JPH09112802A - Bed-ash cooling apparatus for pressurized fluid boiler - Google Patents

Bed-ash cooling apparatus for pressurized fluid boiler

Info

Publication number
JPH09112802A
JPH09112802A JP27276095A JP27276095A JPH09112802A JP H09112802 A JPH09112802 A JP H09112802A JP 27276095 A JP27276095 A JP 27276095A JP 27276095 A JP27276095 A JP 27276095A JP H09112802 A JPH09112802 A JP H09112802A
Authority
JP
Japan
Prior art keywords
bed
ash
hopper
bed ash
feed water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27276095A
Other languages
Japanese (ja)
Inventor
Seiji Wada
誠治 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP27276095A priority Critical patent/JPH09112802A/en
Publication of JPH09112802A publication Critical patent/JPH09112802A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the plant efficiency of a pressurized fluid bed boiler by disposing an in-bed evaporator partially in a bed-ash storage hopper to cool the bed ash with high pressure feedwater. SOLUTION: A bed-ash cooling apparatus for a pressurized fluid bed boiler comprises a fluid bed boiler body 2 disposed in a pressure vessel 1 and having a diffuser pipe 3 and an in-bed evaporator 8 provided therein, and a bed-ash storage hopper 45 provided in the bottom of the fluid bed boiler body 2 for storing bed ash 6 and having a bed-ash discharge valve 43 through which the bed ash 6 stored therein is discharged to the underside thereof, thereby cooling the ash 6 in the bed-ash storage hopper 45. The bed-ash cooling apparatus further comprises an in-hopper evaporator 46 disposed within the bed-ash storage hopper 45 for introducing therein high pressure feedwater 40 which is heated by heat exchange with the ash 6 in the bed-ash storage hopper 45 and then feeding the heated high pressure feedwater 40 into the in-bed evaporator 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、流動層ボイラ本体
内のベッド灰を外部に取り出す際に、ベッド灰溜めホッ
パを介して冷却するための加圧流動層ボイラのベッド灰
冷却装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bed ash cooling device for a pressurized fluidized bed boiler for cooling the bed ash in a fluidized bed boiler body to the outside through a bed ash reservoir hopper. is there.

【0002】[0002]

【従来の技術】図2は従来の加圧流動層ボイラの一例を
示したもので、内部が加圧空気1aの供給によって加圧
雰囲気になっている圧力容器1の中に流動層ボイラ本体
2が設けられていて、流動層ボイラ本体2の下部内側に
は散気管3が配置されている。
2. Description of the Related Art FIG. 2 shows an example of a conventional pressurized fluidized bed boiler, in which a fluidized bed boiler main body 2 is placed in a pressure vessel 1 whose interior is under a pressurized atmosphere by the supply of pressurized air 1a. Is provided, and the air diffusing pipe 3 is arranged inside the lower portion of the fluidized bed boiler body 2.

【0003】散気管3の上部には砂等が供給されてお
り、更に石炭燃料4と石灰石等の脱硫材5が供給され、
空気取入口3aから散気管3に取入れられて上側に噴出
される加圧空気1aにより流動化されることによって撹
拌されて効率良く燃焼され、このとき前記石炭燃料4の
燃焼による燃焼灰、石灰石、砂等が混合したベッド灰6
によって形成される例えば約860℃の層温度の流動層
7により、該流動層7内に設置された層内蒸発器8、及
び再熱器9の加熱を行うようになっている。
Sand and the like are supplied to the upper part of the air diffuser 3, and further coal fuel 4 and desulfurization material 5 such as limestone are supplied,
It is agitated and efficiently burned by being fluidized by the pressurized air 1a which is taken into the air diffuser 3 from the air intake 3a and jetted upward, and at this time, combustion ash, limestone, and ash due to the combustion of the coal fuel 4 Bed ash mixed with sand 6
The in-bed evaporator 8 and the reheater 9 installed in the fluidized bed 7 are heated by the fluidized bed 7 having a bed temperature of, for example, about 860 ° C.

【0004】層内蒸発器8、及び再熱器9を加熱した燃
焼排ガス1bは、サイクロン10で除塵された後、圧力
容器1の外部に出てセラミックフィルタ11により更に
除塵され、高圧ガスタービン12、及び低圧ガスタービ
ン13に順次導かれ、続いて脱硝装置14、排ガスクー
ラ(節炭器)15を経て煙突16に導かれるようになっ
ている。図中10aは集塵されて外部に吸引排出される
灰を加圧空気1aによって冷却する灰クーラを示す。
The combustion exhaust gas 1b that has heated the in-layer evaporator 8 and the reheater 9 is dedusted by the cyclone 10, then goes out of the pressure vessel 1 and is further dedusted by the ceramic filter 11, and the high pressure gas turbine 12 is used. , And the low-pressure gas turbine 13, and then to the chimney 16 through the denitration device 14 and the exhaust gas cooler (coal saver) 15. In the figure, 10a indicates an ash cooler for cooling the ash that is collected and sucked and discharged to the outside by the pressurized air 1a.

