった。この膜を形成した層間
絶縁膜を有する液晶表示装置を実施例1と同様な手法に
より作製した。表面抵抗が107−1010Ω/□ である
層間絶縁膜を持つこの液晶表示装置は、配向膜のラビン
グ処理時に発生した静電気の除去が完全になされている
ため、帯電した電荷が液晶のネジレに悪影響をおよぼ
し、表示ムラが生じるという問題を回避することができ
た。また、配向膜をラビング処理する際に静電気が発生
して発熱が生じ、配向膜が破壊されるという問題も生じ
なかった。層間絶縁膜形成時における熱処理温度も低い
ため、熱処理による透明電極の抵抗率の上昇の問題も生
じなかった。
(Embodiment 4) The liquid crystal display device manufactured in Embodiment 1 has an antistatic function of removing static electricity by a similar method by changing the material for forming the interlayer insulating film as follows. A film can be formed. That is, a solution (concentration 2 wt%) in which RuO 2 fine particles are dispersed in a SiO 2 sol solution prepared by using Si (OC 2 H 5 ) 4 as a raw material is spin-coated (rotation speed 150 rpm).
To form a thin film. 254nm, 184nm on this thin film
Was irradiated at 100 ° C. for 10 minutes. The surface resistance of this film was 2 × 10 9 Ω / □. A liquid crystal display device having an interlayer insulating film formed with this film was manufactured by the same method as in Example 1. In this liquid crystal display device having an interlayer insulating film having a surface resistance of 10 7 -10 10 Ω / □, static electricity generated during the rubbing treatment of the alignment film is completely removed, so that the charged charge is twisted by the liquid crystal. It was possible to avoid the problem that the display was unevenly affected. In addition, there was no problem that the alignment film was destroyed by the generation of static electricity when the alignment film was rubbed and heat was generated. Since the heat treatment temperature at the time of forming the interlayer insulating film is low, the problem of the increase in the resistivity of the transparent electrode due to the heat treatment did not occur.

【0016】(実施例5)実施例1で作製した液晶表示
装置において、層間絶縁膜形成の際の材料を次の様に変
更することにより、同様な手法で静電気を除去する帯電
防止機能を有する膜を形成することができる。すなわ
ち、In(OC37)3(10g)のイソプロピルアルコー
ル溶液(100ml)にSn(OC49)4(0.5g)を
加え、ついでH2O(0.5g)とHCl(0.1g)の混
合溶液をゆっくり添加した。2時間撹拌した後、Si
(OC25)4(4g)を加え、さらに2時間撹拌した。こ
の混合溶液をスピンコーティング(回転数150rpm)し
て薄膜を形成した。ついで、この薄膜に254nm,1
84nmの光を100℃で10分間照射した。このよう
にして帯電防止機能を有する層間絶縁膜を形成した。こ
の膜の表面抵抗は、4×108Ω/□ であった。以下、
実施例1に示した手法により液晶表示装置を作製した。
表面抵抗が107−1010Ω/□ である層間絶縁膜を持
つこの液晶表示装置は、配向膜のラビング処理時に発生
した静電気の除去が完全になされているため、帯電した
電荷が液晶のネジレに悪影響をおよぼし、表示ムラが生
じるという問題を回避することができた。また、配向膜
をラビング処理する際に静電気が発生して発熱が生じ、
配向膜が破壊されるという問題も生じなかった。層間絶
縁膜形成時における熱処理温度も低いため、熱処理によ
る透明電極の抵抗率の上昇の問題も生じなかった。
(Embodiment 5) The liquid crystal display device manufactured in Embodiment 1 has an antistatic function of removing static electricity by a similar method by changing the material for forming the interlayer insulating film as follows. A film can be formed. That is, Sn (OC 4 H 9 ) 4 (0.5 g) was added to an isopropyl alcohol solution (100 ml) of In (OC 3 H 7 ) 3 (10 g), and then H 2 O (0.5 g) and HCl (0 0.1 g) of the mixed solution was slowly added. After stirring for 2 hours, Si
(OC 2 H 5 ) 4 (4 g) was added, and the mixture was further stirred for 2 hours. This mixed solution was spin-coated (rotation speed 150 rpm) to form a thin film. Then, this thin film is covered with 254 nm, 1
Irradiation with light of 84 nm was performed at 100 ° C. for 10 minutes. Thus, the interlayer insulating film having the antistatic function was formed. The surface resistance of this film was 4 × 10 8 Ω / □. Less than,
A liquid crystal display device was manufactured by the method shown in Example 1.
In this liquid crystal display device having an interlayer insulating film having a surface resistance of 10 7 -10 10 Ω / □, static electricity generated during the rubbing treatment of the alignment film is completely removed, so that the charged charge is twisted by the liquid crystal. It was possible to avoid the problem that the display was unevenly affected. Also, when rubbing the alignment film, static electricity is generated and heat is generated,
There was no problem that the alignment film was destroyed. Since the heat treatment temperature at the time of forming the interlayer insulating film is low, the problem of the increase in the resistivity of the transparent electrode due to the heat treatment did not occur.

