JPH09113794A - Automatic focusing device - Google Patents

Automatic focusing device

Info

Publication number
JPH09113794A
JPH09113794A JP27580595A JP27580595A JPH09113794A JP H09113794 A JPH09113794 A JP H09113794A JP 27580595 A JP27580595 A JP 27580595A JP 27580595 A JP27580595 A JP 27580595A JP H09113794 A JPH09113794 A JP H09113794A
Authority
JP
Japan
Prior art keywords
light
signal
measured
reflected light
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27580595A
Other languages
Japanese (ja)
Inventor
Yasuhisa Nishiyama
泰央 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP27580595A priority Critical patent/JPH09113794A/en
Publication of JPH09113794A publication Critical patent/JPH09113794A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a device capable of efficiently making focusing operation without being affected by the surface condition of a part to be measured. SOLUTION: The reflected light from the surface 21 to be measured is condensed by an optical system 22 and the reflected light condensed in such a manner is split by a beam splitting means 23. First and second photodetecting means 33, 32 are respectively disposed on the front side and rear side with respect to the positions where the split reflected light rays are condensed. A third photodetecting means 31 is disposed in the position where the reflected light split by the beam splitting means 23 is condensed. A driver 39 of a pulse motor 40 is controlled by the speed patterns based on the results of the calculation of (A+B)/c when the output signal of the first photodetecting means 33 is defined as A, the output signal of the second photodetecting means 32 as B and the output signal of the third photodetecting means 31 as C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えばIC基板や
材料等の加工面に対し光学的な焦点を合わせを行う自動
焦点合わせ装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic focusing device for optically focusing on a processed surface such as an IC substrate or a material.

【0002】[0002]

【従来の技術】最近、IC基板などの製品検査には、顕
微鏡による観察像を画像処理した結果を用いるようにし
たものがあるが、このような検査に採用される顕微鏡に
は、被測定部に対し光学的な焦点を合わせを自動的に行
う自動焦点合わせ装置が設けられている。
2. Description of the Related Art Recently, there is a product inspection method for an IC substrate or the like, which uses a result of image processing of an observation image by a microscope. Is provided with an automatic focusing device for automatically performing optical focusing.

【0003】しかして、従来、この種の自動焦点合わせ
装置として、例えば、特開平5−346533号公報に
開示されたものが知られている。すなわち、かかる自動
焦点合わせ装置は、図4に示すように、受光素子Pa、
Pbの各出力の差分を検出する位置センサー1からのフ
ォーカスエラー信号を増幅器2で増幅し、A/D変換器
3でデジタル信号に変換し、このデジタル信号に変換さ
れたフォーカスエラー信号を、パラレルインターフェイ
ス回路4を介してコンピュータ5に取り込む。
However, conventionally, as this type of automatic focusing device, for example, one disclosed in Japanese Patent Laid-Open No. 5-346533 is known. That is, as shown in FIG. 4, such an automatic focusing device includes a light receiving element Pa,
The focus error signal from the position sensor 1 which detects the difference between the outputs of Pb is amplified by the amplifier 2, converted into a digital signal by the A / D converter 3, and the focus error signal converted into this digital signal is parallelized. It is taken into the computer 5 via the interface circuit 4.

【0004】すると、コンピュータ5は、合焦点より遠
い場合は顕微鏡の焦点合わせを高速で実行するための多
数のパルスを発生させる遠焦点制御信号を出力し、合焦
点近傍では顕微鏡の焦点合わせを低速で実行するための
少ないパルスを発生させる近焦点制御信号を出力する。
Then, the computer 5 outputs a far focus control signal for generating a large number of pulses for performing the focusing of the microscope at high speed when it is far from the focusing point, and slows down the focusing of the microscope near the focusing point. Outputs a near focus control signal that generates fewer pulses for execution at.

【0005】そして、コンピュータ5より遠焦点制御信
号が出力されると、この遠焦点制御信号値は、パラレル
インターフェイス回路6を介してD/A変換器7により
アナログ信号に変換され、さらに電圧を周波数に変換す
るV−F変換器8でパルスに置き換えられ、パルスモー
タを駆動する動力源としてのドライバ9に与えられパル
スモータ10を高速で回転させる。
When the far focus control signal is output from the computer 5, this far focus control signal value is converted into an analog signal by the D / A converter 7 via the parallel interface circuit 6, and the voltage is further converted into frequency. Is converted into pulses by the V-F converter 8 that converts the pulse motor into a pulse motor, and is given to a driver 9 as a power source for driving the pulse motor to rotate the pulse motor 10 at high speed.

【0006】一方、コンピュータ5より近焦点制御信号
が出力されると、この近焦点制御信号は、パラレルイン
ターフェイス回路11に与えられ、ここで、直接オン・
オフしてV−F変換器8からのパルスよりも少ないパル
スとして、ドライバ9に与えられ、パルスモータ10を
低速で回転させる。
On the other hand, when the near focus control signal is output from the computer 5, this near focus control signal is given to the parallel interface circuit 11, where it is directly turned on.
The pulse motor 10 is turned off and given to the driver 9 as pulses smaller than the pulses from the VF converter 8 to rotate the pulse motor 10 at a low speed.