【0005】前記高圧ガスタービン12には、高圧コン
プレッサ17及びガスタービン発電機18が同軸上に備
えられ、また、低圧ガスタービン13には低圧コンプレ
ッサ19が同軸上に備えられており、低圧コンプレッサ
19により吸引されて一次加圧された空気は、インター
クーラ20で冷却された後、高圧コンプレッサ17で二
次加圧されて加圧空気1aとなって前記圧力容器1に供
給されるようになっている。
The high pressure gas turbine 12 is coaxially provided with a high pressure compressor 17 and a gas turbine generator 18, and the low pressure gas turbine 13 is coaxially provided with a low pressure compressor 19. The air that has been sucked by and is primarily pressurized is cooled by the intercooler 20 and then secondarily pressurized by the high-pressure compressor 17 to become pressurized air 1a, which is supplied to the pressure vessel 1. There is.

【0006】前記圧力容器1の外部には、高圧蒸気ター
ビン21と、中圧蒸気タービン22と、低圧蒸気タービ
ン23と、蒸気タービン発電機24とが同軸上に配置さ
れており、前記流動層ボイラ本体2内の層内蒸発器8か
らの例えば225K、596℃の主蒸気25が高圧蒸気
タービン21に導かれて仕事をし、その後再熱器9に導
かれて再熱されることにより例えば46K、595℃の
再熱蒸気26とになって中圧蒸気タービン22に導かれ
て仕事をし、更にその後低圧蒸気タービン23に導かれ
て蒸気タービン発電機24を駆動した後、復水器27に
導かれ、循環水ポンプ28によって循環されている冷却
水29により冷却されて復水し、復水ポンプ30により
例えば20K、34℃の低圧給水31となって低圧給水
ヒータ導管35aを介して低圧給水ヒータ32,33に
供給され、前記低圧蒸気タービン23から抽気された低
圧抽気34により加熱が行われて例えば7K、140℃
の低圧給水31’となって脱気器36に導入されるよう
になっている。
A high-pressure steam turbine 21, an intermediate-pressure steam turbine 22, a low-pressure steam turbine 23, and a steam turbine generator 24 are coaxially arranged outside the pressure vessel 1, and the fluidized bed boiler is used. For example, the main steam 25 of 225 K and 596 ° C. from the in-layer evaporator 8 in the main body 2 is guided to the high-pressure steam turbine 21 to perform work, and then is guided to the reheater 9 to be reheated, for example, 46 K, It becomes the reheated steam 26 of 595 ° C. and is guided to the intermediate pressure steam turbine 22 for work, and then is guided to the low pressure steam turbine 23 to drive the steam turbine generator 24 and then to the condenser 27. Then, the water is cooled by the cooling water 29 circulated by the circulating water pump 28 to condense, and the condensate pump 30 forms the low pressure feed water 31 at 20 K and 34 ° C., for example, and the low pressure feed heater conduit 35a. Through is supplied to the low-pressure feed water heater 32, the is performed heated by low pressure steam turbine 23 low pressure bleed air 34 bled from the example 7K, 140 ° C.
The low-pressure feed water 31 ′ is introduced into the deaerator 36.

【0007】また、前記復水ポンプ30からの低圧給水
31の一部が、インタークーラ導管35bを介して前記
インタークーラ20に導かれて前記低圧コンプレッサ1
9にて一次加圧された空気により加熱されて例えば7
K、140℃の低圧給水31’となり、インタークーラ
導管35bからの低圧給水31’と前記低圧給水ヒータ
導管35aからの低圧給水31’が共に脱気器36に供
給されて、前記中圧蒸気タービン22から抽気された中
圧抽気37により脱気されるようになっている。
Further, a part of the low pressure feed water 31 from the condensate pump 30 is guided to the intercooler 20 via an intercooler conduit 35b, and the low pressure compressor 1 is introduced.
It is heated by the air that is primarily pressurized at 9
K, 140 ° C. low-pressure feed water 31 ′, low-pressure feed water 31 ′ from the intercooler conduit 35 b and low-pressure feed water 31 ′ from the low-pressure feed water heater conduit 35 a are both supplied to the deaerator 36, and the medium-pressure steam turbine The medium pressure bleed air 37 bleed from 22 is used for degassing.

【0008】脱気器36にて脱気された給水は、給水ポ
ンプ38により加圧されて排ガスクーラ導管39により
前記排ガスクーラ15に導かれて燃焼排ガス1bにより
加熱され、例えば300K、320℃の高圧給水40と
して前記流動層ボイラ本体2内部の層内蒸発器8に入口
ヘッダ8aを介して供給されるようになっている。層内
蒸発器8に供給された高圧給水40は、層内蒸発器8内
で蒸気となり、前記主蒸気25となって高圧蒸気タービ
ン21に供給されるようになっている。
The feed water degassed by the deaerator 36 is pressurized by the water feed pump 38, guided to the exhaust gas cooler 15 by the exhaust gas cooler conduit 39, and heated by the combustion exhaust gas 1b, for example, at 300 K and 320 ° C. The high-pressure feed water 40 is supplied to the in-layer evaporator 8 inside the fluidized-bed boiler body 2 via the inlet header 8a. The high-pressure feed water 40 supplied to the in-layer evaporator 8 becomes steam in the in-layer evaporator 8 and becomes the main steam 25 and is supplied to the high-pressure steam turbine 21.

