JPH09113545A - Electric current measuring device - Google Patents

Electric current measuring device

Info

Publication number
JPH09113545A
JPH09113545A JP29344295A JP29344295A JPH09113545A JP H09113545 A JPH09113545 A JP H09113545A JP 29344295 A JP29344295 A JP 29344295A JP 29344295 A JP29344295 A JP 29344295A JP H09113545 A JPH09113545 A JP H09113545A
Authority
JP
Japan
Prior art keywords
amplifier
measuring
current
capacitor
electric current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29344295A
Other languages
Japanese (ja)
Inventor
Yoshinao Nishioka
良直 西岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP29344295A priority Critical patent/JPH09113545A/en
Publication of JPH09113545A publication Critical patent/JPH09113545A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an electric current measuring device which can measure a dynamic electric current of a wide range at high speed without switching over it by a switch. SOLUTION: This device detects an electric current flowing to a capacitor 12 by impressing DC voltage on the capacitor 12. A resistance 13 for measuring is connected in series to the capacitor 12, and a amplifier 15 for measuring detects an electric current flowing in the measuring resistance by an electric potential difference on both ends of the measuring resistance. A logarithmic amplifier 14 is connected in series to the resistance for measuring. Outputs of the amplifier for measuring and the logarithmic amplifier are inputted to an operation processing circuit 17 through A/D converter 16 and 18. The operation processing circuit 17 finds an electric current value flowing to the capacitor 12 by selecting either of outputs of the amplifier for measuring and the logarithmic amplifier 14 with a prescribed threshold as a boundary.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は電流測定装置、特に
コンデンサを流れる漏れ電流の測定に適した電流測定装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a current measuring device, and more particularly to a current measuring device suitable for measuring a leak current flowing through a capacitor.

【0002】[0002]

【従来の技術】一般に、コンデンサの良否を判定するた
め、測定用の直流電圧をコンデンサに印加し、十分充電
された後のコンデンサの漏れ電流を測定している。当然
ながら、良品は漏れ電流が少ない。
2. Description of the Related Art Generally, in order to judge the quality of a capacitor, a DC voltage for measurement is applied to the capacitor, and the leakage current of the capacitor after being sufficiently charged is measured. Naturally, good products have low leakage current.

【0003】図1は従来のコンデンサの漏れ電流測定装
置の一例を示す。この測定装置は、コンデンサ1に一定
の直流電圧を印加する定電圧電源2と、コンデンサ1と
直列接続された測定用抵抗3と、抵抗3に負入力端が接
続されたOPアンプ4と、OPアンプ4の負入力端と出
力端との間に接続された帰還抵抗5と、OPアンプの出
力をA/D変換するA/D変換器6と、A/D変換器6
の出力により漏れ電流を演算するCPU7とを備えてい
る。コンデンサ1の漏れ電流は種々異なるので、帰還抵
抗5を複数個並列接続し、これら抵抗5をスイッチ8で
切り換えることにより、ゲインを切り換え、測定電流帯
を選択していた。
FIG. 1 shows an example of a conventional leakage current measuring device for a capacitor. This measuring apparatus comprises a constant voltage power supply 2 for applying a constant DC voltage to a capacitor 1, a measuring resistor 3 connected in series with the capacitor 1, an OP amplifier 4 having a negative input terminal connected to the resistor 3, and an OP amplifier. A feedback resistor 5 connected between the negative input terminal and the output terminal of the amplifier 4, an A / D converter 6 for A / D converting the output of the OP amplifier, and an A / D converter 6
And a CPU 7 that calculates a leakage current based on the output of. Since the leakage current of the capacitor 1 is variously different, a plurality of feedback resistors 5 are connected in parallel and the gains are switched by switching these resistors 5 with a switch 8 to select a measurement current band.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記のような
測定装置の場合、漏れ電流値が幅広く時間変化すると、
計測中にスイッチ8によるレンジ切換が必要となる。し
かしながら、漏れ電流が数ミリ秒の間に変化する場合に
は、スイッチ8の切り換えを行うことは不可能であり、
高速変化する動的な電流値を計測できないという問題が
あった。
However, in the case of the above measuring device, when the leakage current value changes over a wide range,
It is necessary to switch the range by the switch 8 during measurement. However, it is impossible to switch the switch 8 if the leakage current changes within a few milliseconds.
There is a problem that a dynamic current value that changes at high speed cannot be measured.

