JPH09113047A - Stirling apparatus - Google Patents

Stirling apparatus

Info

Publication number
JPH09113047A
JPH09113047A JP26282495A JP26282495A JPH09113047A JP H09113047 A JPH09113047 A JP H09113047A JP 26282495 A JP26282495 A JP 26282495A JP 26282495 A JP26282495 A JP 26282495A JP H09113047 A JPH09113047 A JP H09113047A
Authority
JP
Japan
Prior art keywords
gas
side cylinder
heat regenerator
expansion
compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26282495A
Other languages
Japanese (ja)
Inventor
Takashi Inoue
貴至 井上
Keiichi Iwamoto
敬一 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP26282495A priority Critical patent/JPH09113047A/en
Publication of JPH09113047A publication Critical patent/JPH09113047A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2257/00Regenerators

Abstract

PROBLEM TO BE SOLVED: To provide a Starling apparatus which improves the performance by improving a heat regenerator disposed at the expansion side cylinder in a structure for improving the thermal storage performance in a two-piston drive type Stirling apparatus. SOLUTION: A plurality of gas impermeable partition plates 22 are obliquely provided in a cylindrical heat regenerator 20 to form the regenerator 20 by a plurality of oblique split pieces 21, which are so effectively used to increase the distance of the flow of gas due to the oblique flow of the compressed operating gas and expanded operating gas in the regenerator 20 to increase the thermal regenerating efficiency, thereby increasing the thermal storage amount.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ガス流路で膨張側
シリンダと圧縮側シリンダが連通している2ピストン駆
動型のスターリング機器に関し、特に膨張側シリンダに
配される筒状の熱再生器の蓄熱性能の向上を果たすため
の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a two-piston drive type Stirling machine in which an expansion side cylinder and a compression side cylinder communicate with each other through a gas flow path, and more particularly, a tubular heat regenerator arranged in the expansion side cylinder. To improve the heat storage performance of the.

【0002】[0002]

【従来の技術】図2は、2ピストン駆動型のスタリ−ン
グ機器の概略断面図であって、1は圧縮側シリンダ11
に内挿された圧縮用ピストン、2は膨張側シリンダ12
に内挿された膨張用ピストン、3は圧縮用ピストン1と
膨張用ピストン2を或る位相差を持って往復運動させる
クランク機構である駆動部、4は圧縮用ピストン1の前
方に形成されるガス圧縮空間、5は膨張用ピストン2の
前方に形成されるガス膨張空間を示している。6はガス
圧縮空間4とガス膨張空間5とを連通させるガス流路
で、このガス流路6には、ガス圧縮空間4側にギャップ
式熱交換器7を配設する一方、ガス膨張空間5側に熱再
生器8と熱交換器(放熱フィン)9とを配設している。
2. Description of the Related Art FIG. 2 is a schematic cross-sectional view of a two-piston drive type staring machine, wherein 1 is a compression side cylinder 11.
The compression piston 2 inserted in the
The expansion piston 3 inserted in the drive mechanism 3 is a crank mechanism that reciprocates the compression piston 1 and the expansion piston 2 with a certain phase difference, and the drive portion 4 is formed in front of the compression piston 1. A gas compression space 5 indicates a gas expansion space formed in front of the expansion piston 2. Reference numeral 6 denotes a gas flow path that connects the gas compression space 4 and the gas expansion space 5 to each other. In the gas flow path 6, a gap type heat exchanger 7 is arranged on the gas compression space 4 side, while the gas expansion space 5 is provided. A heat regenerator 8 and a heat exchanger (radiation fin) 9 are arranged on the side.

【0003】ここで、膨張側シリンダ12は、内側筒体
13と外側筒体14から成り、内側筒体13と外側筒体
14との間に前記ガス流路6および前記ガス膨張空間5
と連絡するように形成された環状空間15内に前記熱再
生器8が収納配設されている。
The expansion-side cylinder 12 is composed of an inner cylinder 13 and an outer cylinder 14, and the gas passage 6 and the gas expansion space 5 are provided between the inner cylinder 13 and the outer cylinder 14.
The heat regenerator 8 is housed in an annular space 15 formed so as to communicate with the heat regenerator.

