JPH09113365A - Pyroelectric infrared sensor - Google Patents

Pyroelectric infrared sensor

Info

Publication number
JPH09113365A
JPH09113365A JP7266703A JP26670395A JPH09113365A JP H09113365 A JPH09113365 A JP H09113365A JP 7266703 A JP7266703 A JP 7266703A JP 26670395 A JP26670395 A JP 26670395A JP H09113365 A JPH09113365 A JP H09113365A
Authority
JP
Japan
Prior art keywords
lens
pyroelectric
opening
infrared
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7266703A
Other languages
Japanese (ja)
Inventor
Kazuhiko Fujikawa
和彦 藤川
Koichi Hirakawa
剛一 平川
Koji Nomura
幸治 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7266703A priority Critical patent/JPH09113365A/en
Publication of JPH09113365A publication Critical patent/JPH09113365A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0806Focusing or collimating elements, e.g. lenses or concave mirrors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0205Mechanical elements; Supports for optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/047Mobile mounting; Scanning arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/07Arrangements for adjusting the solid angle of collected radiation, e.g. adjusting or orienting field of view, tracking position or encoding angular position
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/084Adjustable or slidable

Abstract

PROBLEM TO BE SOLVED: To obtain a pyroelectric infrared sensor in which the output can be made uniform through simple adjustment by providing a drive section for moving a lens to the left and right in the direction normal to the optical axis and an aperture disposed in front of the lens. SOLUTION: Infrared rays emitted from an object within the view pass through an aperture 7 and focused on a pyroelectric body 4 located at an image point by means of a lens 5 through an infrared ray incident window 3. Since the lens 5 moves to the left and right in the direction normal to the optical axis and the detecting direction is varied, opening and shielding part of the aperture 7 are detected alternately and the quantity of light incident to the pyroelectric body 4 is varied thus bringing about chopping effect. According to the structure, only the positional relationship between the lens 5 and pyroelectric body 4 requires adjustment and since no obstacle shield the luminous flux passed through the lens 5, the luminous flux is invariant regardless of the moving amount of lens 5 thus ensuring an uniform output.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は焦電体により赤外線
を検出する焦電型赤外線センサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pyroelectric infrared sensor for detecting infrared rays with a pyroelectric body.

【0002】[0002]

【従来の技術】近年、焦電型赤外線センサは非接触で物
体の検知や温度検出ができる点を生かして、電子レンジ
の調理物の温度測定、エアコンの室内温度制御あるいは
自動ドア、警報装置での人体検知等に利用されており、
今後その利用範囲は拡大していくと見られている。
2. Description of the Related Art In recent years, pyroelectric infrared sensors have been capable of non-contact detection of objects and temperature, and are used in microwave oven temperature measurement, air conditioner room temperature control, automatic doors, and alarm devices. It is used for human body detection of
Its range of use is expected to expand in the future.

【0003】焦電型赤外線センサは、LiTaO3単結
晶等の焦電効果を利用したものである。焦電体は自発分
極を有しており常に表面電荷が発生するが、大気中にお
ける定常状態では大気中の電荷と結びついて電気的に中
性を保っている。これに赤外線が入射すると焦電体の温
度が変化し、これに伴い表面の電荷状態も中性状態が壊
れて変化する。この時に表面に発生する電荷を検出し、
赤外線入射量を測定するのが焦電型赤外線センサであ
る。一般に物体はその温度に応じた赤外線を放射してお
り、この焦電型赤外線センサを用いることにより物体の
存在や温度を検知できる。
The pyroelectric infrared sensor utilizes the pyroelectric effect of LiTaO 3 single crystal or the like. The pyroelectric body has spontaneous polarization and always generates a surface charge. However, in a steady state in the atmosphere, the pyroelectric body is electrically neutral with the charge in the atmosphere. When infrared rays are incident on this, the temperature of the pyroelectric body changes, and along with this, the charge state on the surface also changes, breaking the neutral state. At this time, the charge generated on the surface is detected,
A pyroelectric infrared sensor measures the amount of incident infrared rays. Generally, an object emits infrared rays according to its temperature, and the presence or temperature of the object can be detected by using this pyroelectric infrared sensor.

【0004】以下に従来の焦電型赤外線センサについて
説明する。図15は従来の焦電型赤外線センサの概略を
示すものである。開口部1を有する封止缶2と、上記開
口部1に取り付けられた赤外線入射窓3と、前記封止缶
2内に位置する例えば薄膜である焦電体4よりなり、赤
外線入射窓3の前方に位置し、前記焦電体4付近に像点
距離を有するレンズ5と、前記赤外線入射窓3とレンズ
5の間に赤外線を断続するための羽17を有し圧電体を
駆動力とするチョッパ18により構成されている。
A conventional pyroelectric infrared sensor will be described below. FIG. 15 shows an outline of a conventional pyroelectric infrared sensor. A sealing can 2 having an opening 1, an infrared incident window 3 attached to the opening 1, and a pyroelectric body 4 which is a thin film, for example, which is located in the sealing can 2 are provided. A lens 5 located in the front and having an image point distance near the pyroelectric body 4, and a wing 17 for connecting and disconnecting infrared rays between the infrared incident window 3 and the lens 5 are used as a driving force. It is composed of a chopper 18.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記構成
では、チョッパ18がレンズ5により焦電体4に結像す
る赤外線集光光束の途中に位置するため、チョッパ断続
の開時に光束にかからないように位置決めする必要があ
るため調整が複雑となり、またチョッパ18の駆動時に
はチョッパ18の変移量の不均一性より開時に光束に羽
17がかかるため、出力の不均一の原因になるという問
題点を有していた。
However, in the above configuration, since the chopper 18 is positioned in the middle of the infrared ray converging light flux imaged on the pyroelectric body 4 by the lens 5, the positioning is performed so that the light flux does not reach the light flux when the chopper interruption is opened. Since it is necessary to adjust the adjustment, the adjustment becomes complicated, and when the chopper 18 is driven, the wing 17 is applied to the light flux when the chopper 18 is opened due to the nonuniformity of the displacement amount, which causes the output nonuniformity. Was there.