【0017】(実施例6)実施例1で作製した液晶表示
装置において、層間絶縁膜形成の際の材料を次の様に変
更することにより、同様な手法で静電気を除去する帯電
防止機能を有する膜を形成することができる。すなわ
ち、Sn(OC49)4(10g)のイソプロピルアルコー
ル溶液(100ml)にSb(OC37)3(0.5g)を
加え、ついでH2O(0.5g)とHCl(0.1g)の混
合溶液をゆっくり添加した。2時間撹拌した後、Si
(OC25)4(4g)を加え、さらに2時間撹拌した。こ
の混合溶液をスピンコーティング(回転数150rpm)し
て薄膜を形成した。ついで、この薄膜に254nm,1
84nmの光を100℃で10分間照射した。このよう
にして帯電防止機能を有する層間絶縁膜を形成した。こ
の膜の表面抵抗は、1×109Ω/□ であった。以下、
実施例1に示した手法により液晶表示装置を作製した。
表面抵抗が107−1010Ω/□ である層間絶縁膜を持
つこの液晶表示装置は、配向膜のラビング処理時に発生
した静電気の除去が完全になされているため、帯電した
電荷が液晶のネジレに悪影響をおよぼし、表示ムラが生
じるという問題を回避することができた。また、配向膜
をラビング処理する際に静電気が発生して発熱が生じ、
配向膜が破壊されるという問題も生じなかった。層間絶
縁膜形成時における熱処理温度も低いため、熱処理によ
る透明電極の抵抗率の上昇の問題も生じなかった。
(Embodiment 6) The liquid crystal display device manufactured in Embodiment 1 has an antistatic function of removing static electricity by a similar method by changing the material for forming the interlayer insulating film as follows. A film can be formed. That is, Sb (OC 3 H 7 ) 3 (0.5 g) was added to an isopropyl alcohol solution (100 ml) of Sn (OC 4 H 9 ) 4 (10 g), and then H 2 O (0.5 g) and HCl (0 0.1 g) of the mixed solution was slowly added. After stirring for 2 hours, Si
(OC 2 H 5 ) 4 (4 g) was added, and the mixture was further stirred for 2 hours. This mixed solution was spin-coated (rotation speed 150 rpm) to form a thin film. Then, this thin film is covered with 254 nm, 1
Irradiation with light of 84 nm was performed at 100 ° C. for 10 minutes. Thus, the interlayer insulating film having the antistatic function was formed. The surface resistance of this film was 1 × 10 9 Ω / □. Less than,
A liquid crystal display device was manufactured by the method shown in Example 1.
In this liquid crystal display device having an interlayer insulating film having a surface resistance of 10 7 -10 10 Ω / □, static electricity generated during the rubbing treatment of the alignment film is completely removed, so that the charged charge is twisted in the liquid crystal. It was possible to avoid the problem that the display was unevenly affected. Also, when rubbing the alignment film, static electricity is generated and heat is generated,
There was no problem that the alignment film was destroyed. Since the heat treatment temperature at the time of forming the interlayer insulating film is low, the problem of the increase in the resistivity of the transparent electrode due to the heat treatment did not occur.