【0007】なお、パラレルインターフェイス回路11
とV−F変換器8は、それぞれゲート12に接続されて
いて、コンピュータ5からの指令により一方からのパル
スを出力するようにしている。
The parallel interface circuit 11
And the VF converter 8 are connected to the gate 12, respectively, and output a pulse from one of them in response to a command from the computer 5.

【0008】ところで、位置センサー1からの出力電圧
特性は、図5に示すように、受光素子Pa、Pbの各出
力A、Bの差分をとった、いわゆるS字カーブとなって
おり、被写体に対し合焦点で出力電圧が零となり、遠く
離れるとプラス方向、近づくとマイナス方向に変化し、
さらに遠くまたは近くでは、再び零に近づくような特性
を呈する。従って、このような条件の下でオートフォー
カスするには、位置センサー1からの出力電圧が常に零
となるように顕微鏡の焦点を動かす必要があるが、この
時のフォーカシング速度の向上を図るためには、ある時
点でサーボ速度を切り替えることが有効である。
By the way, the output voltage characteristic from the position sensor 1 is, as shown in FIG. 5, a so-called S-shaped curve which is the difference between the outputs A and B of the light receiving elements Pa and Pb. The output voltage becomes zero at the in-focus point, changes to the plus direction when it is far away, and changes to the minus direction when it approaches.
At a further distance or a near distance, it exhibits a characteristic of approaching zero again. Therefore, in order to autofocus under such a condition, it is necessary to move the focus of the microscope so that the output voltage from the position sensor 1 is always zero. In order to improve the focusing speed at this time, It is effective to switch the servo speed at some point.

【0009】そこで、合焦点より遠い場合は、合焦点近
傍部までV−F変換器8より多数のパルスを発生しパル
スモータ10を高速回転させることにより、顕微鏡を合
焦点に向けて高速で送り、合焦点に近づいたら、サーボ
定数を変えることで直接パルスを発生しパルスモータ1
0を低速回転させることで、顕微鏡を合焦点に向けて低
速で送るようにしている。
Therefore, when it is far from the in-focus point, a large number of pulses are generated from the VF converter 8 to the vicinity of the in-focus point and the pulse motor 10 is rotated at a high speed to feed the microscope toward the in-focus point at a high speed. , When it approaches the in-focus point, the pulse is directly generated by changing the servo constant and the pulse motor 1
By rotating 0 at low speed, the microscope is directed toward the focal point at low speed.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の装置では、コンピュータ5からの指令によっ
て遠焦点制御信号と近焦点制御信号を切り替えるように
しているため、サーボ系の構成が複雑かつ高価なものに
なってしまい、また、受光素子Pa,Pbの各出力A,
Bの差分A−Bをとってフォーカスエラー信号のS字カ
ーブとしているが、このS字カーブは、被測定部の表面
状態(反射率や表面の形状)によって変化することがあ
るため、常に安定したフォーカシング速度を確保するの
が難しいという問題点があった。
However, in such a conventional apparatus, since the far focus control signal and the near focus control signal are switched by the instruction from the computer 5, the servo system has a complicated structure and is expensive. In addition, each output A of the light receiving elements Pa and Pb,
The difference A-B of B is taken as the S-shaped curve of the focus error signal, but this S-shaped curve may change depending on the surface condition (reflectance or surface shape) of the measured portion, so it is always stable. However, there was a problem that it was difficult to secure the focusing speed.

【0011】このような問題点を解決するものとして、
特開平4−25711号公報に開示されるように、2個
の受光素子32A、32Bのそれぞれの出力をA、Bと
すると、(A−B)/(A+B)なる演算を行うこと
で、被測定部の表面状態に影響されない図6(a)に示
すように正規化されたフォーカスエラー信号のS字カー
ブが得られるものが考えられている。
As a means for solving such a problem,
As disclosed in Japanese Patent Laid-Open No. 25711/1992, assuming that the outputs of the two light receiving elements 32A and 32B are A and B, the calculation of (A−B) / (A + B) is performed. It is considered that an S-shaped curve of a normalized focus error signal can be obtained as shown in FIG. 6A that is not affected by the surface condition of the measurement unit.

【0012】そして、このような(A−B)/(A+
B)のS字カーブに基づいてパルスモータへのパルス速
度を決定すると、被測定部の、例えば測定位置F1、F
2に対して、同一レベルの信号V1 が出力され、この結
果、同図(b)に示すような速度パターンとなる。とこ
ろが、この時の速度パターンによれば、合焦位置から離
れた被測定部の測定位置F2までは低速で、測定位置F
2からF1までの間は高速となって、さらに測定位置F
1で再び低速となるような動作となるため、効率よく顕
微鏡を焦点位置まで送るのが難しいという問題点があ
る。
Then, such (AB) / (A +
When the pulse speed to the pulse motor is determined based on the S-shaped curve of B), the measured position, for example, measurement positions F1 and F
2, the signal V1 of the same level is output, and as a result, the velocity pattern shown in FIG. However, according to the speed pattern at this time, the measurement position F2 is low until the measurement position F2 of the measured portion away from the in-focus position.
From 2 to F1, the speed becomes high, and the measurement position F
Since the operation becomes slow again at 1, there is a problem that it is difficult to efficiently move the microscope to the focal position.