【0006】本発明は上記従来の問題点を解決するもの
で、調整が簡単で出力が均一な焦電型赤外線センサを提
供することを目的とする。
The present invention solves the above-mentioned conventional problems, and an object thereof is to provide a pyroelectric infrared sensor which is easy to adjust and has a uniform output.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
に本発明は、開口部を有する封止缶と、この開口部に取
り付けられた赤外線入射窓と、前記封止缶内に位置する
焦電体と、前記赤外線入射窓の前方に位置し前記焦電体
付近に像点距離を有するレンズと、このレンズをその光
軸方向と垂直方向に左右に可動させる駆動部と、前記レ
ンズの前方に位置するアパーチャとにより構成したもの
であり、レンズと焦電体の光学的位置関係のみを調整す
るだけで良く、レンズ通過後の光束を遮る遮断物がない
ためレンズ可動量が不均一でも光束が変化することがな
く、出力が均一になる。
In order to achieve this object, the present invention provides a sealing can having an opening, an infrared entrance window attached to the opening, and a focus located in the sealing can. An electric body, a lens located in front of the infrared entrance window and having an image point distance near the pyroelectric body, a drive unit for moving the lens left and right in a direction perpendicular to the optical axis direction, and in front of the lens It is composed of an aperture located at the position of 1., and it is only necessary to adjust the optical positional relationship between the lens and the pyroelectric body. Does not change and the output becomes uniform.

【0008】[0008]

【発明の実施の形態】本発明の請求項1に記載の発明
は、開口部を有する封止缶と、この開口部に取り付けら
れた赤外線入射窓と、前記封止缶内に位置する焦電体
と、前記赤外線入射窓の前方に位置し前記焦電体付近に
像点距離を有するレンズと、このレンズをその光軸方向
と垂直方向に左右に可動させる駆動部と、前記レンズの
前方に位置するアパーチャにより構成され、レンズと焦
電体の位置関係を調整するだけで組み立てられ、均一な
出力が得られるという作用を有する。
BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 of the present invention is a sealing can having an opening, an infrared entrance window attached to the opening, and a pyroelectric lamp located in the sealing can. A body, a lens located in front of the infrared entrance window and having an image point distance near the pyroelectric body, a drive unit for moving the lens left and right in a direction perpendicular to the optical axis direction, and in front of the lens. It is composed of apertures positioned, and has an effect that it is assembled only by adjusting the positional relationship between the lens and the pyroelectric body and uniform output can be obtained.

【0009】請求項2に記載の発明は、レンズを2個以
上で構成し、検知周波数が大きくなるという作用を有す
る。
According to the second aspect of the present invention, the number of lenses is two or more, and the detection frequency is increased.

【0010】請求項3に記載の発明は、焦電体を2個以
上で構成し、複数の検知領域の出力を同時に検出できる
という作用を有する。
According to the third aspect of the invention, the pyroelectric body is composed of two or more pieces, and has the effect of being able to simultaneously detect the outputs of a plurality of detection regions.

【0011】請求項4に記載に発明は、アパーチャが2
個以上の開口部を有する構成とし、複数の検知領域の出
力を同時に検出できるという作用を有する。
The invention according to claim 4 has two apertures.
With the configuration having more than one opening, it has an effect of being able to simultaneously detect the outputs of a plurality of detection regions.

【0012】請求項5に記載の発明は、請求項1〜4の
構成においてレンズを回動させて均一な出力を得るとい
う作用を有する。
The invention described in claim 5 has an effect of rotating the lens in the structure of claims 1 to 4 to obtain a uniform output.

【0013】請求項6に記載の発明は、請求項1〜4の
構成においてレンズとして回折光学レンズを用いて焦点
距離を短くし可動量を小さくできるという作用を有す
る。
The invention described in claim 6 has an effect that the diffractive optical lens is used as the lens in the structure of claims 1 to 4 to shorten the focal length and reduce the movable amount.

【0014】請求項7に記載の発明は、レンズを光軸方
向に対して上下に可動させる構成とし、駆動部の小型化
を図るという作用を有する。
According to the seventh aspect of the present invention, the lens is configured to be movable up and down with respect to the optical axis direction, and has the effect of reducing the size of the drive section.

【0015】請求項8に記載の発明は、レンズを湾曲さ
せる構成とし、レンズの可動量が不均一でも均一な出力
を検出できるという作用を有する。
The invention described in claim 8 has a function of being able to detect a uniform output even if the amount of movement of the lens is uneven, because the lens is curved.

【0016】(実施の形態1)以下本発明の第1の実施
の形態について、図面を参照しながら説明する。図1は
本発明の第1の実施の形態における焦電型赤外線センサ
の概略を示すものである。開口部1を有する封止缶2
と、開口部1に取り付けられた赤外線入射窓3と、前記
封止缶2内に位置する例えば薄膜である焦電体4と、赤
外線入射窓3の前方に位置し前記焦電体4の付近に像点
距離を有するレンズ5と、レンズ5をその光軸方向と垂
直方向に左右に可動させるための駆動部6と、前記レン
ズ5の前方に位置するアパーチャ7により構成されてい
る。
(Embodiment 1) Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 schematically shows a pyroelectric infrared sensor according to the first embodiment of the present invention. Sealing can 2 having opening 1
An infrared incident window 3 attached to the opening 1, a pyroelectric body 4 which is, for example, a thin film located in the sealing can 2, a front of the infrared incident window 3 and the vicinity of the pyroelectric body 4. A lens 5 having an image point distance, a drive unit 6 for moving the lens 5 left and right in a direction perpendicular to the optical axis direction, and an aperture 7 located in front of the lens 5.