【0018】(実施例7)実施例1で作製した液晶表示
装置において、層間絶縁膜形成の際の材料を次の様に変
更することにより、同様な手法で静電気を除去する帯電
防止機能を有する膜を形成することができる。すなわ
ち、ZnCl2(5g)のイソプロピルアルコール溶液
(100ml)にAl(OC37)3(0.2g)を加え、
ついでH2O(0.5g)とHCl(0.1g)の混合溶液
をゆっくり添加した。2時間撹拌した後、Si(OC2
5)4(4g)を加え、さらに2時間撹拌した。この混合溶
液をスピンコーティング(回転数150rpm)して薄膜を
形成した。ついで、この薄膜に254nm,184nm
の光を100℃で10分間照射した。このようにして帯
電防止機能を有する層間絶縁膜を形成した。この膜の表
面抵抗は、6×109 Ω/□であった。以下、実施例1
に示した手法により液晶表示装置を作製した。表面抵抗
が107−1010Ω/□ である層間絶縁膜を持つこの液
晶表示装置は、配向膜のラビング処理時に発生した静電
気の除去が完全になされているため、帯電した電荷が液
晶のネジレに悪影響をおよぼし、表示ムラが生じるとい
う問題を回避することができた。また、配向膜をラビン
グ処理する際に静電気が発生して発熱が生じ、配向膜が
破壊されるという問題も生じなかった。層間絶縁膜形成
時における熱処理温度も低いため、熱処理による透明電
極の抵抗率の上昇の問題も生じなかった。
(Embodiment 7) The liquid crystal display device manufactured in Embodiment 1 has an antistatic function of removing static electricity by a similar method by changing the material for forming the interlayer insulating film as follows. A film can be formed. That is, Al (OC 3 H 7 ) 3 (0.2 g) was added to ZnCl 2 (5 g) in isopropyl alcohol solution (100 ml),
Then, a mixed solution of H 2 O (0.5 g) and HCl (0.1 g) was slowly added. After stirring for 2 hours, Si (OC 2 H
5 ) 4 (4 g) was added, and the mixture was further stirred for 2 hours. This mixed solution was spin-coated (rotation speed 150 rpm) to form a thin film. Then, this thin film has 254 nm and 184 nm
Was irradiated at 100 ° C. for 10 minutes. Thus, the interlayer insulating film having the antistatic function was formed. The surface resistance of this film was 6 × 10 9 Ω / □. Hereinafter, Example 1
A liquid crystal display device was manufactured by the method shown in. In this liquid crystal display device having an interlayer insulating film having a surface resistance of 10 7 -10 10 Ω / □, static electricity generated during the rubbing treatment of the alignment film is completely removed, so that the charged charge is twisted by the liquid crystal. It was possible to avoid the problem that the display was unevenly affected. In addition, there was no problem that the alignment film was destroyed by the generation of static electricity when the alignment film was rubbed and heat was generated. Since the heat treatment temperature at the time of forming the interlayer insulating film is low, the problem of the increase in the resistivity of the transparent electrode due to the heat treatment did not occur.