【0004】そして前記環状空間15の底部には、ガス
流路6からの作動ガスが最初に流入するガス入口空間1
6が環状の空胴となって連設形成されており、そしてそ
のガス入口空間16の底面の一カ所にガス流入口17が
開口形成されている。従って、このガス流入口17から
流入した作動ガスは、そのガス入口空間16から立ち昇
って熱再生器8を通過してガス膨張空間5に流入するよ
うになっている。
At the bottom of the annular space 15, the gas inlet space 1 into which the working gas from the gas passage 6 first flows.
6 are formed as a ring-shaped cavity and are continuously formed, and a gas inlet 17 is formed at one location on the bottom surface of the gas inlet space 16. Therefore, the working gas flowing from the gas inlet 17 rises from the gas inlet space 16 and passes through the heat regenerator 8 to flow into the gas expansion space 5.

【0005】また圧縮側シリンダ11に設けられるギャ
ップ式熱交換器7は、そのシリンダの内側筒体の外周壁
と放熱フィンを有する外側筒体の内周壁との間にギャッ
プ部19を設けており、このギャップ部19を通過する
圧縮ガスが通過する際に熱を外部へ放出するようにして
いる。なお10は圧縮用ピストン1と膨張用ピストン2
との後方空間の背圧調整用の流路を示している。
The gap type heat exchanger 7 provided in the compression side cylinder 11 is provided with a gap portion 19 between the outer peripheral wall of the inner cylinder of the cylinder and the inner peripheral wall of the outer cylinder having radiating fins. The heat is released to the outside when the compressed gas passing through the gap portion 19 passes. 10 is a compression piston 1 and an expansion piston 2
The flow path for back pressure adjustment in the rear space of and is shown.

【0006】上記構成で、まず駆動部3が駆動すると、
圧縮用ピストン1がガス圧縮空間4側に移動してガス圧
縮空間4に充満するヘリウムや窒素等の液化しにくい作
動ガスが圧縮される。圧縮された作動ガスは、ギャップ
式熱交換器7で外気と熱交換され冷却される。そしてさ
らにガス流路6を介して作動ガスは、熱再生器8に流入
する。熱再生器8に流入した作動ガスは、内部の充填材
を通過する際に蓄熱され、作動ガスはガス膨張空間5へ
流入される。
With the above structure, when the driving unit 3 is driven first,
The compression piston 1 moves to the side of the gas compression space 4, and the working gas such as helium or nitrogen filling the gas compression space 4 that is difficult to liquefy is compressed. The compressed working gas is cooled by exchanging heat with the outside air in the gap type heat exchanger 7. Then, the working gas further flows into the heat regenerator 8 via the gas flow path 6. The working gas that has flowed into the heat regenerator 8 stores heat when passing through the filler inside, and the working gas flows into the gas expansion space 5.

【0007】その後、ガス膨張空間5の膨張用ピストン
2が圧縮用ピストン1とある位相差を持って降下してく
る。これによって、ガス膨張空間5が拡張されて熱再生
器8からガス膨張空間5へ流入した高圧の作動ガスが急
膨張して、作動ガスの圧力が急降下するため作動ガスが
低温となる。やがて、膨張用ピストン2が上昇を開始
し、圧縮用ピストン1が後退すると、低温となる作動ガ
スが熱再生器8を通ってガス圧縮空間4へ戻る。このと
き、熱再生器8では冷熱の蓄熱がされる。
After that, the expansion piston 2 in the gas expansion space 5 descends with a certain phase difference from the compression piston 1. As a result, the gas expansion space 5 is expanded, and the high-pressure working gas that has flowed into the gas expansion space 5 from the heat regenerator 8 expands rapidly, and the pressure of the working gas drops sharply, so that the working gas becomes a low temperature. Eventually, when the expansion piston 2 starts to rise and the compression piston 1 retracts, the working gas having a low temperature returns to the gas compression space 4 through the heat regenerator 8. At this time, cold heat is stored in the heat regenerator 8.