【0013】本発明は、上記事情に鑑みてなされたもの
で、被測定部の表面状態に影響されることなく、効率よ
く合焦点動作を行うことができる自動焦点合わせ装置を
提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an automatic focusing device capable of efficiently performing a focusing operation without being affected by the surface condition of a measured portion. And

【0014】[0014]

【課題を解決するための手段】請求項1記載の発明は、
測定光を被測定面に照射させるとともに該被測定面から
の反射光を集光させる光学系と、この光学系により集光
される反射光を分割する光分割手段と、この光分割手段
で分割された反射光の集光位置に対し前側および後側に
それぞれ配置された第1および第2の光検出手段と、前
記光分割手段で分割された反射光の集光位置に配置され
た第3の光検出手段と、前記被測定面に対して合焦動作
を実行する焦点合わせ駆動源とを具備し、前記第1の光
検出手段の出力信号をA、前記第2の光検出手段の出力
信号をB、前記第3の光検出手段の出力信号をCとした
とき、(A+B)/Cの演算結果に基づいた制御パター
ンにより前記焦点合わせ駆動源を制御するようにしてい
る。
According to the first aspect of the present invention,
An optical system that irradiates the surface to be measured with the measurement light and collects the reflected light from the surface to be measured, a light splitting unit that splits the reflected light that is collected by the optical system, and a splitting unit that splits the light. First and second light detecting means respectively arranged on the front side and the rear side with respect to the collected light collecting position of the reflected light, and a third light collecting means arranged at the light collecting position of the reflected light divided by the light dividing means. And a focusing drive source for performing a focusing operation on the surface to be measured, the output signal of the first light detecting means is A, and the output signal of the second light detecting means is A. When the signal is B and the output signal of the third photodetector is C, the focusing drive source is controlled by a control pattern based on the calculation result of (A + B) / C.

【0015】請求項2記載の発明は、請求項1記載にお
いて、さらに前記出力信号AおよびBに基づく演算結果
により前記制御パターンの符号を判断するとともに、該
符号を付した前記制御パターンにより前記焦点合わせ駆
動源を制御するようにしている。
According to a second aspect of the present invention, in addition to the first aspect, the sign of the control pattern is determined based on the calculation result based on the output signals A and B, and the focus is determined based on the control pattern with the sign. The matching drive source is controlled.

【0016】この結果、請求項1記載の発明によれば、
(A+B)/Cの演算結果に基づいて被測定面の表面状
態に影響されることなく、焦点位置に対する被測定面位
置を一義的に決定することができ、焦点位置から離れた
位置では高速、焦点位置近傍では低速と行った制御パタ
ーンを得られる。
As a result, according to the first aspect of the present invention,
Based on the calculation result of (A + B) / C, the position of the surface to be measured with respect to the focus position can be uniquely determined without being affected by the surface state of the surface to be measured. In the vicinity of the focal point position, a control pattern with low speed can be obtained.

【0017】また、請求項2記載の発明によれば、さら
に出力信号AおよびBに基づく演算結果により符号を付
した制御パターンを得られ、効率のよい合焦動作を実現
することができる。
According to the second aspect of the present invention, a control pattern with a sign can be obtained according to the calculation result based on the output signals A and B, and an efficient focusing operation can be realized.

【0018】[0018]

【発明の実施の形態】以下、本発明の一実施の形態を図
面に従い説明する。図1は、本発明が適用される自動焦
点合わせ装置の概略構成を示している。この場合、被測
定部面21に対し測定光を照射させるとともに、被測定
部面21からの反射光を集光させる光学系22と、この
光学系22によって集光する反射光を3方向に分割する
光分割手段23を配置している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a schematic configuration of an automatic focusing device to which the present invention is applied. In this case, an optical system 22 that irradiates the measurement target surface 21 with measurement light and collects the reflected light from the measurement target surface 21, and the reflected light that is collected by the optical system 22 is divided into three directions. The light splitting means 23 is arranged.

【0019】光学系22では、半導体レーザ24から出
射された測定光としてのレーザービームを偏光ビーブス
プリッタ25で反射し、1/4波長板26、結像レンズ
27および対物レンズ28を介して被測定面21に集光
させ、また、被測定面21から反射した反射光を対物レ
ンズ28、結像レンズ27、1/4波長板26および偏
光ビームスプリッタ25を通して光分割手段23に与え
るようにしている。
In the optical system 22, the laser beam as the measurement light emitted from the semiconductor laser 24 is reflected by the polarization bevel splitter 25 and is measured via the quarter-wave plate 26, the imaging lens 27 and the objective lens 28. The light reflected by the surface 21 to be measured is reflected on the surface 21, and the reflected light is given to the light splitting means 23 through the objective lens 28, the imaging lens 27, the quarter wave plate 26 and the polarization beam splitter 25. .