【0019】(実施例8)実施例1で作製した液晶表示
装置において、層間絶縁膜形成の際の材料を次の様に変
更することにより、同様な手法で静電気を除去する帯電
防止機能を有する膜を形成することができる。すなわ
ち、RuCl3(5g)のイソプロピルアルコールと水
(3:1)の混合溶液(100ml)にHCl(0.1
g)を加えた。この混合溶液を1時間還流した後、Si
(OC25)4(1g)を加え、さらに2時間撹拌した。こ
の混合溶液をスピンコーティング(回転数150rpm)し
て薄膜を形成した。ついで、この薄膜に254nm,1
84nmの光を100℃で10分間照射した。このよう
にして帯電防止機能を有する層間絶縁膜を形成した。こ
の膜の表面抵抗は、9×109Ω/□ であった。以下、
実施例1に示した手法により液晶表示装置を作製した。
表面抵抗が107−1010Ω/□ である層間絶縁膜を持
つこの液晶表示装置は、配向膜のラビング処理時に発生
した静電気の除去が完全になされているため、帯電した
電荷が液晶のネジレに悪影響をおよぼし、表示ムラが生
じるという問題を回避することができた。また、配向膜
をラビング処理する際に静電気が発生して発熱が生じ、
配向膜が破壊されるという問題も生じなかった。層間絶
縁膜形成時における熱処理温度も低いため、熱処理によ
る透明電極の抵抗率の上昇の問題も生じなかった。
(Embodiment 8) The liquid crystal display device manufactured in Embodiment 1 has an antistatic function of removing static electricity by a similar method by changing the material for forming the interlayer insulating film as follows. A film can be formed. That is, HCl (0.1 g) was added to a mixed solution (100 ml) of isopropyl alcohol and water (3: 1) of RuCl 3 (5 g).
g) was added. After refluxing this mixed solution for 1 hour, Si
(OC 2 H 5 ) 4 (1 g) was added, and the mixture was further stirred for 2 hours. This mixed solution was spin-coated (rotation speed 150 rpm) to form a thin film. Then, this thin film is covered with 254 nm, 1
Irradiation with light of 84 nm was performed at 100 ° C. for 10 minutes. Thus, the interlayer insulating film having the antistatic function was formed. The surface resistance of this film was 9 × 10 9 Ω / □. Less than,
A liquid crystal display device was manufactured by the method shown in Example 1.
In this liquid crystal display device having an interlayer insulating film having a surface resistance of 10 7 -10 10 Ω / □, static electricity generated during the rubbing treatment of the alignment film is completely removed, so that the charged charge is twisted by the liquid crystal. It was possible to avoid the problem that the display was unevenly affected. Also, when rubbing the alignment film, static electricity is generated and heat is generated,
There was no problem that the alignment film was destroyed. Since the heat treatment temperature at the time of forming the interlayer insulating film is also low, the problem of the increase in the resistivity of the transparent electrode due to the heat treatment did not occur.

【0020】[0020]

【発明の効果】本発明によれば、配向膜のラビング時に
静電気の帯電の無い層間絶縁膜を提供できる。また、こ
の層間絶縁膜の形成時に高温の熱処理の必要が無いた
め、透明電極に熱による悪影響、すなわち熱処理による
抵抗率の上昇を阻止できる。これにより高性能な液晶表
示装置を提供できる。
According to the present invention, it is possible to provide an interlayer insulating film which is free of static electricity when rubbing an alignment film. Further, since it is not necessary to perform high-temperature heat treatment when forming the interlayer insulating film, it is possible to prevent the transparent electrode from being adversely affected by heat, that is, the increase in resistivity due to heat treatment. Thereby, a high-performance liquid crystal display device can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例である液晶表示装置の断面
図。
FIG. 1 is a cross-sectional view of a liquid crystal display device that is an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…偏光膜、2…ガラス基板、3…カラーフィルタ
(R,G,B)、4…有機保護膜、5…透明電極、6…
層間絶縁膜、7…配向膜(PIQ)、8…液晶、9…ス
ペーサ。
1 ... Polarizing film, 2 ... Glass substrate, 3 ... Color filter (R, G, B), 4 ... Organic protective film, 5 ... Transparent electrode, 6 ...
Interlayer insulating film, 7 ... Alignment film (PIQ), 8 ... Liquid crystal, 9 ... Spacer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 研 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ken Takahashi 7-1-1, Omika-cho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi Research Laboratory