【0005】そこで、本発明の目的は、幅広いレンジで
変化する動的な電流を、スイッチによる切換を行うこと
なく、高速で測定できる電流測定装置を提供することに
ある。
Therefore, an object of the present invention is to provide a current measuring device capable of measuring a dynamic current changing in a wide range at high speed without switching by a switch.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、被測定物に直流電圧を印加することによ
り、被測定物に流れる電流を検出する電流測定装置にお
いて、被測定物に直列接続された測定用抵抗と、測定用
抵抗の両端の電位差を計測する計測用アンプと、測定用
抵抗と直列接続され、測定用抵抗を流れる電流を電圧に
対数変換する対数増幅器と、計測用アンプおよび対数増
幅器から出力される信号をA/D変換するA/D変換器
と、A/D変換器の出力が入力され、所定の閾値を境に
して計測用アンプおよび対数増幅器の出力の何れかを選
択することにより、被測定物に流れる電流値を求める演
算処理回路と、を備えたものである。
To achieve the above object, the present invention provides a current measuring device for detecting a current flowing through an object to be measured by applying a DC voltage to the object to be measured. A measuring resistor connected in series, a measuring amplifier that measures the potential difference across the measuring resistor, a logarithmic amplifier that is connected in series with the measuring resistor and that converts the current flowing through the measuring resistor into a voltage logarithmically, and a measuring amplifier. A / D converter for A / D converting the signal output from the amplifier and the logarithmic amplifier, and the output of the A / D converter are input, and any one of the outputs of the measurement amplifier and the logarithmic amplifier across a predetermined threshold value. And an arithmetic processing circuit for determining the value of the current flowing through the DUT by selecting either.

【0007】電源電流は被測定物(例えばコンデン
サ)、測定用抵抗を介して流れ、測定用抵抗にはCRの
時定数に従った特性で変化する電流が流れる。この時、
最初は比較的大きな電流が流れるので、演算処理回路は
この電流を計測用アンプで計測する。一方、電流値が低
下してくると、計測用アンプでは計測が不可能となるの
で、所定の閾値で演算処理回路は計測用アンプから対数
増幅器へ切り換え、対数増幅器の出力を用いて漏れ電流
を計測する。このようにすれば、従来のようなスイッチ
の切り換えが不要となり、幅広いレンジで変化する動的
な電流測定が可能である。演算処理回路はソフトウエア
によって瞬時に切り換えを行うので、高速での電流測定
が可能である。
The power supply current flows through an object to be measured (for example, a capacitor) and a measuring resistor, and a current that changes with characteristics according to the time constant of CR flows through the measuring resistor. At this time,
Since a relatively large current flows at first, the arithmetic processing circuit measures this current with the measuring amplifier. On the other hand, when the current value decreases, measurement cannot be performed with the measurement amplifier, so the arithmetic processing circuit switches from the measurement amplifier to the logarithmic amplifier at a predetermined threshold, and the leakage current is detected using the output of the logarithmic amplifier. measure. By doing so, it is not necessary to switch the switch as in the conventional case, and dynamic current measurement that changes in a wide range is possible. Since the arithmetic processing circuit is switched instantaneously by software, high-speed current measurement is possible.