【0020】また、光分割手段23では、第1のビーム
スプリッタ29と第2のビームスプリッタ30を有して
いて、光学系22の偏光ビームスプリッタ25を透過し
た被測定部面21からの反射光を第1のビームスプリッ
タ29によって2方向に分割し、この第1のビームスプ
リッタ29を透過した反射光を第2のビームスプリッタ
30によって2方向に分割するようにしている。つま
り、第1のビームスプリッタ29では、光学系22の偏
光ビームスプリッタ25を透過した反射光をさらに反射
して集光点Qに受光面が位置づけられた受光手段31に
照射するとともに、この第1のビームスプリッタ29を
透過した反射光を第2のビームスプリッタ30に与える
ようにし、また、第2のビームスプリッタ30では、第
1のビームスプリッタ29を透過した反射光をさらに反
射して集光点Qの後方に受光面が位置づけられた受光手
段32に照射するとともに、この第2のビームスプリッ
タ30を透過した反射光を集光点Qの前方に受光面が位
置づけられた受光手段33に照射するようにしている。
The light splitting means 23 has a first beam splitter 29 and a second beam splitter 30, and the reflected light from the surface 21 to be measured which has passed through the polarization beam splitter 25 of the optical system 22. Is split into two directions by the first beam splitter 29, and the reflected light transmitted through the first beam splitter 29 is split into two directions by the second beam splitter 30. That is, the first beam splitter 29 further reflects the reflected light that has passed through the polarization beam splitter 25 of the optical system 22 and irradiates the light receiving means 31 whose light receiving surface is located at the converging point Q, and at the same time, The reflected light transmitted through the beam splitter 29 is given to the second beam splitter 30, and in the second beam splitter 30, the reflected light transmitted through the first beam splitter 29 is further reflected to collect light. The light receiving means 32 whose light receiving surface is positioned behind Q is irradiated, and the reflected light transmitted through the second beam splitter 30 is irradiated to the light receiving means 33 whose light receiving surface is positioned in front of the converging point Q. I am trying.

【0021】ここで、受光手段31は、集光点Qに受光
面が位置づけられた受光素子311を有していて、第1
のビームスプリッタ29から反射した反射光が直接受光
素子311に照射されるようになっている。また、光検
出手段32は、絞り321と集光点Qの後方に受光面が
位置づけられた受光素子322を有していて、第2のビ
ームスプリッタ30から反射した反射光が集光点Qを通
って絞り321を介して受光素子322に照射されるよ
うになっている。さらに、光検出手段33は、絞り33
1と集光点Qの前方に受光面が位置づけられた受光素子
332を有していて、第2のビームスプリッタ30を透
過した光が絞り331を介して受光素子332に照射さ
れるようになっている。
Here, the light receiving means 31 has a light receiving element 311 whose light receiving surface is positioned at the light condensing point Q, and
The reflected light reflected from the beam splitter 29 is directly irradiated to the light receiving element 311. Further, the light detecting means 32 has a diaphragm 321 and a light receiving element 322 whose light receiving surface is positioned behind the converging point Q, and the reflected light reflected from the second beam splitter 30 is at the converging point Q. The light receiving element 322 is irradiated through the aperture 321. Further, the light detecting means 33 includes a diaphragm 33.
1 and a light receiving element 332 having a light receiving surface positioned in front of the condensing point Q, and light transmitted through the second beam splitter 30 is applied to the light receiving element 332 via the diaphragm 331. ing.

【0022】これら受光素子311、322、332
は、各々受光した光量に対応した電気信号を出力するも
ので、受光素子311からの電気信号Cを除算器37の
一方の入力端子に、受光素子322からの電気信号Bを
減算器34および加算器35の一方の入力端子に、受光
素子332からの電気信号Aを減算器34および加算器
35の他方の入力端子にそれぞれ入力するようにしてい
る。
These light receiving elements 311, 322, 332
Outputs an electric signal corresponding to the amount of received light. The electric signal C from the light receiving element 311 is input to one input terminal of the divider 37, and the electric signal B from the light receiving element 322 is added to the subtractor 34 and the addition. The electric signal A from the light receiving element 332 is input to one input terminal of the device 35 and the other input terminal of the subtractor 34 and the adder 35, respectively.

【0023】また、減算器34の減算出力を除算器36
の一方の入力端子に、加算器35の加算出力を除算器3
6の他方の入力端子および除算器37の他方の入力端子
にそれぞれ入力するようにしている。
Further, the subtraction output of the subtractor 34 is divided by the divider 36
The addition output of the adder 35 is connected to one of the input terminals of the divider 3
6 and the other input terminal of the divider 37, respectively.