【0008】上記した工程によって、1つの熱サイクル
が終了し、この工程が駆動部の往復運動にによって繰り
返され、これにより、徐々に、ガス膨張空間の周辺の温
度が低温とされる。
By the above-mentioned steps, one heat cycle is completed, and this step is repeated by the reciprocating movement of the driving section, whereby the temperature around the gas expansion space is gradually lowered.

【0009】[0009]

【発明が解決しようとする課題】このように2シリンダ
間で圧縮作動ガスと膨張作動ガスを熱再生器8を経て往
き来させ、冷熱を取り出す2ピストン型スターリング機
器では、この熱再生器8により高温の圧縮作動ガスから
は高熱を、また低温の膨張作動ガスからは冷熱を奪うが
如き蓄熱されるが、その時の蓄熱量の多いほど、スター
リング機器の熱効率の良い稼働が行え、性能が向上する
こととなる。
As described above, in the two-piston type Stirling machine for taking out cold heat by letting the compressed working gas and the expanded working gas come and go between the two cylinders through the heat regenerator 8, the heat regenerator 8 is used. Heat is stored such that high temperature compressed working gas draws high heat and low temperature expanded working gas draws cold, but the larger the amount of heat stored at that time, the more efficiently the Stirling machine can operate and the better the performance. It will be.

【0010】そこで、熱再生器8の蓄熱量を増やすに
は、熱再生器8中を作動ガスが長い距離に亘って通過す
るようにすれば、熱再生器8が有効に使用されて熱再生
効率を向上できることとなる。その観点からして筒状の
熱再生器8の長さを長くすることが考えられる。
Therefore, in order to increase the amount of heat stored in the heat regenerator 8, the working gas is allowed to pass through the heat regenerator 8 over a long distance, so that the heat regenerator 8 is effectively used and the heat is regenerated. The efficiency can be improved. From this point of view, it is conceivable to increase the length of the tubular heat regenerator 8.

【0011】しかし、これら熱再生器8やガス流路6な
どガス圧縮空間とガス膨張空間との間に存在する構成部
が占める空間域は、圧縮された作動ガスがガス膨張空間
に送られ、また膨張した作動ガスがガス圧縮空間に戻る
際のガス留保部となって、2つのシリンダ間で往き来す
る有効ガス量を減らす死容積となってしまい、ガス圧縮
率を低下させスターリング機器の性能を悪くする原因と
なる。従って、上述したように長さを単純に長くした熱
再生器8はその容積の増大により、死容積も増えてしま
うため適策とは言えない。
However, in the space area occupied by the components existing between the gas compression space and the gas expansion space such as the heat regenerator 8 and the gas flow path 6, the compressed working gas is sent to the gas expansion space, Also, when the expanded working gas returns to the gas compression space, it becomes a gas retention part, which becomes a dead volume that reduces the amount of effective gas that flows between the two cylinders, reducing the gas compression rate and reducing the performance of the Stirling machine. It causes to worsen. Therefore, the heat regenerator 8 whose length is simply increased as described above cannot be said to be an appropriate measure because the dead volume also increases due to the increase in the volume.

【0012】本発明は、上述の点に鑑みて成されたもの
で、死容積を増やすことなく、熱再生効率を向上できる
ような熱再生器に改造して、性能を向上させたスターリ
ング機器を提供することを目的とする。
The present invention has been made in view of the above points, and a Stirling machine having improved performance by being modified into a heat regenerator capable of improving heat regeneration efficiency without increasing dead volume. The purpose is to provide.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
に、請求項1の発明は、膨張側シリンダを取り巻くよう
に設けた筒状の熱再生器を通して、圧縮側シリンダとの
間で圧縮作動ガスと膨張作動ガスがガス流路により行き
来して、前記膨張側シリンダから冷熱が取り出されるス
ターリング機器において、前記筒状の熱再生器に、斜め
に複数枚のガス不通性の仕切板を介入し、これ等仕切板
で分割された複数の前記熱再生器構成用の各分割片にガ
スを斜めに流通させるようにしたものである。
In order to achieve the above-mentioned object, the invention of claim 1 carries out a compression operation with a compression side cylinder through a tubular heat regenerator provided so as to surround the expansion side cylinder. In a Stirling machine in which gas and expansion working gas flow back and forth through a gas flow path and cold heat is taken out from the expansion side cylinder, a plurality of gas impermeable partition plates are obliquely interposed in the tubular heat regenerator. The gas is allowed to flow obliquely through each of the plurality of divided pieces for constituting the heat regenerator divided by the partition plates.