【0008】[0008]

【発明の実施の形態】図2は本発明にかかる電流測定装
置の一例を示す。直流測定電源10は、スイッチ11を
介して被測定物であるコンデンサ12に接続されてい
る。コンデンサ12の下流側には抵抗13が直列接続さ
れ、さらに抵抗13の下流側に対数増幅器14が直列接
続されている。抵抗13の両端は、計測用アンプ15の
正負の入力端に接続されている。
2 shows an example of a current measuring device according to the present invention. The DC measurement power supply 10 is connected to a capacitor 12, which is an object to be measured, via a switch 11. A resistor 13 is connected in series on the downstream side of the capacitor 12, and a logarithmic amplifier 14 is connected in series on the downstream side of the resistor 13. Both ends of the resistor 13 are connected to the positive and negative input ends of the measurement amplifier 15.

【0009】対数増幅器14の出力端はA/D変換器1
6を介して演算処理回路(CPU)17に接続され、計
測用アンプ15の出力端もA/D変換器18を介して演
算処理回路(CPU)17に接続されている。
The output terminal of the logarithmic amplifier 14 is an A / D converter 1.
6 is connected to the arithmetic processing circuit (CPU) 17, and the output end of the measurement amplifier 15 is also connected to the arithmetic processing circuit (CPU) 17 via the A / D converter 18.

【0010】CPU17は、コンデンサ12の漏れ電流
が所定の閾値I0 (例えば1mmA)より大か否かによ
って、増幅器14,15の一方の出力を選択して漏れ電
流を演算する。即ち、コンデンサ12の漏れ電流が閾値
0 より大きい領域では、計測用アンプ15の出力V1
を用いて漏れ電流を求め、漏れ電流が閾値I0 より小さ
い領域では、対数増幅器14の出力V2 を用いて漏れ電
流を求める。なお、漏れ電流の閾値I0 は抵抗13によ
って決定される。
The CPU 17 calculates the leakage current by selecting one of the outputs of the amplifiers 14 and 15 depending on whether the leakage current of the capacitor 12 is larger than a predetermined threshold value I 0 (for example, 1 mmA). That is, in the region where the leakage current of the capacitor 12 is larger than the threshold value I 0 , the output V 1 of the measurement amplifier 15
Is used to obtain the leakage current, and in the region where the leakage current is smaller than the threshold value I 0 , the leakage current is obtained using the output V 2 of the logarithmic amplifier 14. The leak current threshold I 0 is determined by the resistor 13.

【0011】図3はスイッチ11を投入した後のコンデ
ンサ12に流れる電流変化を示し、図4はコンデンサ1
2に図3のような電流が流れた時の増幅器14,15の
出力電圧V1 ,V2 の変化を示す。出力V1 ,V2 をA
/D変換器16,18でデジタル信号に変換し、CPU
17にて次のように演算する。計測用アンプ15の出力
1 より電流I1 を求める式は次の通りである。
FIG. 3 shows a change in current flowing through the capacitor 12 after the switch 11 is turned on, and FIG.
2 shows changes in the output voltages V 1 and V 2 of the amplifiers 14 and 15 when a current as shown in FIG. 3 flows. Outputs V 1 and V 2 are A
A / D converters 16 and 18 convert into digital signals, and the CPU
At 17, the following calculation is performed. The formula for obtaining the current I 1 from the output V 1 of the measurement amplifier 15 is as follows.

【0012】[0012]

【数1】 一方、対数増幅器14の出力V2 より電流I2 を求める
式は次の通りである。
(Equation 1) On the other hand, the formula for obtaining the current I 2 from the output V 2 of the logarithmic amplifier 14 is as follows.

【0013】[0013]

【数2】 I2 =B-CV2 ・・・(2) 上式におけるA,B,Cは定数であり、Rは抵抗13の
抵抗値である。これらA,B,Cの各値は、閾値I0
おける電流値I1 とI2 とが同一となるように設定され
る。
(2) I 2 = B −CV2 (2) In the above equation, A, B, and C are constants, and R is the resistance value of the resistor 13. The respective values of A, B and C are set so that the current values I 1 and I 2 at the threshold value I 0 are the same.