【0017】以上のように構成された焦電型赤外線セン
サについて、その動作を図2を用いて説明する。
The operation of the pyroelectric infrared sensor constructed as described above will be described with reference to FIG.

【0018】まず、視野内の検知対象物より放射された
赤外線8はアパーチャ7を通過し、レンズ5により像点
上に位置する焦電体4に赤外線入射窓3を透過後結像す
る。この時、レンズ5がその光軸方向と垂直方向に左右
に可動することにより検知方向が変化するため、アパー
チャ7の開口部と遮断部を交互に検知することになり、
焦電体4に入射する光量が変化するため、その結果チョ
ッピング効果を有することになる。
First, the infrared rays 8 radiated from the object to be detected in the field of view pass through the aperture 7, and are imaged by the lens 5 after passing through the infrared incident window 3 on the pyroelectric body 4 located on the image point. At this time, since the detection direction changes as the lens 5 moves to the left and right in the direction perpendicular to the optical axis direction, the opening portion and the blocking portion of the aperture 7 are alternately detected,
Since the amount of light incident on the pyroelectric body 4 changes, a chopping effect is obtained as a result.

【0019】この構成によって、レンズ5と焦電体4の
光学的位置関係のみを調整するだけで良く、かつレンズ
5を通過後の光束を遮る遮断物がないためレンズ5の可
動量が不均一でも光束が変化することがなく、均一な出
力を得ることが可能となった。
With this configuration, it is only necessary to adjust the optical positional relationship between the lens 5 and the pyroelectric body 4, and since there is no obstacle that blocks the light flux after passing through the lens 5, the movable amount of the lens 5 is uneven. However, it was possible to obtain a uniform output without changing the luminous flux.

【0020】(実施の形態2)以下本発明の第2の実施
の形態について、図面を参照しながら説明する。図3は
本発明の第2の実施の形態における焦電型赤外線センサ
の概略を示すものである。実施の形態1と異なる点は、
レンズ9が少なくとも2個以上で構成されていることで
ある。
(Second Embodiment) A second embodiment of the present invention will be described below with reference to the drawings. FIG. 3 schematically shows a pyroelectric infrared sensor according to the second embodiment of the present invention. The difference from the first embodiment is that
That is, at least two lenses 9 are configured.

【0021】以上のように構成された焦電型赤外線セン
サについて、その動作を図4を用いて説明する。
The operation of the pyroelectric infrared sensor constructed as described above will be described with reference to FIG.

【0022】まず、視野内の検知対象物より放射された
赤外線8はアパーチャ7を通過し、レンズ9により像点
上に位置する焦電体4に赤外線入射窓3を透過後結像す
る。この時、レンズ9がその光軸方向と垂直方向に左右
に可動することにより検知方向が変化するため、アパー
チャ7の開口部と遮断部を交互に検知することになり、
焦電体4に入射する光量が変化するため、その結果チョ
ッピング効果を有することになる。この時、レンズ9が
少なくとも2個以上ある場合、1周期のレンズ9の可動
で、レンズ9の個数倍だけ入射光量が変化することにな
り、その結果検知周波数が大きくなる。
First, the infrared rays 8 radiated from the object to be detected within the field of view pass through the aperture 7 and are imaged by the lens 9 after passing through the infrared incident window 3 on the pyroelectric body 4 located on the image point. At this time, since the detection direction is changed by moving the lens 9 left and right in the direction perpendicular to the optical axis direction, the opening portion and the blocking portion of the aperture 7 are alternately detected,
Since the amount of light incident on the pyroelectric body 4 changes, a chopping effect is obtained as a result. At this time, when there are at least two lenses 9, the amount of incident light changes by the number of lenses 9 being moved by moving the lenses 9 in one cycle, and as a result, the detection frequency increases.

【0023】この構成によって、レンズ9と焦電体4の
光学的位置関係のみを調整するだけで良く、かつレンズ
9を通過後の光束を遮る遮断物がないためレンズ9の可
動量が不均一でも光束が変化することがなく、均一な出
力を得ることが可能となり、さらに周波数が大きくなる
ことにより、サンプリング数が増えることになり、出力
精度が向上する。また焦電体4が薄膜の場合、検知周波
数が高周波数化する程出力のノイズ成分が減少するた
め、S/N比向上が可能となった。
With this configuration, it is only necessary to adjust the optical positional relationship between the lens 9 and the pyroelectric body 4, and since there is no obstacle that blocks the light flux after passing through the lens 9, the movable amount of the lens 9 is uneven. However, it is possible to obtain a uniform output without changing the luminous flux, and the frequency is increased, so that the number of samplings is increased and the output accuracy is improved. Further, when the pyroelectric body 4 is a thin film, the noise component of the output decreases as the detection frequency becomes higher, so that the S / N ratio can be improved.

【0024】(実施の形態3)以下本発明の第3の実施
の形態について、図面を参照しながら説明する。図5は
本発明の第3の実施の形態における焦電型赤外線センサ
の概略を示すものである。実施の形態1と異なる点は、
焦電体10が少なくとも2個以上で構成されていること
である。
(Third Embodiment) A third embodiment of the present invention will be described below with reference to the drawings. FIG. 5 shows the outline of a pyroelectric infrared sensor according to the third embodiment of the present invention. The difference from the first embodiment is that
That is, at least two pyroelectric bodies 10 are configured.

【0025】以上のように構成された焦電型赤外線セン
サについて、その動作を図6を用いて説明する。
The operation of the pyroelectric infrared sensor constructed as described above will be described with reference to FIG.