【0009】前記石炭燃料4の燃焼によって生じたベッ
ド灰6は、流動層7に残留することになるため、加圧流
動層ボイラの運転の継続により流動層7の層高が次第に
高くなってしまう。このため、前記増加した分のベッド
灰6は加圧流動層ボイラから外部に排出する必要があ
る。
Since the bed ash 6 generated by the combustion of the coal fuel 4 remains in the fluidized bed 7, the bed height of the fluidized bed 7 gradually increases due to the continued operation of the pressurized fluidized bed boiler. . Therefore, the increased amount of bed ash 6 needs to be discharged to the outside from the pressurized fluidized bed boiler.

【0010】上記ベッド灰6を加圧流動層ボイラから外
部に排出するために、図2に示すように、流動層ボイラ
本体2の底部にベッド灰溜めホッパ41を形成するよう
にしており(図示の場合は2個)、該ベッド灰溜めホッ
パ41の下部に接続したベッド灰取出管42の下端にベ
ッド灰取出弁43を設け、該ベッド灰取出弁43の下側
に、図示しないLバルブ等のベッド灰排出装置を備える
ようにしている。
In order to discharge the bed ash 6 from the pressurized fluidized bed boiler to the outside, a bed ash reservoir hopper 41 is formed at the bottom of the fluidized bed boiler main body 2 as shown in FIG. 2), a bed ash extraction valve 43 is provided at the lower end of the bed ash extraction pipe 42 connected to the bottom of the bed ash storage hopper 41, and an L valve or the like not shown is provided below the bed ash extraction valve 43. It is equipped with a bed ash discharge device.

【0011】層温度約860℃の流動層7からベッド灰
溜めホッパ41内に移動するベッド灰6の温度はほぼ層
温度に近く、この高温のベッド灰6をそのままベッド灰
排出装置に取り出すにはベッド灰取出弁43等が温度的
にもたないために、ベッド灰取出弁43などを炭素鋼等
の通常材料として安価に実施できるようにするために3
50℃以下に冷却することが要求される。
The temperature of the bed ash 6 moving from the fluidized bed 7 having a bed temperature of about 860 ° C. into the bed ash reservoir hopper 41 is almost close to the bed temperature, and this hot bed ash 6 can be directly taken out to the bed ash discharging device. Since the bed ash extraction valve 43 and the like have no temperature, the bed ash extraction valve 43 and the like can be inexpensively implemented as a normal material such as carbon steel.
Cooling to 50 ° C or lower is required.

【0012】このために、従来は、前記ベッド灰溜めホ
ッパ41内に、加圧流動層ボイラとは別系統の図示しな
い冷却空気或いは冷却水等の冷却流体を供給してベッド
灰6を冷却するようにしたベッド灰冷却器を備えること
が行われた。
For this reason, conventionally, the bed ash 6 is cooled by supplying a cooling fluid such as cooling air or cooling water (not shown) of a system different from that of the pressurized fluidized bed boiler into the bed ash reservoir hopper 41. A bed ash cooler was made to do so.

【0013】しかし、前記したように加圧流動層ボイラ
と別系統の冷却流体を供給してベッド灰6の冷却を行っ
た場合には、ベッド灰6の熱を単に無駄に捨てることに
なってしまうために、加圧流動層ボイラの熱効率の面で
問題を有していた。
However, as described above, when the cooling fluid of the system different from that of the pressurized fluidized bed boiler is supplied to cool the bed ash 6, the heat of the bed ash 6 is simply wasted. Therefore, there is a problem in the thermal efficiency of the pressurized fluidized bed boiler.

【0014】このため、近年では、前記ベッド灰溜めホ
ッパ41内に伝熱管による低圧給水ベッド灰冷却器44
を設け、該低圧給水ベッド灰冷却器44に、前記復水ポ
ンプ30出口の低圧給水31の一部を、冷却器導管35
c及び入口ヘッダ31aを介して供給し、また低圧給水
ベッド灰冷却器44で熱回収を行った低圧給水31’
は、出口ヘッダ31b及び冷却器導管35cを介して、
脱気器36の入側で他の低圧給水31’と合流させるよ
うにしたものが実施されるようになってきている。
For this reason, in recent years, a low-pressure water supply bed ash cooler 44 using a heat transfer tube in the bed ash storage hopper 41 is used.
The low-pressure feed water ash cooler 44 is provided with a part of the low-pressure feed water 31 at the outlet of the condensate pump 30 and a cooler conduit 35.
c) and the inlet header 31a, and the low-pressure feed water ash cooler 44 heat-recovers the low-pressure feed water 31 '.
Through the outlet header 31b and the cooler conduit 35c,
It has been practiced to implement a device in which the other side of the low-pressure feed water 31 'is joined on the inlet side of the deaerator 36.

【0015】上記したように、復水ポンプ30からの低
圧給水31の一部を、ベッド灰溜めホッパ41に設けた
低圧給水ベッド灰冷却器44に供給することにより、ベ
ッド灰6の冷却を行って、ベッド灰取出管42から取り
出されるベッド灰6の温度を350℃以下に冷却してベ
ッド灰取出弁43などを高温から保護すると共に、ベッ
ド灰6の温度を更に150℃程度まで冷却してベッド灰
6の熱を回収することにより、加圧流動層ボイラの熱効
率を向上させることが行われている。
As described above, the bed ash 6 is cooled by supplying a part of the low pressure feed water 31 from the condensate pump 30 to the low pressure feed water bed ash cooler 44 provided in the bed ash reservoir hopper 41. Then, the temperature of the bed ash 6 taken out from the bed ash extraction pipe 42 is cooled to 350 ° C. or lower to protect the bed ash extraction valve 43 and the like from high temperature, and the temperature of the bed ash 6 is further cooled to about 150 ° C. The heat efficiency of the pressurized fluidized bed boiler is improved by collecting the heat of the bed ash 6.