【0014】次に、CPU17の具体的な演算処理動作
の例を図5に従って説明する。まず、A/D変換器1
6,18から増幅器14,15の出力V1 ,V2 を入力
する(ステップS1 )。次に、出力V1 を閾値I0 に相
当する電圧V0 と比較する(ステップS2 )。この電圧
0 は次式で与えられる。
Next, an example of a concrete arithmetic processing operation of the CPU 17 will be described with reference to FIG. First, the A / D converter 1
The outputs V 1 and V 2 of the amplifiers 14 and 15 are input from 6 and 18 (step S 1 ). Next, the output V 1 is compared with the voltage V 0 corresponding to the threshold value I 0 (step S 2 ). This voltage V 0 is given by the following equation.

【0015】[0015]

【数3】V0 =I0 ・R/A V1 ≧V0 の時には、(1) 式からI1 を演算し(ステッ
プS3 )、このI1 を漏れ電流値と決定する(ステップ
4 )。一方、V1 <V0 の時には、(2) 式からI2
演算し(ステップS5 )、このI2 を漏れ電流値と決定
する(ステップS6 )。
When V 0 = I 0 · R / A V 1 ≧ V 0 , I 1 is calculated from equation (1) (step S 3 ), and this I 1 is determined as the leakage current value (step S 3 ). 4 ). On the other hand, when V 1 <V 0 , I 2 is calculated from the equation (2) (step S 5 ) and this I 2 is determined as the leakage current value (step S 6 ).

【0016】上記のように、大きな漏れ電流は計測用ア
ンプ15で測定し、小さな漏れ電流は対数増幅器14で
測定するので、コンデンサ12の漏れ電流が幅広いレン
ジで変化しても、正確に測定することができる。しか
も、CPU17がソフトウエアにより増幅器14,15
の内の一方の出力を選択し、選択された出力から漏れ電
流を演算するので、従来のようなスイッチの切り換えが
不要であり、高速な電流測定が可能である。
As described above, since the large leak current is measured by the measuring amplifier 15 and the small leak current is measured by the logarithmic amplifier 14, the leak current of the capacitor 12 can be accurately measured even if it changes in a wide range. be able to. Moreover, the CPU 17 uses the software to amplify the amplifiers 14 and 15
Since one of the outputs is selected and the leakage current is calculated from the selected output, it is not necessary to switch the switch as in the prior art, and high-speed current measurement is possible.

【0017】上記実施例では、本測定装置をコンデンサ
の漏れ電流の測定に適用した例を示したが、他の電子部
品または電子機器の電流測定に適用することもできる。
In the above-mentioned embodiment, the example in which the present measuring device is applied to the measurement of the leakage current of the capacitor is shown, but it can also be applied to the current measurement of other electronic parts or electronic equipment.

【0018】[0018]

【発明の効果】以上の説明で明らかなように、本発明に
よれば、大きな漏れ電流は計測用アンプで測定し、小さ
な漏れ電流は対数増幅器で測定するので、コンデンサの
漏れ電流が幅広いレンジで時間変化しても、正確に測定
することができる。しかも、演算処理回路はソフトウエ
アによって両増幅器の出力を瞬時に選択するので、数ミ
リ秒の間に変化する電流値でも高速に測定できる。
As is apparent from the above description, according to the present invention, a large leakage current is measured by a measuring amplifier, and a small leakage current is measured by a logarithmic amplifier. Even if it changes over time, it can be measured accurately. Moreover, since the arithmetic processing circuit instantaneously selects the outputs of both amplifiers by software, it is possible to measure at high speed even a current value that changes in a few milliseconds.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来のコンデンサの漏れ電流測定装置の一例の
回路図である。
FIG. 1 is a circuit diagram of an example of a conventional capacitor leakage current measuring device.

【図2】本発明にかかかる電流測定装置の一例の回路図
である。
FIG. 2 is a circuit diagram of an example of a current measuring device according to the present invention.