【0024】ここで、減算器34は、受光素子332か
らの電気信号Aと受光素子322の電気信号Bにより
(A−B)の減算信号を出力し、加算器35は、受光素
子332からの電気信号Aと受光素子322の電気信号
Bにより(A+B)の加算信号を出力し、除算器36
は、減算器34からの減算信号(A−B)と加算器35
からの加算信号(A+B)により(A−B)/(A+
B)の除算信号を発生し、除算器37は、加算器35か
らの加算信号(A+B)と受光素子311からの電気信
号Cにより(A+B)/Cの除算信号を出力するように
なっている。
Here, the subtractor 34 outputs a subtraction signal of (AB) by the electric signal A from the light receiving element 332 and the electric signal B of the light receiving element 322, and the adder 35 outputs from the light receiving element 332. The addition signal of (A + B) is output by the electric signal A and the electric signal B of the light receiving element 322, and the divider 36
Is a subtraction signal (AB) from the subtractor 34 and an adder 35.
Addition signal (A + B) from (A−B) / (A +
The division signal of (B) is generated, and the divider 37 outputs the division signal of (A + B) / C by the addition signal (A + B) from the adder 35 and the electric signal C from the light receiving element 311. .

【0025】そして、これら除算器36、37の除算信
号をパルス制御部38に与える。このパルス制御部38
は、除算器36および除算器37の出力より速度パター
ンを生成するとともに、パルス速度信号を出力するもの
である。そして、このパルス速度信号をモータドライバ
39へ出力し、パルスモータ40を回転させることで、
顕微鏡を合焦点に向けて送るようにしている。
Then, the division signals of the dividers 36 and 37 are given to the pulse controller 38. This pulse control unit 38
Generates a speed pattern from the outputs of the divider 36 and the divider 37 and outputs a pulse velocity signal. Then, by outputting this pulse speed signal to the motor driver 39 and rotating the pulse motor 40,
I try to send the microscope to the focal point.

【0026】次に、このように構成した実施の形態の動
作を説明する。いま、光学系22の半導体レーザ24よ
り測定光としてレーザービームが出射されると、このレ
ーザービームは、偏光ビーブスプリッタ25で反射さ
れ、1/4波長板26、結像レンズ27および対物レン
ズ28を介して被測定面21に集光され、また、この被
測定面21からの反射光が対物レンズ28、結像レンズ
27、1/4波長板26および偏光ビームスプリッタ2
5を透過して光分割手段23に与えられる。
Next, the operation of the embodiment thus configured will be described. Now, when a laser beam is emitted as the measurement light from the semiconductor laser 24 of the optical system 22, this laser beam is reflected by the polarization bevel splitter 25, and the quarter wave plate 26, the imaging lens 27 and the objective lens 28 are reflected. The light is condensed on the surface to be measured 21 via the measuring surface 21, and the reflected light from the surface to be measured 21 is an objective lens 28, an imaging lens 27, a quarter-wave plate 26, and a polarization beam splitter 2.
After passing through 5, the light is given to the light splitting means 23.

【0027】すると、光分割手段23では、光学系22
の偏光ビームスプリッタ25を透過した被測定部面21
からの反射光が第1のビームスプリッタ29で反射され
集光点Qに受光面が位置づけられた受光手段31に照射
され、また、この第1のビームスプリッタ29を透過し
た反射光が第2のビームスプリッタ30で反射され、集
光点Qの後方に受光面が位置づけられた受光手段32に
照射され、さらに第2のビームスプリッタ30を透過し
た反射光が集光点Qの前方に受光面が位置づけられた受
光手段33に照射される。
Then, in the light splitting means 23, the optical system 22
Of the surface to be measured 21 transmitted through the polarization beam splitter 25 of
The reflected light from the first beam splitter 29 is reflected by the first beam splitter 29, is irradiated to the light receiving means 31 whose light receiving surface is located at the condensing point Q, and the reflected light transmitted through the first beam splitter 29 is second light. The reflected light reflected by the beam splitter 30, irradiated onto the light receiving means 32 whose light receiving surface is positioned behind the converging point Q, and further transmitted through the second beam splitter 30 has a light receiving surface in front of the converging point Q. The positioned light receiving means 33 is irradiated.

【0028】これにより、減算器34より受光素子33
2からの電気信号Aと受光素子322の電気信号Bによ
り(A−B)の減算信号が、加算器35より受光素子3
32からの電気信号Aと受光素子322の電気信号Bに
より(A+B)の加算信号が、除算器36より減算器3
4からの減算信号(A−B)と加算器35からの加算信
号(A+B)より(A−B)/(A+B)の除算信号
が、除算器37より加算器35からの加算信号(A+
B)と受光素子311からの電気信号Cにより(A+
B)/Cの除算信号がそれぞれ出力され、このうち除算
器36の除算信号(A−B)/(A+B)と除算器37
の除算信号(A+B)/Cがパルス制御部38に与えら
れる。
As a result, the light receiving element 33 from the subtractor 34 is received.
The subtraction signal of (A−B) from the electric signal A from 2 and the electric signal B from the light receiving element 322 is output from the adder 35 to the light receiving element 3
An addition signal of (A + B) is obtained by the electric signal A from 32 and the electric signal B from the light receiving element 322, and the addition signal from the divider 36 to the subtractor 3
The subtraction signal (A−B) from the adder 4 and the addition signal (A + B) from the adder 35 give a division signal of (A−B) / (A + B), and the addition signal (A +) from the adder 35 from the divider 37.
B) and the electric signal C from the light receiving element 311 (A +
B) / C division signals are respectively output, and among them, the division signal (AB) / (A + B) of the divider 36 and the divider 37 are output.
The division signal (A + B) / C is given to the pulse controller 38.