【0016】[0016]

【発明が解決しようとする課題】しかし、図2に示した
ように、ベッド灰溜めホッパ41に低圧給水ベッド灰冷
却器44を配置して、復水ポンプ30からの低圧給水3
1の一部を供給することによりベッド灰6を冷却するよ
うにしている方式においては、前記ベッド灰溜めホッパ
41内の860℃程度のベッド灰6を350℃〜150
℃程度まで冷却するには、復水ポンプ30から多量の低
圧給水31を冷却器導管35cにより低圧給水ベッド灰
冷却器44に供給する必要があり、このために復水ポン
プ30から低圧給水ヒータ32に供給される低圧給水3
1の流量が減少し、低圧蒸気タービン23から低圧給水
ヒータ32に抽気される低圧抽気34の供給量が減少す
ることになり、よって低圧蒸気タービン23から復水器
27に排出される蒸気量が増加し、これにより復水器2
7によって冷却水29に捨てられる熱量が増加すること
になって、再生サイクルを構成している加圧流動層ボイ
ラ全体のプラント効率が低下してしまう問題があった。
However, as shown in FIG. 2, a low-pressure feed water bed ash cooler 44 is arranged in the bed ash reservoir hopper 41, and the low-pressure feed water 3 from the condensate pump 30 is provided.
In the system in which the bed ash 6 is cooled by supplying a part of the ash 6, the bed ash 6 at about 860 ° C. in the bed ash storage hopper 41 is 350 ° C. to 150 ° C.
In order to cool to about ℃, it is necessary to supply a large amount of low pressure feed water 31 from the condensate pump 30 to the low pressure feed bed ash cooler 44 via the cooler conduit 35c. Low-pressure water supply 3
The flow rate of 1 decreases, and the supply amount of the low pressure extraction air 34 extracted from the low pressure steam turbine 23 to the low pressure feed water heater 32 decreases. Therefore, the amount of steam discharged from the low pressure steam turbine 23 to the condenser 27 is reduced. Increased, which caused condenser 2
Since the amount of heat to be discarded in the cooling water 29 increases due to No. 7, there is a problem that the plant efficiency of the entire pressurized fluidized bed boiler that constitutes the regeneration cycle decreases.

【0017】本発明は、ベッド灰溜めホッパ内に層内蒸
発器の一部を設置するようにして、高圧給水によりベッ
ド灰を冷却することによって、加圧流動層ボイラのプラ
ント効率を向上させるようにした加圧流動層ボイラのベ
ッド灰冷却装置を提供することを目的とするものであ
る。
The present invention improves the plant efficiency of a pressurized fluidized bed boiler by installing a part of the in-bed evaporator in the bed ash storage hopper and cooling the bed ash by high-pressure feed water. It is an object of the present invention to provide a bed ash cooling device for a pressurized fluidized bed boiler.

【0018】[0018]

【課題を解決するための手段】本発明は、散気管及び層
内蒸発器を内部に備えた流動層ボイラ本体を圧力容器内
に配置し、且つ前記流動層ボイラ本体の底部に、ベッド
灰を貯留し貯留したベッド灰をベッド灰取出弁を介して
下部に取り出すようにしたベッド灰溜めホッパを設けて
該灰溜めホッパ内のベッド灰を冷却するようにしている
加圧流動層ボイラのベッド灰冷却装置であって、前記ベ
ッド灰溜めホッパ内に、高圧給水を供給して前記ベッド
灰溜めホッパ内のベッド灰と熱交換して加熱し、加熱後
の高圧給水を前記層内蒸発器に導くようにしたホッパ内
蒸発器を配置したことを特徴とする加圧流動層ボイラの
ベッド灰冷却装置、に係るものである。
According to the present invention, a fluidized bed boiler main body having an air diffuser and an in-layer evaporator is arranged in a pressure vessel, and bed ash is placed at the bottom of the fluidized bed boiler main body. A bed ash of a pressurized fluidized bed boiler is provided with a bed ash reservoir hopper configured to take out the stored bed ash to a lower portion via a bed ash extraction valve to cool the bed ash in the ash reservoir hopper. A cooling device, which supplies high-pressure feed water into the bed ash storage hopper to exchange heat with the bed ash in the bed ash storage hopper for heating, and guides the high-pressure feed water after heating to the intra-layer evaporator. The present invention relates to a bed ash cooling device for a pressurized fluidized bed boiler, in which the evaporator in the hopper as described above is arranged.

【0019】また、ベッド灰溜めホッパ内に配置したホ
ッパ内蒸発器の下側に、復水ポンプ出口の低圧給水の一
部を供給して熱交換する低圧給水ベッド灰冷却器を備え
ていることを特徴とするものである。
Further, a low-pressure feed water bed ash cooler for supplying a part of the low-pressure feed water at the outlet of the condensate pump and exchanging heat is provided below the evaporator in the hopper arranged in the bed ash storage hopper. It is characterized by.