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】基板上に透明電極,層間絶縁膜及び配向膜
が順次形成されている液晶表示装置であって、該層間絶
縁膜の表面抵抗が107−1010Ω/□ であることを特
徴とする液晶表示装置。
1. A liquid crystal display device in which a transparent electrode, an interlayer insulating film and an alignment film are sequentially formed on a substrate, and the surface resistance of the interlayer insulating film is 10 7 -10 10 Ω / □. Characteristic liquid crystal display device.
【請求項2】基板上に透明電極,層間絶縁膜及び配向膜
を順次形成する液晶表示装置の製造方法であって、導電
性を有する微粒子を含有するゾル溶液を塗布した後、光
照射して前記層間絶縁膜を形成する工程を有することを
特徴とする液晶表示装置の製造方法。
2. A method for manufacturing a liquid crystal display device, in which a transparent electrode, an interlayer insulating film and an alignment film are sequentially formed on a substrate, which comprises applying a sol solution containing conductive fine particles and then irradiating with light. A method of manufacturing a liquid crystal display device, comprising the step of forming the interlayer insulating film.
【請求項3】請求項2に記載の前記微粒子は、粒径が5
00Å以下であることを特徴とする液晶表示装置の製造
方法。
3. The fine particles according to claim 2 have a particle size of 5
A method for manufacturing a liquid crystal display device, which is less than 00Å.
【請求項4】請求項2に記載の前記微粒子は、In
23,SnO2,ZnO,RuO2のどれか一種を含むこ
とを特徴とする液晶表示装置の製造方法。
4. The fine particles according to claim 2 are In
A method of manufacturing a liquid crystal display device, comprising any one of 2 O 3 , SnO 2 , ZnO and RuO 2 .
【請求項5】基板上に透明電極,層間絶縁膜及び配向膜
が順次形成されている液晶表示装置の製造方法であっ
て、有機金属化合物あるいは無機塩を原料としたIn2
3,SnO2,ZnO,RuO2のゾル溶液を塗布した
後、光照射して形成することを特徴とする液晶表示装置
の製造方法。
5. A method of manufacturing a liquid crystal display device in which a transparent electrode, an interlayer insulating film, and an alignment film are sequentially formed on a substrate, wherein In 2 made of an organic metal compound or an inorganic salt is used as a raw material.
A method for manufacturing a liquid crystal display device, which comprises applying a sol solution of O 3 , SnO 2 , ZnO, and RuO 2 and then irradiating it with light.
【請求項6】請求項2ないし5のいずれかに記載の前記
光照射の照射波長は、254nm以下であることを特徴
とする液晶表示装置の製造方法。
6. A method of manufacturing a liquid crystal display device, wherein the irradiation wavelength of the light irradiation according to claim 2 is 254 nm or less.
【請求項7】基板上に透明電極,層間絶縁膜及び配向膜
を順次形成する液晶表示装置の製造方法であって、層間
絶縁膜は導電性を有する微粒子を含有するゾル溶液を塗
布した後、光照射するとともに熱処理して形成すること
を特徴とする液晶表示装置の製造方法
7. A method of manufacturing a liquid crystal display device, in which a transparent electrode, an interlayer insulating film and an alignment film are sequentially formed on a substrate, wherein the interlayer insulating film is coated with a sol solution containing conductive fine particles, A method for manufacturing a liquid crystal display device, characterized in that it is formed by heat treatment and light irradiation.
JP26970195A 1995-10-18 1995-10-18 Liquid crystal display device and its production Pending JPH09113885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26970195A JPH09113885A (en) 1995-10-18 1995-10-18 Liquid crystal display device and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26970195A JPH09113885A (en) 1995-10-18 1995-10-18 Liquid crystal display device and its production

Publications (1)

Publication Number Publication Date
JPH09113885A true JPH09113885A (en) 1997-05-02

Family

ID=17475992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26970195A Pending JPH09113885A (en) 1995-10-18 1995-10-18 Liquid crystal display device and its production