【0014】また請求項2の発明は、膨張側シリンダを
取り巻くように設けた筒状の熱再生器を通して、圧縮側
シリンダとの間で圧縮作動ガスと膨張作動ガスがガス流
路により行き来して、前記膨張側シリンダから冷熱が取
り出されるスターリング機器において、前記筒状の熱再
生器は、複数の斜め方向に切り割りして形成した分割片
が互いの隣の分割片との間にガス不通性の仕切板を介挿
させて、集合組立されてなるものである。
According to a second aspect of the invention, the compression working gas and the expansion working gas flow back and forth between the compression side cylinder and the compression side cylinder through the tubular heat regenerator provided so as to surround the expansion side cylinder. In the Stirling machine in which cold heat is taken out from the expansion side cylinder, the tubular heat regenerator has a gas-impermeable gap between split pieces formed by cutting in a plurality of diagonal directions. It is made by assembling and assembling by inserting a partition plate.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施例を図面に基
づいて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0016】図1に示すように、筒状の熱再生器20
を、その軸心方向pに対して適当の傾斜角度で斜め方向
に切って形成した複数の、実施例では4分割した分割片
21で構成する。そして、各分割片21と分割片21と
の間に、樹脂やプラスチックなど、ガスを通さない材質
で形成した仕切板22を介挿し、接着剤等を使用して各
仕切り板22と各分割片21とを相互に結着して筒状の
熱再生器20を形成する。
As shown in FIG. 1, a tubular heat regenerator 20.
Is formed by a plurality of divided pieces 21 which are formed by cutting in an oblique direction at an appropriate inclination angle with respect to the axial direction p, that is, four divided pieces 21 in the embodiment. Then, a partition plate 22 formed of a gas-impermeable material such as resin or plastic is inserted between each of the split pieces 21, and each partition plate 22 and each of the split pieces are bonded using an adhesive or the like. 21 and 21 are bonded to each other to form a tubular heat regenerator 20.

【0017】こうして構造的に、筒状の熱再生器20に
複数枚の仕切板22が斜めに入って、仕切板22で互い
に分断された複数枚の傾斜した分割片21を集合して構
成した熱再生器20であると、作動ガスが熱再生器20
を通る時、個々の分割片21においてその両端の仕切板
22、22に沿い図示矢印aに示すように斜めに流れる
ガス流の影響を強く受けて、作動ガスは個々の分割片2
1中を全体として斜めに流れて行くようになる。
Thus, structurally, a plurality of partition plates 22 are obliquely inserted into the tubular heat regenerator 20, and a plurality of inclined divided pieces 21 separated from each other by the partition plate 22 are assembled. With the heat regenerator 20, the working gas is the heat regenerator 20.
When passing through each of the divided pieces 21, the working gas is strongly affected by the gas flow obliquely flowing along the partition plates 22, 22 at both ends of the divided pieces 21 as shown by the arrow a in the figure.
As a whole, the inside of 1 will flow diagonally.

【0018】このように作動ガスが熱再生器20中を斜
めに流れる結果、作動ガスの流れる距離が長くなり、熱
再生器20で蓄熱される蓄熱量が増え、同じ高さの熱再
生器を真っ直ぐにガスが流れて行く場合に比較して、熱
再生効率を上昇させることができる。
As a result of the working gas obliquely flowing in the heat regenerator 20 as described above, the working gas flowing distance becomes longer, the amount of heat stored in the heat regenerator 20 increases, and the heat regenerator of the same height is used. As compared with the case where the gas flows straight, the heat regeneration efficiency can be increased.