【0026】まず、視野内の検知対象物より放射された
赤外線8はアパーチャ7を通過し、レンズ5により像点
上に位置する焦電体10に赤外線入射窓3を透過後結像
する。この時、レンズ5がその光軸方向と垂直方向に左
右に可動することにより検知方向が変化するため、アパ
ーチャ7の開口部と遮断部を交互に検知することにな
り、焦電体10に入射する光量が変化するため、その結
果チョッピング効果を有することになる。この時、焦電
体10が少なくとも2個以上ある場合、アパーチャ7の
開口部中心とレンズ5の主点と焦電体10の中心を通る
光軸方向とレンズ5の像点距離と焦電体10の形状より
決まる視野角が作り出す検知領域が少なくとも2個以上
となる。
First, the infrared rays 8 radiated from the object to be detected in the field of view pass through the aperture 7 and are imaged by the lens 5 after passing through the infrared entrance window 3 on the pyroelectric body 10 located on the image point. At this time, since the detection direction is changed by moving the lens 5 left and right in the direction perpendicular to the optical axis direction, the opening and the blocking portion of the aperture 7 are alternately detected, and the incident on the pyroelectric body 10. As a result, the amount of light emitted changes, resulting in a chopping effect. At this time, when there are at least two pyroelectric bodies 10, the center of the opening of the aperture 7, the principal point of the lens 5, the optical axis direction passing through the center of the pyroelectric body 10, the image point distance of the lens 5, and the pyroelectric body. At least two or more detection areas are created by the viewing angle determined by the shape of 10.

【0027】この構成によって、レンズ5と焦電体10
の光学的位置関係のみを調整するだけで良く、かつレン
ズ5を通過後の光束を遮る遮断物がないためレンズ5の
可動量が不均一でも光束が変化することがなく、均一な
出力を得ることが可能となり、さらに複数の検知領域の
出力を同時に検出することが可能となった。
With this configuration, the lens 5 and the pyroelectric body 10
It suffices to adjust only the optical positional relationship of the light beams, and since there is no obstruction that blocks the light flux after passing through the lens 5, the light flux does not change even if the movable amount of the lens 5 is uneven, and a uniform output is obtained. It has become possible to detect the outputs of multiple detection areas simultaneously.

【0028】(実施の形態4)以下本発明の第4の実施
の形態について、図面を参照しながら説明する。図7は
本発明の第4の実施の形態における焦電型赤外線センサ
の概略を示すものである。実施の形態1と異なる点は、
アパーチャ11が少なくとも2個以上の開口部を有する
ことである。
(Embodiment 4) A fourth embodiment of the present invention will be described below with reference to the drawings. FIG. 7 schematically shows a pyroelectric infrared sensor according to the fourth embodiment of the present invention. The difference from the first embodiment is that
That is, the aperture 11 has at least two openings.

【0029】以上のように構成された焦電型赤外線セン
サについて、その動作を図8を用いて説明する。
The operation of the pyroelectric infrared sensor constructed as described above will be described with reference to FIG.

【0030】まず、視野内の検知対象物より放射された
赤外線8はアパーチャ11を通過し、レンズ5により像
点上に位置する焦電体4に赤外線入射窓3を透過後結像
する。この時、レンズ5がその光軸方向と垂直方向に左
右に可動することにより検知方向が変化するため、アパ
ーチャ11の開口部と遮断部を交互に検知することにな
り、焦電体4に入射する光量が変化するため、その結果
チョッピング効果を有することになる。この時、アパー
チャ11の開口部が少なくとも2個以上ある場合、アパ
ーチャ11の開口部中心とレンズ5の主点と焦電体4の
中心を通る光軸方向と、レンズ5の像点距離と焦電体4
の形状より決まる視野角が作り出す検知領域が少なくと
も2個以上となる。
First, the infrared rays 8 emitted from the object to be detected in the field of view pass through the aperture 11 and are imaged by the lens 5 after passing through the infrared incident window 3 on the pyroelectric body 4 located on the image point. At this time, the detection direction changes as the lens 5 moves left and right in the direction perpendicular to the optical axis direction, so that the opening portion and the blocking portion of the aperture 11 are detected alternately, and the incident light enters the pyroelectric body 4. As a result, the amount of light emitted changes, resulting in a chopping effect. At this time, when there are at least two apertures in the aperture 11, the optical axis direction passing through the center of the aperture of the aperture 11, the principal point of the lens 5 and the center of the pyroelectric body 4, the image point distance of the lens 5, and the focal point. Electric body 4
At least two or more detection areas are created by the viewing angle determined by the shape of.

【0031】この構成によって、レンズ5と焦電体4の
光学的位置関係のみを調整するだけで良く、かつレンズ
5を通過後の光束を遮る遮断物がないためレンズ5の可
動量が不均一でも光束が変化することがなく、均一な出
力を得ることが可能となり、さらに複数の検知領域の出
力を同時に検出することが可能となった。
With this configuration, it is only necessary to adjust the optical positional relationship between the lens 5 and the pyroelectric body 4, and since there is no obstacle that blocks the light flux after passing through the lens 5, the movable amount of the lens 5 is uneven. However, it is possible to obtain a uniform output without changing the luminous flux, and it is possible to detect the outputs of a plurality of detection areas at the same time.

【0032】なお、実施の形態1、2、3、4において
図9(a)〜(c)に示すようにレンズ5を回動させて
も同様の結果が得られることはいうまでもない。
Needless to say, similar results can be obtained by rotating the lens 5 as shown in FIGS. 9A to 9C in the first, second, third, and fourth embodiments.