【0029】ここで、仮に、被測定面21の表面状態が
荒れているような場合、被測定面21の変位に対応して
加算器35より図2(a)に示す加算信号(A+B)が
出力され、同時に、受光素子311より同図(b)に示
すような電気信号Cが出力されたとすると、この場合、
加算出力(A+B)は合焦位置近傍で信号レベルが低下
するが、同様に電気信号Cの信号レベルも低下するの
で、この結果、除算器37の除算信号(A+B)/C
は、合焦位置近傍での信号レベルの変動が補正されるこ
とになって、同図(c)に示すように合焦位置近傍で
は、信号レベルの変動がなく、合焦位置から離れるにし
たがって、信号レベルが単調に減衰するようになる。こ
のような特性は、被測定面21の反射率が低い場合にお
いても同様となる。
Here, if the surface state of the surface to be measured 21 is rough, the adder 35 outputs the addition signal (A + B) shown in FIG. 2A corresponding to the displacement of the surface to be measured 21. If the light receiving element 311 outputs the electric signal C as shown in FIG.
Although the signal level of the addition output (A + B) decreases near the in-focus position, the signal level of the electric signal C also decreases, and as a result, the division signal (A + B) / C of the divider 37 results.
Indicates that the fluctuation of the signal level in the vicinity of the in-focus position is corrected, and there is no fluctuation in the signal level in the vicinity of the in-focus position as shown in FIG. , The signal level will be monotonically attenuated. Such characteristics are the same even when the reflectance of the surface to be measured 21 is low.

【0030】これにより、パルス制御部38では、除算
器37の除算信号(A+B)/Cにより同図(d)に示
すようなパルス速度パターンを生成する。ここで、この
ようなパルス速度パターンは、図2(c)に示す特性の
信号レベルの最大値よりわずかに大きな信号レベルより
同図(c)の特性の各信号レベルの差分を求めることで
簡単に得られる。
As a result, the pulse control section 38 generates a pulse speed pattern as shown in FIG. 7D by the division signal (A + B) / C of the divider 37. Here, such a pulse velocity pattern is simple by obtaining the difference between the signal levels of the characteristic shown in FIG. 2C from the signal level slightly larger than the maximum value of the signal level of the characteristic shown in FIG. Can be obtained.

【0031】また、パルス制御部38では、除算器36
からの図3(a)に示す除算信号(A−B)/(A+
B)より被測定面21の変位が合焦位置を挟んで符号
(+)(−)が反転することを判断し、この符号を考慮
して図2(d)に示すパルス速度パターンに基づいて図
3(b)に示すような符号付きパルス速度パターンを生
成し、この速度パターンをパルス信号に変換してドライ
バ39へ出力することによってパルスモータ40を回転
させるようになる。
Further, in the pulse control unit 38, the divider 36
Division signal (A−B) / (A +) shown in FIG.
From (B), it is determined that the displacement of the surface to be measured 21 inverts the signs (+) and (-) across the in-focus position, and in consideration of this sign, based on the pulse velocity pattern shown in FIG. The pulse motor 40 is rotated by generating a pulse speed pattern with a sign as shown in FIG. 3B, converting this speed pattern into a pulse signal and outputting it to the driver 39.

【0032】ところで、除算信号(A−B)/(A+
B)は、前述の通りフォーカスエラー信号を得るための
式であるが、ここでは、合焦位置を挟んで減算信号(A
−B)の符号が(+)、(−)の間で反転することが判
別できればよい。すなわち、符号の反転を判別するだけ
であれば、除算信号(A−B)/(A+B)を減算信号
(A−B)と置き換えて計算しても十分である。
By the way, the division signal (A−B) / (A +
B) is an equation for obtaining the focus error signal as described above, but here, the subtraction signal (A
It is only necessary to be able to determine that the sign of −B) is inverted between (+) and (−). That is, if it is only necessary to determine the inversion of the sign, it is sufficient to perform the calculation by replacing the division signal (AB) / (A + B) with the subtraction signal (AB).