【0019】また作動ガスの通過距離が長くなっても、
それが従来考えられていた筒状の熱再生器を縦に長く伸
ばすものではないので、容積的に増える心配は無く、再
生効率を減らすという死容積の増大を招かず、スターリ
ング機器の性能向上に貢献できるようになる。
Further, even if the working gas passage distance becomes long,
Since it does not extend the conventionally thought cylindrical heat regenerator vertically long, there is no concern about increase in volume, it does not lead to increase in dead volume by reducing regeneration efficiency, and improves performance of Stirling equipment. You will be able to contribute.

【0020】[0020]

【発明の効果】以上のように本発明の請求項1によれ
ば、膨張側シリンダを取り巻くように設けた筒状の熱再
生器を通して、圧縮側シリンダとの間で圧縮作動ガスと
膨張作動ガスがガス流路により行き来して、膨張側シリ
ンダから冷熱が取り出されるスターリング機器におい
て、熱再生器中に斜めに樹脂あるいはプラスチック等か
ら形成したガス不通性の仕切板を介入して、熱再生器を
複数の傾斜した分割片の集合構成体としたので、熱再生
器を流れるガスは個々の傾斜した分割片の中を斜めに流
れて行くようになり、ガスの流れる距離が長くなって、
熱再生器が有効に使われ蓄熱量が増え熱再生効率を向上
させることができる。
As described above, according to the first aspect of the present invention, the compression working gas and the expansion working gas are passed between the compression side cylinder and the compression side cylinder through the tubular heat regenerator provided so as to surround the expansion side cylinder. In the Stirling machine where the heat flow comes and goes from the expansion side cylinder through the gas flow path, the heat regenerator is inserted by diagonally interposing a gas impermeable partition plate formed of resin or plastic in the heat regenerator. Since it is a collective structure of a plurality of inclined divided pieces, the gas flowing through the heat regenerator flows obliquely in each inclined divided piece, and the gas flowing distance becomes long,
The heat regenerator is effectively used to increase the amount of heat storage and improve the heat regeneration efficiency.

【0021】また、熱再生効率を上げるのに有利なガス
を長い距離で流すことが、容積的に増えてしまうという
筒状の熱再生器を縦に長く伸ばす方法を採らずして達成
できるので、容積の抑制された本発明の熱再生器であれ
ば、スターリング機器のガス圧縮比を下げる死容積の増
加を招かずに、性能を向上させることのできるスターリ
ング機器を提供できる。
Further, the flow of a gas advantageous for increasing the heat regeneration efficiency over a long distance can be achieved without adopting the method of vertically extending the cylindrical heat regenerator, which is increased in volume. With the heat regenerator of the present invention whose volume is suppressed, it is possible to provide a Stirling machine capable of improving the performance without inviting an increase in the dead volume that lowers the gas compression ratio of the Stirling machine.

【0022】さらにまた、請求項2によれば、筒状の熱
再生器は、複数の斜め方向に切り割りして形成した分割
片を互いにその間にガス不通性の仕切板を介挿させて、
接着剤で結着すれば簡単に形成できるものであり、格別
に複雑な構造とならないで、部品点数も少しで安価にか
つ容易に作れるようになる。
According to a second aspect of the present invention, in a tubular heat regenerator, a plurality of divided pieces formed by cutting in an oblique direction are formed by interposing gas-impermeable partition plates between them.
It can be easily formed by binding with an adhesive, does not have a particularly complicated structure, and has a small number of parts and can be easily manufactured at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】複数の傾斜した分割片で形成した本発明の熱再
生器の構造斜視図。
FIG. 1 is a structural perspective view of a heat regenerator of the present invention formed by a plurality of inclined divided pieces.

【図2】2ピストン駆動型スターリング機器の概略断面
図。
FIG. 2 is a schematic sectional view of a two-piston driven Stirling machine.