【0020】本発明では、ベッド灰溜めホッパ内に、層
内蒸発器の一部を構成するようにしたホッパ内蒸発器を
設置し、該ホッパ内蒸発器に高圧給水を導いてベッド灰
溜めホッパ内のベッド灰の冷却を行い、該冷却によって
温度と圧力が高められた高圧給水を層内蒸発器に導くよ
うにしているので、ベッド灰溜めホッパ内のベッド灰の
熱を高圧給水により有効に回収して直ちに蒸気を発生さ
せることができ、よって上記熱回収した分の石炭燃料を
節約することができ、加圧流動層ボイラのプラント効率
を向上させることができる。
According to the present invention, an in-hopper evaporator that constitutes a part of the in-layer evaporator is installed in the bed ash-storing hopper, and high-pressure feed water is introduced to the in-hopper evaporator to inject the bed-ash-storing hopper. The bed ash inside is cooled, and the high-pressure feed water whose temperature and pressure are increased by the cooling is guided to the in-layer evaporator, so the heat of the bed ash in the bed ash reservoir hopper is effectively supplied by the high-pressure feed water. Steam can be generated immediately after recovery, and therefore, the coal fuel for the heat recovery can be saved, and the plant efficiency of the pressurized fluidized bed boiler can be improved.

【0021】又、ベッド灰溜めホッパ内に設置したホッ
パ内蒸発器の下側に復水ポンプ出口の低圧給水の一部を
供給して熱交換する低圧給水ベッド灰冷却器を備えるよ
うにすると、ホッパ内蒸発器によって冷却されたベッド
灰を更に低温の所定温度まで冷却することができ、更に
ベッド灰は前記ホッパ内蒸発器によって冷却されていて
ベッド灰を冷却するのに要する低圧給水の流量は少なく
て済むので、低圧蒸気タービンからの低圧給水ヒータへ
の低圧抽気の抽気量を確保して加圧流動層ボイラのプラ
ント効率を高く保持することができる。
Further, when a low pressure feed water bed ash cooler for supplying heat to a part of the low pressure feed water at the outlet of the condensate pump and exchanging heat is provided below the evaporator in the hopper installed in the bed ash storage hopper, The bed ash cooled by the evaporator in the hopper can be cooled to a lower predetermined temperature, and the bed ash is cooled by the evaporator in the hopper, and the flow rate of low-pressure feed water required to cool the bed ash is Since the amount is small, it is possible to secure the extraction amount of the low-pressure extraction air from the low-pressure steam turbine to the low-pressure feed water heater and maintain the plant efficiency of the pressurized fluidized bed boiler high.

【0022】[0022]

【発明の実施の形態】以下、本発明の実施の形態例を図
を参照して説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0023】図1は本発明の実施の形態例を示す系統図
であって、図2と同一の構成部分には同一の符号を付し
て、詳細な説明は省略する。
FIG. 1 is a system diagram showing an embodiment of the present invention. The same components as those in FIG. 2 are designated by the same reference numerals and detailed description thereof will be omitted.

【0024】図1に示すように、流動層ボイラ本体2の
下部に、下方に延長して形成したベッド灰溜めホッパ4
5が2個形成されており、該ベッド灰溜めホッパ45の
下部にはベッド灰取出弁43を備えたベッド灰取出管4
2が接続されている。
As shown in FIG. 1, a bed ash-storing hopper 4 is formed in a lower portion of a fluidized bed boiler main body 2 so as to extend downward.
The bed ash extraction pipe 4 is provided with two bed ash collecting valves 43 at the bottom of the bed ash storage hopper 45.
2 are connected.

【0025】前記ベッド灰溜めホッパ45の内側上部に
は、流動層ボイラ本体2内に備えられている層内蒸発器
8の一部を構成するようにしたホッパ内蒸発器46を設
置している。該ホッパ内蒸発器46は、下側の入口ヘッ
ダ47には、前記排ガスクーラ15に導いて加熱した後
の高圧給水40を導く排ガスクーラ導管39が接続され
ており、また上側の出口ヘッダ48は、連絡管49を介
して層内蒸発器8の下側の入口ヘッダ8aに接続されて
いる。
An in-hopper evaporator 46, which constitutes a part of the in-layer evaporator 8 provided in the fluidized bed boiler main body 2, is installed in the upper part of the inside of the bed ash storage hopper 45. . In the in-hopper evaporator 46, a lower inlet header 47 is connected to an exhaust gas cooler conduit 39 that guides the high-pressure feed water 40 to the exhaust gas cooler 15 after being heated, and an upper outlet header 48 is connected to the outlet header 48. , Is connected to the lower inlet header 8a of the intra-layer evaporator 8 via the connecting pipe 49.