【図3】コンデンサの漏れ電流の変化を示す図である。FIG. 3 is a diagram showing changes in leakage current of a capacitor.

【図4】計測用アンプと対数増幅器の出力の変化を示す
図である。
FIG. 4 is a diagram showing changes in outputs of a measurement amplifier and a logarithmic amplifier.

【符号の説明】[Explanation of symbols]

10 直流測定電源 12 コンデンサ 13 抵抗 14 対数増幅器 15 計測用アンプ 16,18 A/D変換器 17 CPU 10 DC Measuring Power Supply 12 Capacitor 13 Resistance 14 Logarithmic Amplifier 15 Measuring Amplifier 16, 18 A / D Converter 17 CPU

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年2月9日[Submission date] February 9, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Correction target item name] Brief description of drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来のコンデンサの漏れ電流測定装置の一例の
回路図である。
FIG. 1 is a circuit diagram of an example of a conventional capacitor leakage current measuring device.

【図2】本発明にかかかる電流測定装置の一例の回路図
である。
FIG. 2 is a circuit diagram of an example of a current measuring device according to the present invention.

【図3】コンデンサの漏れ電流の変化を示す図である。FIG. 3 is a diagram showing changes in leakage current of a capacitor.

【図4】計測用アンプと対数増幅器の出力の変化を示す
図である。
FIG. 4 is a diagram showing changes in outputs of a measurement amplifier and a logarithmic amplifier.

【図5】本発明にかかかる電流測定装置の動作を示すフFIG. 5 is a flowchart showing the operation of the current measuring device according to the present invention.
ローチャート図である。FIG.

【符号の説明】 10 直流測定電源 12 コンデンサ 13 抵抗 14 対数増幅器 15 計測用アンプ 16,18 A/D変換器 17 CPU[Explanation of symbols] 10 DC power supply 12 Capacitor 13 Resistor 14 Logarithmic amplifier 15 Measurement amplifier 16, 18 A / D converter 17 CPU

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】被測定物に直流電圧を印加することによ
り、被測定物に流れる電流を検出する電流測定装置にお
いて、 被測定物に直列接続された測定用抵抗と、 測定用抵抗の両端の電位差を計測する計測用アンプと、 測定用抵抗と直列接続され、測定用抵抗を流れる電流を
電圧に対数変換する対数増幅器と、 計測用アンプおよび対数増幅器から出力される信号をA
/D変換するA/D変換器と、 A/D変換器の出力が入力され、所定の閾値を境にして
計測用アンプおよび対数増幅器の出力の何れかを選択す
ることにより、被測定物に流れる電流値を求める演算処
理回路と、を備えたことを特徴とする電流測定装置。
1. A current measuring device for detecting a current flowing through an object to be measured by applying a DC voltage to the object to be measured. A measurement amplifier that measures the potential difference, a logarithmic amplifier that is connected in series with the measurement resistor and that performs logarithmic conversion of the current that flows through the measurement resistor, and a signal that is output from the measurement amplifier and the logarithmic amplifier
The A / D converter for A / D conversion and the output of the A / D converter are input, and either the output of the measurement amplifier or the output of the logarithmic amplifier is selected with a predetermined threshold value as a boundary, so that the DUT can be measured. A current measuring device, comprising: an arithmetic processing circuit for obtaining a flowing current value.
【請求項2】請求項1に記載の電流測定装置において、 被測定物はコンデンサであり、コンデンサに流れる漏れ
電流を測定することを特徴とする電流測定装置。
2. The current measuring device according to claim 1, wherein the object to be measured is a capacitor, and the leak current flowing through the capacitor is measured.
JP29344295A 1995-10-16 1995-10-16 Electric current measuring device Pending JPH09113545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29344295A JPH09113545A (en) 1995-10-16 1995-10-16 Electric current measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29344295A JPH09113545A (en) 1995-10-16 1995-10-16 Electric current measuring device

Publications (1)