【0033】また、実施の形態1、2、3、4において
図10に示すようにレンズとしてその位相変調量に応じ
た凹凸を有し、上記凹凸の溝の深さは全域で一様であ
り、上記凹凸形状は入射赤外線の波長に依存する回折光
学レンズ13とすることにより、レンズの小型化が可能
となるため、焦点距離を短くすることが可能となり(た
とえば焦点距離6mm)、その結果レンズの可動量も小
さくなり、系全体の小型化が可能となった。
Further, in the first, second, third, and fourth embodiments, as shown in FIG. 10, the lens has irregularities corresponding to the amount of phase modulation, and the groove depth of the irregularities is uniform over the entire area. By using the diffractive optical lens 13 having the uneven shape depending on the wavelength of the incident infrared ray, the lens can be downsized, so that the focal length can be shortened (for example, the focal length is 6 mm). The amount of movement in the system has also been reduced, making it possible to downsize the entire system.

【0034】また、実施の形態3、4においてレンズを
少なくとも2個で構成することにより、1周期のレンズ
の可動で、レンズの個数倍だけ入射光量が変化すること
になり、その結果検知周波数が大きくなる。その結果、
サンプリング数が増えることになり、出力精度が向上す
る。また焦電体が薄膜の場合、検知周波数が高周波数化
する程出力のノイズ成分が減少するため、S/N比向上
が可能となった。
Further, in the third and fourth embodiments, by forming at least two lenses, the amount of incident light changes by the number of lenses times when the lens moves for one cycle, and as a result, the detection frequency is increased. growing. as a result,
The number of samplings is increased, and the output accuracy is improved. Further, when the pyroelectric body is a thin film, the noise component of the output decreases as the detection frequency becomes higher, so that the S / N ratio can be improved.

【0035】(実施の形態5)以下本発明の第5の実施
の形態について、図面を参照しながら説明する。図11
は本発明の第5の実施の形態における焦電型赤外線セン
サの概略を示すものである。開口部1を有する封止缶2
と、開口部1に取り付けられた赤外線入射窓3と、前記
封止缶2内に位置する例えば薄膜である焦電体4と、赤
外線入射窓3の前方に位置し、前記焦電体4付近に像点
距離を有するレンズ5と、そのレンズ5をその光軸方向
に上下に可動させるための駆動部14により構成されて
いる。
(Fifth Embodiment) Hereinafter, a fifth embodiment of the present invention will be described with reference to the drawings. FIG.
Shows an outline of a pyroelectric infrared sensor according to a fifth embodiment of the present invention. Sealing can 2 having opening 1
An infrared entrance window 3 attached to the opening 1, a pyroelectric body 4 which is, for example, a thin film located in the sealing can 2, a front of the infrared entrance window 3, and the vicinity of the pyroelectric body 4. It is composed of a lens 5 having an image point distance and a drive unit 14 for moving the lens 5 vertically in the optical axis direction.

【0036】以上のように構成された焦電型赤外線セン
サについて、その動作を図12を用いて説明する。
The operation of the pyroelectric infrared sensor constructed as described above will be described with reference to FIG.

【0037】まず、視野内の検知対象物より放射された
赤外線8は、レンズ5により像点上に位置する焦電体4
に赤外線入射窓3を透過後結像する。この時、レンズ5
がその光軸方向に上下に可動することによりその結像位
置が焦電体4を上下することになり、焦電体4に結像す
るか否かによって、その光量が変化するため、その結果
チョッピング効果を有することになる。
First, the infrared rays 8 radiated from the object to be detected in the visual field are focused by the lens 5 on the pyroelectric body 4 located on the image point.
An image is formed after passing through the infrared incident window 3. At this time, lens 5
Is moved up and down in the optical axis direction, the imaging position moves up and down the pyroelectric body 4, and the amount of light changes depending on whether or not an image is formed on the pyroelectric body 4. It will have a chopping effect.

【0038】この構成によって、レンズ5と焦電体4の
光学的位置関係のみを調整するだけで良く、かつレンズ
5を通過後の光束を遮る遮断物がないためレンズ5の可
動量が不均一でも光束が変化することがなく、均一な出
力を得ることが可能となり、さらにレンズ5の可動量は
レンズ5の焦点深度程度(数百マイクロメートル)で良
く、駆動部14の小型化が可能となり、系全体の小型化
が可能となった。
With this configuration, it is only necessary to adjust the optical positional relationship between the lens 5 and the pyroelectric body 4, and since there is no obstacle that blocks the light flux after passing through the lens 5, the movable amount of the lens 5 is uneven. However, the light flux does not change, and it is possible to obtain a uniform output. Further, the movable amount of the lens 5 may be about the depth of focus of the lens 5 (several hundreds of micrometers), and the driving unit 14 can be downsized. , It became possible to downsize the entire system.

【0039】なお、レンズとしてその位相変調量に応じ
た凹凸を有し、上記凹凸の溝の深さは全域で一様であ
り、上記凹凸形状は入射赤外線の波長に依存する回折光
学レンズとしても同様の結果が得られることは言うまで
もない。
It should be noted that the lens has irregularities corresponding to the amount of phase modulation, the groove of the irregularities has a uniform depth over the entire area, and the irregular shape also serves as a diffractive optical lens depending on the wavelength of incident infrared rays. It goes without saying that similar results can be obtained.

【0040】(実施の形態6)以下本発明の第6の実施
の形態について、図面を参照しながら説明する。図13
は本発明の第6の実施の形態における焦電型赤外線セン
サの概略を示すものである。実施の形態1と異なる点
は、駆動部16としてレンズ15を湾曲させる機能をも
つ点である。
(Embodiment 6) A sixth embodiment of the present invention will be described below with reference to the drawings. FIG.
Shows a schematic of a pyroelectric infrared sensor according to a sixth embodiment of the present invention. The difference from the first embodiment is that the driving unit 16 has a function of bending the lens 15.