【0026】また、前記ベッド灰溜めホッパ45内にお
けるホッパ内蒸発器46の下部には、図2に示したと同
様に、伝熱管による低圧給水ベッド灰冷却器44を設
け、該低圧給水ベッド灰冷却器44に、前記復水ポンプ
30からの低圧給水31の一部を冷却器導管35cを介
して供給し、また低圧給水ベッド灰冷却器44で熱回収
した低圧給水31’は、脱気器36の入側で他の低圧給
水31’と合流させるようにしている。
A low pressure feed water bed ash cooler 44 using a heat transfer tube is provided below the evaporator 46 in the hopper in the bed ash reservoir hopper 45, as shown in FIG. 2, to cool the low pressure feed water bed ash. A part of the low-pressure feed water 31 from the condensate pump 30 is supplied to the cooler 44 through the cooler conduit 35c, and the low-pressure feed water 31 'recovered by the low-pressure feed water ash cooler 44 is used as the deaerator 36. It is arranged to join the other low-pressure feed water 31 'on the inlet side of the.

【0027】次に、上述した装置の作用を説明する。Next, the operation of the above-mentioned device will be described.

【0028】流動層ボイラ本体2下部に形成したベッド
灰溜めホッパ45内に、層内蒸発器8の一部を構成する
ようにしたホッパ内蒸発器46を設置し、該ホッパ内蒸
発器46に高圧給水40を導いてベッド灰溜めホッパ4
5内のベッド灰6の冷却を行い、該冷却によって温度と
圧力が高められた高圧給水40を、連絡管49を介して
層内蒸発器8に導くようにしているので、ベッド灰溜め
ホッパ45内のベッド灰6の熱を回収して直ちに蒸気を
発生させることができ、よって前記ホッパ内蒸発器46
で熱回収を行った分の石炭燃料4を節約し、加圧流動層
ボイラ全体のプラント効率を向上させることができる。
A bed ash reservoir hopper 45 formed at the bottom of the fluidized bed boiler main body 2 is provided with an in-hopper evaporator 46 which constitutes a part of the in-bed evaporator 8, and the in-hopper evaporator 46 is installed in the in-hopper evaporator 46. Guide the high-pressure water supply 40 to the bed ash storage hopper 4
Since the bed ash 6 in 5 is cooled and the high-pressure feed water 40 whose temperature and pressure are increased by the cooling is guided to the in-layer evaporator 8 through the communication pipe 49, the bed ash storage hopper 45 The heat of the bed ash 6 in the inside can be recovered and steam can be immediately generated.
It is possible to save the amount of the coal fuel 4 for which the heat recovery has been performed and to improve the plant efficiency of the entire pressurized fluidized bed boiler.

【0029】この時、前記排ガスクーラ15からホッパ
内蒸発器46に供給される高圧給水40の温度は320
℃程度であるので、ベッド灰溜めホッパ45内の860
℃程度を有しているベッド灰6の温度をホッパ内蒸発器
46にて冷却しても、せいぜい400℃前後である。
At this time, the temperature of the high-pressure feed water 40 supplied from the exhaust gas cooler 15 to the in-hopper evaporator 46 is 320.
Since the temperature is around ℃, it is 860 in the bed ash storage hopper 45.
Even if the temperature of the bed ash 6 having a temperature of about 0 ° C. is cooled by the evaporator 46 in the hopper, it is about 400 ° C. at the most.

【0030】このため、前記ホッパ内蒸発器46の下側
に設置した低圧給水ベッド灰冷却器44に、復水ポンプ
30出口の低圧給水31の一部を供給して熱交換する
と、前記400℃前後のベッド灰6を150℃前後まで
冷却することができる。
Therefore, when a part of the low pressure feed water 31 at the outlet of the condensate pump 30 is supplied to the low pressure water supply bed ash cooler 44 installed below the evaporator 46 in the hopper to exchange heat, the temperature is 400 ° C. The bed ash 6 before and after can be cooled to around 150 ° C.

【0031】この時、前記低圧給水ベッド灰冷却器44
では、400℃前後のベッド灰6を150℃前後に冷却
すればよいので、低圧給水ベッド灰冷却器44に供給す
る低圧給水の流量は少なくて済み、よって復水ポンプ3
0から低圧給水ヒータ32,33に供給する低圧給水3
1の流量を大きく確保でき、よって低圧蒸気タービン2
3からの低圧抽気34の流量が充分確保されるので、低
圧蒸気タービン23から復水器27に排出される蒸気量
を減少させて、復水器27によって冷却水29に捨てら
れる熱量を減少し、再生サイクルを構成している加圧流
動層ボイラ全体のプラント効率を高めることができる。
At this time, the low pressure water supply bed ash cooler 44 is used.
Then, since the bed ash 6 at around 400 ° C. may be cooled to around 150 ° C., the flow rate of the low-pressure feed water supplied to the low-pressure feed water bed ash cooler 44 may be small, and thus the condensate pump 3
Low-pressure water supply 3 supplied from 0 to low-pressure water supply heaters 32, 33
1 can secure a large flow rate, and therefore the low-pressure steam turbine 2
Since the flow rate of the low pressure extraction air 34 from 3 is sufficiently secured, the amount of steam discharged from the low pressure steam turbine 23 to the condenser 27 is reduced, and the amount of heat discarded to the cooling water 29 by the condenser 27 is reduced. The plant efficiency of the entire pressurized fluidized bed boiler constituting the regeneration cycle can be increased.

【0032】尚、図1に示した例では、ベッド灰溜めホ
ッパ45内に、ホッパ内蒸発器46と低圧給水ベッド灰
冷却器44とを備えた場合について例示したが、前記ホ
ッパ内蒸発器46と、別系統の冷却空気或いは冷却水な
どの冷却流体を導くようにした冷却器とを組合わせて備
えるようにすることもできる。
In the example shown in FIG. 1, the bed ash storage hopper 45 is provided with the in-hopper evaporator 46 and the low-pressure feed water bed ash cooler 44. It is also possible to provide a combination of a cooling system and a cooler for guiding a cooling fluid such as cooling air or cooling water of another system.