【0033】従って、このような実施の形態によれば、
除算器37の除算信号(A+B)/Cにより、被測定面
21に対する信号レベルが一義的に決定され、さらに、
焦点位置と被測定面21との間の距離も一義的に得られ
るようになるので、被測定面21の表面状態に影響され
ることなく、焦点位置から離れた位置では高速、焦点位
置近傍では低速となるような速度パターンを生成するこ
とができ、さらに除算器36からの除算信号(A−B)
/(A+B)もしくは減算信号(A−B)より得られる
符号を付加することにより、自動焦点合わせのための符
号付きパルス速度パターンが得られ、これに基づいてパ
ルスモータ40を回転させることにより、効率のよい合
焦動作を実現することができる。
Therefore, according to such an embodiment,
The signal level for the measured surface 21 is uniquely determined by the division signal (A + B) / C of the divider 37.
Since the distance between the focal position and the surface to be measured 21 can also be uniquely obtained, the surface state of the surface to be measured 21 is unaffected, and the distance is high at a position distant from the focal position and close to the focal position. It is possible to generate a speed pattern that makes the speed low, and further, a division signal (AB) from the divider 36.
/ (A + B) or a sign obtained from the subtraction signal (A-B) is added to obtain a signed pulse velocity pattern for automatic focusing, and the pulse motor 40 is rotated based on this to obtain a signed pulse velocity pattern. An efficient focusing operation can be realized.

【0034】[0034]

【発明の効果】以上述べたように本発明によれば、(A
+B)/Cの演算結果に基づいて被測定面の表面状態に
影響されることなく、焦点位置に対する被測定面位置を
一義的に決定することができ、焦点位置から離れた位置
では高速、焦点位置近傍では低速と行った制御パターン
を得られ、さらに出力信号AおよびBに基づく演算結果
により符号を付した制御パターンを得られることで、効
率のよい合焦動作を実現することができる。
As described above, according to the present invention, (A
The position of the measured surface relative to the focal position can be uniquely determined based on the calculation result of + B) / C without being affected by the surface state of the measured surface. In the vicinity of the position, it is possible to obtain a control pattern that is performed at low speed, and further to obtain a control pattern with a sign according to the calculation result based on the output signals A and B, so that an efficient focusing operation can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態の概略構成を示す図。FIG. 1 is a diagram showing a schematic configuration of an embodiment of the present invention.

【図2】一実施の形態の動作を説明するもので、(a)
は、加算器35の出力信号特性を示す図、(b)は、受
光素子311から出力された電気信号特性を示す図、
(c)は、除算器37から出力される除算信号特性を示
す図、(d)は、(c)の除算信号特性をもとに作り出
す速度パターンを示す図。
FIG. 2 is a diagram for explaining the operation of one embodiment.
Is a diagram showing output signal characteristics of the adder 35, (b) is a diagram showing electric signal characteristics output from the light receiving element 311,
(C) is a figure which shows the division signal characteristic output from the divider 37, (d) is a figure which shows the speed pattern produced based on the division signal characteristic of (c).

【図3】一実施の形態の動作を説明するもので、(a)
は、除算器36から出力される除算信号特性を示す図、
(b)は、図2(d)のパルス速度パターンと、(b)
の除算信号特性の符号から作り出す符号付き速度パター
ンを示す図。
FIG. 3 is a view for explaining the operation of one embodiment, and (a)
Is a diagram showing characteristics of a division signal output from the divider 36,
2B is a pulse velocity pattern of FIG. 2D and FIG.
The figure which shows the signed velocity pattern produced from the sign of the division signal characteristic of.

【図4】従来の自動焦点合わせ装置の一例の概略構成を
示す図。
FIG. 4 is a diagram showing a schematic configuration of an example of a conventional automatic focusing device.

【図5】従来の自動焦点合わせ装置の動作を説明するた
めの図。
FIG. 5 is a diagram for explaining the operation of a conventional automatic focusing device.

【図6】従来の自動焦点合わせ装置の動作を説明するた
めの図。
FIG. 6 is a view for explaining the operation of a conventional automatic focusing device.

【符号の説明】[Explanation of symbols]