【0041】以上のように構成された焦電型赤外線セン
サについて、その動作を図14(a),(b)を用いて
説明する。
The operation of the pyroelectric infrared sensor constructed as above will be described with reference to FIGS. 14 (a) and 14 (b).

【0042】まず、視野内の検知対象物より放射された
赤外線8はレンズ15により像点上に位置する焦電体4
に赤外線入射窓3を透過後結像する。この時、レンズ1
5が湾曲することによりレンズ15の焦点距離が変化
し、その結像位置が焦電体4を上下することになり、焦
電体4に結像するか否かによって、その光量が変化する
ため、その結果チョッピング効果を有することになる。
First, the infrared rays 8 radiated from the object to be detected in the visual field are moved by the lens 15 to the pyroelectric body 4 positioned on the image point.
An image is formed after passing through the infrared incident window 3. At this time, lens 1
Because the focal length of the lens 15 changes due to the bending of the lens 5, the image forming position moves up and down on the pyroelectric body 4, and the amount of light changes depending on whether or not an image is formed on the pyroelectric body 4. As a result, it will have a chopping effect.

【0043】この構成によって、レンズ15と焦電体4
の光学的位置関係のみを調整するだけで良く、かつレン
ズ15を通過後の光束を遮る遮断物がないためレンズ1
5の可動量が不均一でも光束が変化することがなく、均
一な出力を得ることが可能となった。
With this configuration, the lens 15 and the pyroelectric body 4 are
It suffices to adjust only the optical positional relationship between the lens 1 and the lens 1 because there is no obstacle that blocks the light flux after passing through the lens 15.
Even if the movable amount of 5 is not uniform, the light flux does not change, and it is possible to obtain a uniform output.

【0044】なお、レンズ材料としてポリエチレン等の
波長が10マイクロメートル付近の赤外線を透過する有
機材料を用いることにより、材料のばね定数より容易に
湾曲させることが可能となり、その結果駆動力が小さく
なり、駆動部16の小型化および省消費電力化が可能と
なった。
By using an organic material such as polyethylene, which transmits infrared rays having a wavelength of about 10 micrometers, as the lens material, it is possible to bend the material more easily than the spring constant of the material, and as a result, the driving force becomes small. The drive unit 16 can be downsized and power consumption can be reduced.

【0045】[0045]

【発明の効果】以上のように本発明は、レンズを直接可
動させることにより、レンズと焦電体の光学的位置関係
のみを調整するだけで良く、レンズ通過後の光束を遮る
遮断物がないためレンズの可動量が不均一でも光束が変
化することがなく、出力が均一になる焦電型赤外線セン
サを提供できるものである。
As described above, according to the present invention, by directly moving the lens, it suffices to adjust only the optical positional relationship between the lens and the pyroelectric body, and there is no blocker that blocks the light flux after passing through the lens. Therefore, it is possible to provide a pyroelectric infrared sensor in which the light flux does not change even when the amount of lens movement is uneven, and the output is uniform.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態における焦電型赤外
線センサの概略図
FIG. 1 is a schematic diagram of a pyroelectric infrared sensor according to a first embodiment of the present invention.

【図2】同動作を示す説明図FIG. 2 is an explanatory diagram showing the same operation.

【図3】本発明の第2の実施の形態における焦電型赤外
線センサの概略図
FIG. 3 is a schematic diagram of a pyroelectric infrared sensor according to a second embodiment of the present invention.

【図4】同動作を示す説明図FIG. 4 is an explanatory diagram showing the same operation.

【図5】本発明の第3の実施の形態における焦電型赤外
線センサの概略図
FIG. 5 is a schematic diagram of a pyroelectric infrared sensor according to a third embodiment of the present invention.

【図6】同動作を示す説明図FIG. 6 is an explanatory diagram showing the same operation.

【図7】本発明の第4の実施の形態における焦電型赤外
線センサの概略図
FIG. 7 is a schematic diagram of a pyroelectric infrared sensor according to a fourth embodiment of the present invention.

【図8】同動作を示す説明図FIG. 8 is an explanatory diagram showing the same operation.

【図9】本発明の第1、2、3または第4の実施の形態
における焦電型赤外線センサの概略図
FIG. 9 is a schematic view of a pyroelectric infrared sensor according to the first, second, third, or fourth embodiment of the present invention.

【図10】本発明の第1、2、3または第4の実施の形
態における焦電型赤外線センサの概略図
FIG. 10 is a schematic view of a pyroelectric infrared sensor according to the first, second, third, or fourth embodiment of the present invention.

【図11】本発明の第5の実施の形態における焦電型赤
外線センサの概略図
FIG. 11 is a schematic diagram of a pyroelectric infrared sensor according to a fifth embodiment of the present invention.

【図12】同動作を示す説明図FIG. 12 is an explanatory diagram showing the same operation.

【図13】本発明の第6の実施の形態における焦電型赤
外線センサの概略図
FIG. 13 is a schematic diagram of a pyroelectric infrared sensor according to a sixth embodiment of the present invention.

【図14】(a),(b)同動作を示す説明図14A and 14B are explanatory views showing the same operation.

【図15】従来の焦電型赤外線センサの概略断面図FIG. 15 is a schematic sectional view of a conventional pyroelectric infrared sensor.