【0033】[0033]

【発明の効果】本発明では、ベッド灰溜めホッパ内に、
層内蒸発器の一部を構成するようにしたホッパ内蒸発器
を設置し、該ホッパ内蒸発器に高圧給水を導いてベッド
灰溜めホッパ内のベッド灰の冷却を行い、該冷却によっ
て温度と圧力が高められた高圧給水を層内蒸発器に導く
ようにしているので、ベッド灰溜めホッパ内のベッド灰
の熱を高圧給水により有効に回収して直ちに蒸気を発生
させることができ、よって上記熱回収した分の石炭燃料
を節約することができ、加圧流動層ボイラのプラント効
率を向上させることができる。
According to the present invention, in the bed ash storage hopper,
An evaporator in the hopper that is configured to form a part of the in-layer evaporator is installed, high-pressure feed water is guided to the evaporator in the hopper to cool the bed ash in the bed ash reservoir hopper, and the temperature is controlled by the cooling. Since the high-pressure feed water whose pressure is increased is guided to the in-layer evaporator, the heat of the bed ash in the bed ash reservoir hopper can be effectively recovered by the high-pressure feed water to immediately generate steam. It is possible to save the coal fuel for the amount of heat recovered, and to improve the plant efficiency of the pressurized fluidized bed boiler.

【0034】又、ベッド灰溜めホッパ内に設置したホッ
パ内蒸発器の下側に復水ポンプ出口の低圧給水の一部を
供給して熱交換する低圧給水ベッド灰冷却器を備えるよ
うにすると、ホッパ内蒸発器によって冷却されたベッド
灰を更に低温の所定温度まで冷却することができ、更に
ベッド灰は前記ホッパ内蒸発器によって冷却されていて
ベッド灰を冷却するのに要する低圧給水の流量は少なく
て済むので、低圧蒸気タービンからの低圧給水ヒータへ
の低圧抽気の抽気量を確保して加圧流動層ボイラのプラ
ント効率を高く保持することができる。
If a low pressure feed water bed ash cooler is provided below the evaporator in the hopper installed in the bed ash storage hopper to heat-exchange by supplying a part of the low pressure feed water at the outlet of the condensate pump, The bed ash cooled by the evaporator in the hopper can be cooled to a lower predetermined temperature, and the bed ash is cooled by the evaporator in the hopper, and the flow rate of low-pressure feed water required to cool the bed ash is Since the amount is small, it is possible to secure the extraction amount of the low-pressure extraction air from the low-pressure steam turbine to the low-pressure feed water heater and maintain the plant efficiency of the pressurized fluidized bed boiler high.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態例を示す系統図である。FIG. 1 is a system diagram showing an embodiment of the present invention.

【図2】従来の加圧流動層ボイラの一例を示す系統図で
ある。
FIG. 2 is a system diagram showing an example of a conventional pressurized fluidized bed boiler.

【符号の説明】[Explanation of symbols]

1 圧力容器 2 流動層ボイラ本体 3 散気管 6 ベッド灰 8 層内蒸発器 30 復水ポンプ 31 低圧給水 40 高圧給水 43 ベッド灰取出弁 44 低圧給水ベッド灰冷却器 45 ベッド灰溜めホッパ 46 ホッパ内蒸発器 1 pressure vessel 2 fluidized bed boiler main body 3 air diffuser 6 bed ash 8 in-layer evaporator 30 condensate pump 31 low pressure water supply 40 high pressure water supply 43 bed ash extraction valve 44 low pressure water supply bed ash cooler 45 bed ash storage hopper 46 evaporation in hopper vessel

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 散気管及び層内蒸発器を内部に備えた流
動層ボイラ本体を圧力容器内に配置し、且つ前記流動層
ボイラ本体の底部に、ベッド灰を貯留し貯留したベッド
灰をベッド灰取出弁を介して下部に取り出すようにした
ベッド灰溜めホッパを設けて該灰溜めホッパ内のベッド
灰を冷却するようにしている加圧流動層ボイラのベッド
灰冷却装置であって、前記ベッド灰溜めホッパ内に、高
圧給水を供給して前記ベッド灰溜めホッパ内のベッド灰
と熱交換して加熱し、加熱後の高圧給水を前記層内蒸発
器に導くようにしたホッパ内蒸発器を配置したことを特
徴とする加圧流動層ボイラのベッド灰冷却装置。
1. A fluidized bed boiler main body having an air diffuser and an in-layer evaporator inside is arranged in a pressure vessel, and bed ash is stored and stored at the bottom of the fluidized bed boiler main body. A bed ash cooling device for a pressurized fluidized bed boiler, which is provided with a bed ash storage hopper adapted to be taken out through an ash extraction valve to cool the bed ash in the ash storage hopper, wherein said bed A high-pressure feed water is supplied into the ash-storing hopper to heat the bed ash in the bed ash-storing hopper by heating, and a high-pressure feed water after heating is introduced into the in-layer evaporator. A bed ash cooling device for a pressurized fluidized bed boiler characterized by being arranged.
【請求項2】 ベッド灰溜めホッパ内に配置したホッパ
内蒸発器の下側に、復水ポンプ出口の低圧給水の一部を
供給して熱交換する低圧給水ベッド灰冷却器を備えてい
ることを特徴とする請求項1に記載の加圧流動層ボイラ
のベッド灰冷却装置。
2. A low-pressure feed water bed ash cooler for supplying heat to a part of the low-pressure feed water at the outlet of the condensate pump and exchanging heat under the evaporator in the hopper arranged in the bed ash storage hopper. The bed ash cooling device for a pressurized fluidized bed boiler according to claim 1, wherein:
JP27276095A 1995-10-20 1995-10-20 Bed-ash cooling apparatus for pressurized fluid boiler Pending JPH09112802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27276095A JPH09112802A (en) 1995-10-20 1995-10-20 Bed-ash cooling apparatus for pressurized fluid boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27276095A JPH09112802A (en) 1995-10-20 1995-10-20 Bed-ash cooling apparatus for pressurized fluid boiler