Country Status (1)

Country Link
JP (1) JPH09113885A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001066622A (en) * 1999-08-27 2001-03-16 Seiko Epson Corp Liquid crystal device and electronic equipment
WO2001063640A1 (en) * 2000-02-22 2001-08-30 Matsushita Electric Industrial Co., Ltd. Method of producing plasma display panel and plasma display panel
JP2001255553A (en) * 2001-02-08 2001-09-21 Seiko Epson Corp Liquid crystal device and electronic equipment
JP2007148136A (en) * 2005-11-29 2007-06-14 Optrex Corp Liquid crystal display element
JP2008158267A (en) * 2006-12-25 2008-07-10 Ricoh Co Ltd Inorganic alignment layer, method of forming inorganic alignment layer, optical deflecting element, and liquid crystal device
JP2008180886A (en) * 2007-01-24 2008-08-07 Stanley Electric Co Ltd Liquid crystal display element

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001066622A (en) * 1999-08-27 2001-03-16 Seiko Epson Corp Liquid crystal device and electronic equipment
US6741315B1 (en) 1999-08-27 2004-05-25 Seiko Epson Corporation Liquid crystal device and electronic apparatus
WO2001063640A1 (en) * 2000-02-22 2001-08-30 Matsushita Electric Industrial Co., Ltd. Method of producing plasma display panel and plasma display panel
US6805601B2 (en) 2000-02-22 2004-10-19 Matsushita Electric Industrial Co., Ltd. Method for producing plasma display panel and the plasma display panel
JP2001255553A (en) * 2001-02-08 2001-09-21 Seiko Epson Corp Liquid crystal device and electronic equipment
JP2007148136A (en) * 2005-11-29 2007-06-14 Optrex Corp Liquid crystal display element
JP2008158267A (en) * 2006-12-25 2008-07-10 Ricoh Co Ltd Inorganic alignment layer, method of forming inorganic alignment layer, optical deflecting element, and liquid crystal device
JP2008180886A (en) * 2007-01-24 2008-08-07 Stanley Electric Co Ltd Liquid crystal display element

Similar Documents

Publication Publication Date Title
JPH09113885A (en) Liquid crystal display device and its production
US4420224A (en) Liquid crystal display cell, process for its production and cell plate
JP2003512647A (en) Liquid crystal alignment layer
JP4860263B2 (en) Coating liquid for forming transparent film, base material with film and liquid crystal display cell
JP3405607B2 (en) Coating liquid for forming alignment film and liquid crystal display cell
JPH05232459A (en) Liquid crystal display cell and its production
JP3913962B2 (en) Liquid crystal display cell and manufacturing method thereof
EP0578471B1 (en) Liquid crystal electro-optical device
JP4744657B2 (en) Transparent ion getter film forming coating solution, coated substrate and liquid crystal display cell
JP2003050385A (en) Liquid crystal display cell and coating liquid for liquid crystal display cell
JP3468576B2 (en) Liquid crystal display cell and method of manufacturing the same
JP2003149653A (en) Liquid crystal display cell and sealing agent
JPH09185998A (en) Liquid crystal display
JP2000147507A (en) Liquid crystal display device and its production
JP3131814B2 (en) LCD panel manufacturing method
JP4002385B2 (en) Coating liquid for forming transparent ion getter film, substrate with film and liquid crystal display cell
US5805254A (en) Liquid crystal device and process for production thereof having plural insulating layers
JPS6261126B2 (en)
JP2914889B2 (en) Liquid crystal display device and manufacturing method
JPS62156621A (en) Preparation of ferroelectric liquid crystal element
JPS63267915A (en) Production of liquid crystal element
JPH04267219A (en) Method of manufacturing liquid crystal display element
JP2853198B2 (en) Liquid crystal display device and manufacturing method thereof
JPH11183912A (en) Liquid crystal element
JP3222708B2 (en) Liquid crystal display device and manufacturing method thereof