【符号の説明】[Explanation of symbols]

1 開口部 2 封止缶 3 赤外線入射窓 4 焦電体 5 レンズ 6 駆動部 7 アパーチャ 8 赤外線 9 レンズ 10 焦電体 11 アパーチャ 12 駆動部 13 回折光学レンズ 14 駆動部 15 レンズ 16 駆動部 17 羽 18 チョッパ 1 Opening 2 Sealing Can 3 Infrared Incident Window 4 Pyroelectric Body 5 Lens 6 Driving Section 7 Aperture 8 Infrared 9 Lens 10 Pyroelectric Body 11 Aperture 12 Driving Section 13 Diffractive Optical Lens 14 Driving Section 15 Lens 16 Driving Section 17 Wing 18 Chopper

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 開口部を有する封止缶と、この開口部に
取り付けられた赤外線入射窓と、前記封止缶内に位置す
る焦電体と、前記赤外線入射窓の前方に位置し前記焦電
体付近に像点距離を有するレンズと、このレンズをその
光軸方向と垂直方向に左右に可動させる駆動部と、前記
レンズの前方に位置するアパーチャよりなる焦電型赤外
線センサ。
1. A sealing can having an opening, an infrared incident window attached to the opening, a pyroelectric body located in the sealing can, and a pyroelectric element located in front of the infrared incident window. A pyroelectric infrared sensor comprising a lens having an image point distance in the vicinity of an electric body, a driving unit for moving the lens left and right in a direction perpendicular to the optical axis direction, and an aperture positioned in front of the lens.
【請求項2】 開口部を有する封止缶と、この開口部に
取り付けられた赤外線入射窓と、前記封止缶内に位置す
る焦電体と、前記赤外線入射窓の前方に位置し前記焦電
体付近に像点距離を有するレンズと、このレンズをその
光軸方向と垂直方向に左右に可動させるための駆動部
と、前記レンズの前方に位置するアパーチャよりなり、
前記レンズが少なくとも2個以上で構成された焦電型赤
外線センサ。
2. A sealing can having an opening, an infrared incident window attached to the opening, a pyroelectric body located in the sealing can, and a pyroelectric element located in front of the infrared incident window. A lens having an image point distance in the vicinity of the electric body, a drive unit for moving the lens left and right in a direction perpendicular to the optical axis direction, and an aperture positioned in front of the lens,
A pyroelectric infrared sensor comprising at least two lenses.
【請求項3】 開口部を有する封止缶と、開口部に取り
付けられた赤外線入射窓と、前記封止缶内に位置する焦
電体と、前記赤外線入射窓の前方に位置し前記焦電体付
近に像点距離を有するレンズと、このレンズをその光軸
方向と垂直方向に左右に可動させるための駆動部と、前
記レンズの前方に位置するアパーチャよりなり、前記焦
電体が少なくとも2個以上で構成された焦電型赤外線セ
ンサ。
3. A sealing can having an opening, an infrared incident window attached to the opening, a pyroelectric body located in the sealing can, and a pyroelectric element located in front of the infrared incident window. It comprises a lens having an image point distance near the body, a drive unit for moving the lens left and right in a direction perpendicular to the optical axis direction, and an aperture positioned in front of the lens, and the pyroelectric body has at least 2 Pyroelectric infrared sensor consisting of more than one.
【請求項4】 開口部を有する封止缶と、開口部に取り
付けられた赤外線入射窓と、前記封止缶内に位置する焦
電体と、前記赤外線入射窓の前方に位置し前記焦電体付
近に像点距離を有するレンズと、このレンズをその光軸
方向と垂直方向に左右に可動させるための駆動部と、前
記レンズの前方に位置するアパーチャよりなり、前記ア
パーチャが少なくとも2個以上の開口部を有した焦電型
赤外線センサ。
4. A sealing can having an opening, an infrared incident window attached to the opening, a pyroelectric body located in the sealing can, and a pyroelectric element located in front of the infrared incident window. A lens having an image point distance near the body, a drive unit for moving the lens left and right in a direction perpendicular to the optical axis direction, and an aperture positioned in front of the lens, and at least two apertures or more. Infrared sensor with an opening.
【請求項5】 駆動部としてレンズを回動させるように
した請求項1、2、3または4記載の焦電型赤外線セン
サ。
5. The pyroelectric infrared sensor according to claim 1, wherein the lens is rotated as a driving unit.
【請求項6】 レンズとしてその位相変調量に応じた凹
凸を有し、上記凹凸の溝の深さは全域で一様であり、上
記凹凸形状は入射赤外線の波長に依存する回折光学レン
ズである請求項1、2、3または4記載の焦電型赤外線
センサ。
6. A lens is a diffractive optical lens having concavities and convexities corresponding to the phase modulation amount thereof, the groove depth of the concavities and convexities is uniform over the entire area, and the concavo-convex shape depends on the wavelength of incident infrared rays. The pyroelectric infrared sensor according to claim 1, 2, 3, or 4.
【請求項7】 開口部を有する封止缶と、開口部に取り
付けられた赤外線入射窓と、前記封止缶内に位置する焦
電体と、前記赤外線入射窓の前方に位置し前記焦電体付
近に像点距離を有するレンズと、このレンズをその光軸
方向に対して上下に可動させるための駆動部よりなる焦
電型赤外線センサ。
7. A sealing can having an opening, an infrared incident window attached to the opening, a pyroelectric body located in the sealing can, and a pyroelectric element located in front of the infrared incident window. A pyroelectric infrared sensor including a lens having an image point distance near the body and a driving unit for moving the lens up and down with respect to the optical axis direction.
【請求項8】 開口部を有する封止缶と、開口部に取り
付けられた赤外線入射窓と、前記封止缶内に位置する焦
電体と、前記赤外線入射窓の前方に位置し前記焦電体付
近に像点距離を有するレンズと、このレンズを湾曲させ
るための駆動部よりなる焦電型赤外線センサ。
8. A sealing can having an opening, an infrared incident window attached to the opening, a pyroelectric body located in the sealing can, and a pyroelectric element located in front of the infrared incident window. A pyroelectric infrared sensor including a lens having an image point distance near the body and a driving unit for bending the lens.
JP7266703A 1995-10-16 1995-10-16 Pyroelectric infrared sensor Pending JPH09113365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7266703A JPH09113365A (en) 1995-10-16 1995-10-16 Pyroelectric infrared sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7266703A JPH09113365A (en) 1995-10-16 1995-10-16 Pyroelectric infrared sensor