Publications (1)

Publication Number Publication Date
JPH09112802A true JPH09112802A (en) 1997-05-02

Family

ID=17518370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27276095A Pending JPH09112802A (en) 1995-10-20 1995-10-20 Bed-ash cooling apparatus for pressurized fluid boiler

Country Status (1)

Country Link
JP (1) JPH09112802A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011076994A1 (en) * 2009-12-21 2011-06-30 Foster Wheeler Energia Oy Method and arrangement for recovering heat from bottom ash
JP2011237048A (en) * 2010-05-06 2011-11-24 Takuma Co Ltd System for recovering low-temperature heat from exhaust gas posterior to exhaust gas treatment equipment of waste incineration treatment facility
KR101116174B1 (en) * 2011-08-26 2012-03-06 지이큐솔루션 주식회사 Combustion chamber lower hopper heat-exchanger of fluidized bed combustion chamber boiler

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011076994A1 (en) * 2009-12-21 2011-06-30 Foster Wheeler Energia Oy Method and arrangement for recovering heat from bottom ash
CN102656407A (en) * 2009-12-21 2012-09-05 福斯特韦勒能源股份公司 Method and arrangement for recovering heat from bottom ash
JP2013515231A (en) * 2009-12-21 2013-05-02 フォスター ホイーラー エナージア オサケ ユキチュア Method and apparatus for recovering heat from bottom ash
CN102656407B (en) * 2009-12-21 2015-05-06 福斯特韦勒能源股份公司 Method and arrangement for recovering heat from bottom ash
US9175851B2 (en) 2009-12-21 2015-11-03 Amec Foster Wheeler Energia Oy Method of and an arrangement for recovering heat from bottom ash
JP2011237048A (en) * 2010-05-06 2011-11-24 Takuma Co Ltd System for recovering low-temperature heat from exhaust gas posterior to exhaust gas treatment equipment of waste incineration treatment facility
KR101116174B1 (en) * 2011-08-26 2012-03-06 지이큐솔루션 주식회사 Combustion chamber lower hopper heat-exchanger of fluidized bed combustion chamber boiler

Similar Documents

Publication Publication Date Title
US6393822B2 (en) Cooling steam supply method of a combined cycle power generation plant
EP2375012B1 (en) Boiler apparatus
KR100301136B1 (en) Combined circulation power generation system and method equipped with a circulating fluidized bed reactor
JP5320423B2 (en) Thermal power plant, steam turbine equipment, and control method thereof
US20110139003A1 (en) Method and device for separating carbon dioxide from a waste gas of a fossil fueloperated power plant
JPH0758043B2 (en) Method and apparatus for heat recovery from exhaust gas and heat recovery steam generator
RU2542655C2 (en) Turbine bypass
RU2539943C2 (en) Method for removing entrapped gas in power production system with combined cycle
KR20130025907A (en) Energy recovery and steam supply for power augmentation in a combined cycle power generation system
CN102047039A (en) Method of and system for generating power by oxyfuel combustion
KR20100047813A (en) Power production process with gas turbine from solid fuel and waste heat ad the equipment for the performing of this process
CN101713334A (en) Peak load management by combined cycle power augmentation using peaking cycle exhaust heat recovery
SU1521284A3 (en) Power plant
JPH08502345A (en) Steam power plant for producing electrical energy
JP2744137B2 (en) Pressurized circulating fluidized bed boiler for supercritical steam
JPH09112802A (en) Bed-ash cooling apparatus for pressurized fluid boiler
JPH0731834A (en) Regeneration of absorbing solution
JPH09170405A (en) Pressurized fluidized bed compound power generation facility
JPH10325506A (en) Pressure fluidized bed boiler
JPH10169965A (en) Exhaust gas and moisture separator for pressurized fluidized-bed boiler
CN216171403U (en) Desulfurization and denitrification treatment system
JPH11211012A (en) Compound power generating facility having pressurized fluidized bed
RU25508U1 (en) DEVICE FOR SUPPLYING DOMAIN GAS OF AN AIR BLAST OR POWER STEAM TURBINE INSTALLATION
JPH04272410A (en) Pressurized fluid layer boiler power generating plant
JP3309482B2 (en) Pressurized fluidized bed power generator