【符号の説明】[Explanation of symbols]

1 圧縮用ピストン 2 膨張用ピストン 4 ガス圧縮空間 5 ガス膨張空間 6 ガス流路 8 熱再生器 11 圧縮側シリンダ 12 膨張側シリンダ 20 熱再生器 21 分割片 22 仕切板 1 compression piston 2 expansion piston 4 gas compression space 5 gas expansion space 6 gas flow path 8 heat regenerator 11 compression side cylinder 12 expansion side cylinder 20 heat regenerator 21 split piece 22 partition plate

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 膨張側シリンダを取り巻くように設けた
筒状の熱再生器を通して、圧縮側シリンダとの間で圧縮
作動ガスと膨張作動ガスがガス流路により行き来して、
前記膨張側シリンダから冷熱が取り出されるスターリン
グ機器において、前記筒状の熱再生器に斜めに複数枚の
ガス不通性の仕切板を介入し、これ等仕切板で分割され
た複数の前記熱再生器構成用の各分割片にガスを斜めに
流通させたことを特徴とするスターリング機器。
1. The compression working gas and the expansion working gas flow back and forth between the compression side cylinder and the compression side cylinder through a tubular heat regenerator provided so as to surround the expansion side cylinder,
In a Stirling machine in which cold heat is taken out from the expansion side cylinder, a plurality of gas impermeable partition plates are obliquely intervened in the tubular heat regenerator, and the plurality of heat regenerators divided by these partition plates. A Stirling machine characterized in that gas is circulated obliquely through each of the divided pieces for construction.
【請求項2】 膨張側シリンダを取り巻くように設けた
筒状の熱再生器を通して、圧縮側シリンダとの間で圧縮
作動ガスと膨張作動ガスがガス流路により行き来して、
前記前記膨張側シリンダから冷熱が取り出されるスター
リング機器において、前記筒状の熱再生器は、複数の斜
め方向に切り割りして形成した分割片が互いの隣の分割
片との間にガス不通性の仕切板を介挿させて、結着集合
組立されて成ることを特徴とするスターリング機器。
2. The compression working gas and the expansion working gas move back and forth between the compression side cylinder and the compression side cylinder through a tubular heat regenerator provided so as to surround the expansion side cylinder,
In a Stirling machine in which cold heat is taken out from the expansion side cylinder, the tubular heat regenerator has a gas-impermeable gap between split pieces formed by cutting in a plurality of diagonal directions. A Stirling machine characterized by being assembled by binding and inserting a partition plate.
JP26282495A 1995-10-11 1995-10-11 Stirling apparatus Pending JPH09113047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26282495A JPH09113047A (en) 1995-10-11 1995-10-11 Stirling apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26282495A JPH09113047A (en) 1995-10-11 1995-10-11 Stirling apparatus

Publications (1)

Publication Number Publication Date
JPH09113047A true JPH09113047A (en) 1997-05-02

Family

ID=17381128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26282495A Pending JPH09113047A (en) 1995-10-11 1995-10-11 Stirling apparatus

Country Status (1)

Country Link
JP (1) JPH09113047A (en)

Similar Documents

Publication Publication Date Title
CN1826497A (en) Stirling engine
US5214923A (en) Vuilleumier heat pump
US5632149A (en) Heat exchanger for a gas compression/expansion apparatus and a method of manufacturing thereof
JPH07293334A (en) External combustion engine
JP2000220897A (en) Regenerator for stirling engine
US6779342B2 (en) Stirling engine
EP1422484A1 (en) Regenerator, and heat regenerative system for fluidized gas using the regenerator
KR20010083614A (en) Aftercooler and its manufacturing mathod for pulse tube refrigerator
JPH09113047A (en) Stirling apparatus
US5259197A (en) Compression type heat pump
JP2828937B2 (en) Heat exchanger for gas compression / expansion machine and method for manufacturing the same
JP3776276B2 (en) Stirling cycle and heat exchanger
JP3263566B2 (en) Gap heat exchanger for Stirling equipment
JPH05306846A (en) Stirling refrigerator
JP3363697B2 (en) Refrigeration equipment
JP3258872B2 (en) Stirling equipment
JP2004132696A (en) Regenerator for stirling engine
JPH09152214A (en) Piston for external combustion engine
JP7195561B1 (en) Rotating take-out device and generator
JP2877733B2 (en) Gas compressor
JPH07269969A (en) Vuilleumier heat pump
KR100472636B1 (en) Stirling cycle heat machinery
JP2603683B2 (en) Hot side heat exchanger of Stirling cycle engine
JP2003028527A (en) Internal heat exchanger for stirling engine, and stirling refrigerating machine
JPH0719633A (en) External combustion engine