Publications (1)

Publication Number Publication Date
JPH09113365A true JPH09113365A (en) 1997-05-02

Family

ID=17434517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7266703A Pending JPH09113365A (en) 1995-10-16 1995-10-16 Pyroelectric infrared sensor

Country Status (1)

Country Link
JP (1) JPH09113365A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009063323A (en) * 2007-09-04 2009-03-26 Chugoku Electric Power Co Inc:The Human detection device, method and program
JP2010032292A (en) * 2008-07-28 2010-02-12 Seiko Instruments Inc Pyroelectric infrared detector
DE102012215691A1 (en) * 2012-09-05 2014-03-06 Robert Bosch Gmbh Temperature measuring device, in particular hand-held infrared measuring device
JP2017083470A (en) * 2010-04-01 2017-05-18 エクセリタス テクノロジーズ シンガポール プライヴェート リミテッド Radiation sensor
CN109654694A (en) * 2018-12-29 2019-04-19 青岛海尔空调器有限总公司 Control method, device, storage medium and the computer equipment of anti-blow-through air-conditioning
CN109654701A (en) * 2018-12-29 2019-04-19 青岛海尔空调器有限总公司 Control method, device, storage medium and the computer equipment of anti-blow-through air-conditioning
CN109737568A (en) * 2018-12-29 2019-05-10 青岛海尔空调器有限总公司 Control method, device, storage medium and the computer equipment of anti-blow-through air-conditioning
CN109764489A (en) * 2018-12-29 2019-05-17 青岛海尔空调器有限总公司 Control method, device, storage medium and the computer equipment of anti-blow-through air-conditioning

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009063323A (en) * 2007-09-04 2009-03-26 Chugoku Electric Power Co Inc:The Human detection device, method and program
JP2010032292A (en) * 2008-07-28 2010-02-12 Seiko Instruments Inc Pyroelectric infrared detector
JP2017083470A (en) * 2010-04-01 2017-05-18 エクセリタス テクノロジーズ シンガポール プライヴェート リミテッド Radiation sensor
DE102012215691A1 (en) * 2012-09-05 2014-03-06 Robert Bosch Gmbh Temperature measuring device, in particular hand-held infrared measuring device
CN109737568A (en) * 2018-12-29 2019-05-10 青岛海尔空调器有限总公司 Control method, device, storage medium and the computer equipment of anti-blow-through air-conditioning
CN109654701A (en) * 2018-12-29 2019-04-19 青岛海尔空调器有限总公司 Control method, device, storage medium and the computer equipment of anti-blow-through air-conditioning
CN109654694A (en) * 2018-12-29 2019-04-19 青岛海尔空调器有限总公司 Control method, device, storage medium and the computer equipment of anti-blow-through air-conditioning
CN109764489A (en) * 2018-12-29 2019-05-17 青岛海尔空调器有限总公司 Control method, device, storage medium and the computer equipment of anti-blow-through air-conditioning
WO2020135827A1 (en) * 2018-12-29 2020-07-02 青岛海尔空调器有限总公司 Method and apparatus for controlling anti-direct blowing air conditioner, storage medium, and computer device
WO2020135831A1 (en) * 2018-12-29 2020-07-02 青岛海尔空调器有限总公司 Control method for air-deflector air conditioner, device, storage medium and computer equipment
CN109764489B (en) * 2018-12-29 2020-11-03 青岛海尔空调器有限总公司 Control method and device for direct-blowing-preventing air conditioner, storage medium and computer equipment
CN109654701B (en) * 2018-12-29 2020-12-29 青岛海尔空调器有限总公司 Control method and device for direct-blowing-preventing air conditioner, storage medium and computer equipment
CN109737568B (en) * 2018-12-29 2021-03-16 青岛海尔空调器有限总公司 Control method and device for direct-blowing-preventing air conditioner, storage medium and computer equipment

Similar Documents

Publication Publication Date Title
KR102568116B1 (en) 2D SCANNING HIGH PRECISION LiDAR USING COMBINATION OF ROTATING CONCAVE MIRROR AND BEAM STEERING DEVICES
US4782239A (en) Optical position measuring apparatus
US5559603A (en) three-dimensional image measuring device
JP6781817B2 (en) Optical system for detecting the scanning range
JP2004526198A (en) Adjustable mirror for parallel beam laser sensor
JPH023150B2 (en)
US6600878B2 (en) Autofocus sensor
US7545492B2 (en) Sighting device and additional device for measuring, working, and/or operating with or without contact
JPH09113365A (en) Pyroelectric infrared sensor
JP2005121638A (en) Optoelectronic detection apparatus
GB2167206A (en) Apertured concave reflector optical system
JPH08261835A (en) Pyroelectric type infrared sensor
EP0461837B1 (en) Pyro-electric type infrared detector
US2742578A (en) Infrared image detecting system
JP3381233B2 (en) Autofocus device and focus adjustment method
JPH02157551A (en) Air conditioner
JPH0543363Y2 (en)
JP3127285B2 (en) Pyroelectric infrared detector
JPH08261833A (en) Pyroelectric type infrared detector
JPH0862049A (en) Thermal image detector
JPH09318440A (en) Infrared ray detector
JPH07104209B2 (en) Radiation thermometer
JP2936635B2 (en) Focus adjustment imaging method
KR19980019688A (en) Variable distance measuring device
JP2001174687A (en) Movable lens position detector