21…被測定面、 22…光学系、 23…光分割手段、 24…半導体レーザ、 25…偏光ビーブスプリッタ、 26…1/4波長板、 27…結像レンズ、 28…対物レンズ、 29…第1のビームスプリッタ、 30…第2のビームスプリッタ、 31…受光手段、 311…受光素子、 32…光検出手段、 321…絞り、 322…受光素子、 33…光検出手段、 331…絞り、 332…受光素子、 34…減算器、 35…加算器、 36、37…除算器、 38…パルス制御部、 39…ドライバ、 40…パルスモータ。 Reference numeral 21 ... Surface to be measured, 22 ... Optical system, 23 ... Light splitting means, 24 ... Semiconductor laser, 25 ... Polarization bevel splitter, 26 ... Quarter wave plate, 27 ... Imaging lens, 28 ... Objective lens, 29 ... 1 beam splitter, 30 ... Second beam splitter, 31 ... Light receiving means, 311 ... Light receiving element, 32 ... Photo detecting means, 321 ... Aperture, 322 ... Photo receiving element, 33 ... Photo detecting means, 331 ... Aperture, 332 ... Light receiving element, 34 ... Subtractor, 35 ... Adder, 36, 37 ... Divider, 38 ... Pulse control unit, 39 ... Driver, 40 ... Pulse motor.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 測定光を被測定面に照射させるとともに
該被測定面からの反射光を集光させる光学系と、 この光学系により集光される反射光を分割する光分割手
段と、 この光分割手段で分割された反射光の集光位置に対し前
側および後側にそれぞれ配置された第1および第2の光
検出手段と、 前記光分割手段で分割された反射光の集光位置に配置さ
れた第3の光検出手段と、 前記被測定面に対して合焦動作を実行する焦点合わせ駆
動源とを具備し、 前記第1の光検出手段の出力信号をA、前記第2の光検
出手段の出力信号をB、前記第3の光検出手段の出力信
号をCとしたとき、(A+B)/Cの演算結果に基づい
た制御パターンにより前記焦点合わせ駆動源を制御する
ことを特徴とする自動焦点合わせ装置。
1. An optical system for irradiating the surface to be measured with the measurement light and condensing the reflected light from the surface to be measured, and a light splitting means for splitting the reflected light condensed by the optical system. The first and second light detection means are respectively arranged on the front side and the rear side with respect to the converging position of the reflected light divided by the light dividing means, and the converging position of the reflected light divided by the light dividing means. It is provided with the 3rd photon detection means arrange | positioned, and the focusing drive source which performs a focusing operation with respect to the said to-be-measured surface, The output signal of the said 1st photon detection means is A, and the said 2nd. When the output signal of the light detecting means is B and the output signal of the third light detecting means is C, the focusing drive source is controlled by a control pattern based on the calculation result of (A + B) / C. And an automatic focusing device.
【請求項2】 さらに前記出力信号AおよびBに基づく
演算結果により前記制御パターンの符号を判断するとと
もに、該符号を付した前記制御パターンにより前記焦点
合わせ駆動源を制御することを特徴とする請求項1記載
の自動焦点合わせ装置。
2. The code of the control pattern is determined based on a calculation result based on the output signals A and B, and the focusing drive source is controlled by the control pattern with the code. Item 1. The automatic focusing device according to item 1.
JP27580595A 1995-10-24 1995-10-24 Automatic focusing device Pending JPH09113794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27580595A JPH09113794A (en) 1995-10-24 1995-10-24 Automatic focusing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27580595A JPH09113794A (en) 1995-10-24 1995-10-24 Automatic focusing device

Publications (1)

Publication Number Publication Date
JPH09113794A true JPH09113794A (en) 1997-05-02

Family

ID=17560665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27580595A Pending JPH09113794A (en) 1995-10-24 1995-10-24 Automatic focusing device

Country Status (1)

Country Link
JP (1) JPH09113794A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6486964B2 (en) 1998-11-30 2002-11-26 Olympus Optical Co., Ltd. Measuring apparatus
JP2005338255A (en) * 2004-05-25 2005-12-08 Olympus Corp Autofocusing device and microscope using the same
US7576796B2 (en) 2002-08-23 2009-08-18 Fujinon Corporation Auto focus system
US9625674B2 (en) 2014-08-05 2017-04-18 Olympus Corporation Autofocus device and sample observation device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6486964B2 (en) 1998-11-30 2002-11-26 Olympus Optical Co., Ltd. Measuring apparatus
US7576796B2 (en) 2002-08-23 2009-08-18 Fujinon Corporation Auto focus system
JP2005338255A (en) * 2004-05-25 2005-12-08 Olympus Corp Autofocusing device and microscope using the same
US9625674B2 (en) 2014-08-05 2017-04-18 Olympus Corporation Autofocus device and sample observation device

Similar Documents

Publication Publication Date Title
US20020040971A1 (en) Distance information obtaining apparatus and distance information obtaining method
JPH09113794A (en) Automatic focusing device
US6020965A (en) Phase interference microscope
JP3510359B2 (en) Optical measuring device
JPS6169011A (en) Automatic focusing device
JPH11337812A (en) Autofocus device
JPH08334317A (en) Measuring microscope
JPH1089953A (en) Focus detecting apparatus
JPH1026515A (en) Step-measuring apparatus
JPH09201689A (en) Focal position detector and laser beam machine using such a device
JPH11264928A (en) Focusing device
JPH10133117A (en) Microscope equipped with focus detecting device
JPS62909A (en) Automatic focus control device
JPH01263610A (en) Focusing device
JP3704373B2 (en) Focus detection device
JPH08304694A (en) Focus detector
JPH0727654B2 (en) Focus adjustment device
JPH102721A (en) Step-difference measuring device
JPH01202708A (en) Auto focus device
JPH0843717A (en) Focus detector
JP3259195B2 (en) Surface position detector
JP2001074446A (en) Focus detecting apparatus
JP2001280910A (en) Method and instrument for detecting focal point, and instrument for inspecting pattern
JPH10293010A (en) Dimension measurement method and device using 2-beam optical scanning
JP3204726B2 (en) Edge sensor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060307