Publication Number Publication Date
JPH09113545A true JPH09113545A (en) 1997-05-02

Family

ID=17794825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29344295A Pending JPH09113545A (en) 1995-10-16 1995-10-16 Electric current measuring device

Country Status (1)

Country Link
JP (1) JPH09113545A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6043665A (en) * 1996-12-05 2000-03-28 Murata Manufacturing Co., Ltd. Capacitor charging current measurement method
US6204638B1 (en) 1997-01-06 2001-03-20 Murata Manufacturing Co., Ltd. Method for charging capacitor
JP2006220450A (en) * 2005-02-08 2006-08-24 Jtekt Corp Current detector
JP2006292383A (en) * 2005-04-05 2006-10-26 Honda Motor Co Ltd Current detection device and electric steering device
JP2011516859A (en) * 2008-03-31 2011-05-26 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド Programmable gain transimpedance amplifier overload recovery circuit
CN105974296A (en) * 2015-03-12 2016-09-28 格罗方德半导体公司 Leakage testing of integrated circuits
CN104237623B (en) * 2014-10-08 2017-04-12 武汉弈飞科技有限公司 High-precision current sensor detecting circuit and detecting method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6043665A (en) * 1996-12-05 2000-03-28 Murata Manufacturing Co., Ltd. Capacitor charging current measurement method
US6204638B1 (en) 1997-01-06 2001-03-20 Murata Manufacturing Co., Ltd. Method for charging capacitor
JP2006220450A (en) * 2005-02-08 2006-08-24 Jtekt Corp Current detector
JP2006292383A (en) * 2005-04-05 2006-10-26 Honda Motor Co Ltd Current detection device and electric steering device
JP4585358B2 (en) * 2005-04-05 2010-11-24 本田技研工業株式会社 Electric steering device
JP2011516859A (en) * 2008-03-31 2011-05-26 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド Programmable gain transimpedance amplifier overload recovery circuit
US8686739B2 (en) 2008-03-31 2014-04-01 Electro Scientific Industries, Inc. Programmable gain trans-impedance amplifier overload recovery circuit
CN104237623B (en) * 2014-10-08 2017-04-12 武汉弈飞科技有限公司 High-precision current sensor detecting circuit and detecting method thereof
CN105974296A (en) * 2015-03-12 2016-09-28 格罗方德半导体公司 Leakage testing of integrated circuits

Similar Documents

Publication Publication Date Title
US20070103174A1 (en) Direct current test apparatus
GB2336217A (en) Method of measuring current while applying a voltage and apparatus therefor
JPH09113545A (en) Electric current measuring device
JPH1172529A (en) Insulation resistance measurement instrument for capacitor
JP2007315980A (en) Current/voltage conversion circuit
JP2007315981A (en) Measuring device and inspection device
JP2007132777A (en) Impedance measuring apparatus
JP2004274987A (en) Battery module voltage detecting method and detector of electric automobile
JPH04301776A (en) Lcr measuring device
JPH0854424A (en) Current application voltage measuring instrument
JPH04370769A (en) Correction method of voltage and current signal by using a/d converter
JP4261002B2 (en) AC voltage measuring apparatus and method
JP4040908B2 (en) Impedance measuring device
KR0121568B1 (en) Current/voltage test circuit in circuit tester
JP2002006014A (en) Magnetic sensor
JPH1048280A (en) Method and device for detecting disconnection of resistance load
JPH0915266A (en) Measuring device
JP4092718B2 (en) Withstand voltage test equipment
JPH1062463A (en) Method for measuring contact resistance of biological signal measuring electrode
JP2007132778A (en) Impedance measuring apparatus
JPH0875817A (en) Voltage applied current measuring device
KR100335136B1 (en) Apparatus of signal transformation
JPH095368A (en) Method for measuring resistance of wiring
SU1122983A1 (en) Device for measuring transistor current gain
JPH0568135U (en) DA converter test equipment