JPH09112677A - Hydraulic control device for automatic transmission - Google Patents
Hydraulic control device for automatic transmissionInfo
- Publication number
- JPH09112677A JPH09112677A JP7270056A JP27005695A JPH09112677A JP H09112677 A JPH09112677 A JP H09112677A JP 7270056 A JP7270056 A JP 7270056A JP 27005695 A JP27005695 A JP 27005695A JP H09112677 A JPH09112677 A JP H09112677A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- valve
- passage
- switching
- hydraulic control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Control Of Transmission Device (AREA)
- Control Of Fluid Gearings (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、自動変速機の変速
機構を油圧で変速制御する自動変速機用油圧制御装置に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydraulic control device for an automatic transmission, which hydraulically controls a speed change mechanism of the automatic transmission.
【0002】[0002]
【従来の技術】従来、車両用等に多く利用されている自
動変速機は、回転駆動力を負荷に応じてスムーズに伝達
するため、油圧弁により各摩擦係合装置に加わる油圧を
切換制御して変速制御を行っている。変速制御は、乗員
による前進、中立および後退のいずれかを選択するセレ
クトレバーによる手動操作と、エンジンのスロットル開
度などから自動変速機制御コンピュータ(以下、「自動
変速機制御コンピュータ」をECUという)により適正
なギア比になるように摩擦係合装置の係合および解除状
態を決定する自動変速とにより行われる。2. Description of the Related Art Conventionally, automatic transmissions, which are often used for vehicles and the like, switch a hydraulic pressure applied to each friction engagement device by a hydraulic valve in order to smoothly transmit a rotational driving force according to a load. Gearshift control. Shift control is performed by an occupant's manual operation using a select lever that selects forward, neutral, or reverse, and an automatic transmission control computer based on the engine throttle opening (hereinafter, "automatic transmission control computer" is referred to as ECU). Thus, the automatic gear shift is performed to determine the engaged and disengaged states of the friction engagement device so that the gear ratio becomes appropriate.
【0003】このような自動変速機用油圧制御装置とし
て、特開平5−319146号公報に開示されるよう
に、制御弁(特開平5−319146号公報ではソレノ
イドバルブ)から加わる指令圧(制御油圧)により調圧
弁(特開平5−319146号公報ではライン圧制御
弁)で生成するライン圧を変更するものが知られてい
る。As such an automatic transmission hydraulic control device, a command pressure (control hydraulic pressure) applied from a control valve (a solenoid valve in Japanese Patent Laid-Open No. 5-319146) is disclosed in Japanese Patent Laid-Open No. 5-319146. ) Is used to change the line pressure generated by a pressure regulating valve (line pressure control valve in Japanese Patent Laid-Open No. 5-319146).
【0004】[0004]
【発明が解決しようとする課題】しかしながら、このよ
うな従来の油圧制御装置では、指令圧を生成する制御弁
から調圧弁に直接指令圧が加わるため、制御弁の異常
時、指令圧が低圧になって調圧弁で生成されるライン圧
が低下し、クラッチが滑ることにより車両が走行不能に
なるという問題がある。However, in such a conventional hydraulic control device, since the command pressure is directly applied from the control valve that generates the command pressure to the pressure regulating valve, the command pressure becomes low when the control valve is abnormal. As a result, the line pressure generated by the pressure regulating valve decreases, and the clutch slips, so that the vehicle cannot run.
【0005】本発明はこのような問題を解決するために
なされたもので、油圧制御装置の故障時においても摩擦
係合装置を係合可能であり、走行状態を確保できる自動
変速機用油圧制御装置を提供することを目的とする。The present invention has been made to solve such a problem, and even when the hydraulic control device is out of order, the friction engagement device can be engaged, and the hydraulic control for an automatic transmission can be ensured in a running state. The purpose is to provide a device.
【0006】[0006]
【課題を解決するための手段】本発明の請求項1記載の
自動変速機用油圧制御装置によると、油圧制御装置の故
障状態に応じ、複数の摩擦係合装置に加わるライン圧を
ほぼ最大値に設定できることにより、油圧制御装置の故
障時においても摩擦係合装置を係合可能である。According to the hydraulic control device for an automatic transmission according to claim 1 of the present invention, the line pressure applied to the plurality of friction engagement devices is substantially maximum depending on the failure state of the hydraulic control device. The friction engagement device can be engaged even when the hydraulic control device fails.
【0007】本発明の請求項2記載の自動変速機用油圧
制御装置によると、油圧制御装置の故障状態に応じ、ロ
ックアップ状態を解除可能なロックアップ解除手段をロ
ックアップ装置に設けることにより、エンジン停止を防
ぐことができる。本発明の請求項3記載の自動変速機用
油圧制御装置によると、ライン圧を設定する通常指令圧
を生成する油圧制御弁と、通常指令圧に応じたライン圧
を生成する調圧弁と、調圧弁が生成するライン圧のほぼ
最大値を調圧弁に生成させる最大指令圧および通常指令
圧を切換えて調圧弁に加える第1切換弁とを備えてい
る。この構成により、油圧制御弁の異常時、第1切換弁
は最大指令圧を選択できるので、油圧制御弁の異常時に
おいても摩擦係合装置を係合可能である。According to the hydraulic control device for an automatic transmission according to claim 2 of the present invention, by providing the lockup releasing means for releasing the lockup state in the lockup device according to the failure state of the hydraulic control device, It is possible to prevent engine stop. According to the hydraulic control device for an automatic transmission according to claim 3 of the present invention, a hydraulic control valve for generating a normal command pressure for setting the line pressure, a pressure control valve for generating a line pressure according to the normal command pressure, The pressure control valve includes a first switching valve that switches between a maximum command pressure for causing the pressure control valve to generate an almost maximum value of the line pressure and a normal command pressure and applies the pressure control valve to the pressure control valve. With this configuration, when the hydraulic control valve is abnormal, the first switching valve can select the maximum command pressure, so that the friction engagement device can be engaged even when the hydraulic control valve is abnormal.
【0008】本発明の請求項4記載の自動変速機用油圧
制御装置によると、油圧制御弁をデューティ制御可能な
三方向電磁弁とすることにより、調圧弁で生成されるラ
イン圧を高精度に調整できる。本発明の請求項5記載の
自動変速機用油圧制御装置によると、第2切換弁として
二方向電磁弁を用いることにより第2切換弁の小型化お
よび低コスト化が可能である。According to the hydraulic control device for an automatic transmission according to claim 4 of the present invention, the line pressure generated by the pressure regulating valve can be highly accurately configured by using the hydraulic control valve as a three-way solenoid valve capable of duty control. Can be adjusted. According to the hydraulic control device for an automatic transmission of the fifth aspect of the present invention, by using a two-way solenoid valve as the second switching valve, it is possible to reduce the size and cost of the second switching valve.
【0009】本発明の請求項6記載の自動変速機用油圧
制御装置によると、第2切換弁の異常時、第2切換弁は
第1切換弁を切換作動させる油圧を高圧または低圧のい
ずれか一方に固定することにより第1切換弁が最大指令
圧を選択する。これにより、調圧弁で生成されるライン
圧がほぼ最大圧になるので、第2切換弁の故障時におい
ても摩擦係合装置を係合可能である。According to the hydraulic control apparatus for an automatic transmission according to claim 6 of the present invention, when the second switching valve is abnormal, the second switching valve switches the first switching valve to either high pressure or low pressure. By fixing to one side, the first switching valve selects the maximum command pressure. As a result, the line pressure generated by the pressure regulating valve becomes almost the maximum pressure, so that the friction engagement device can be engaged even when the second switching valve fails.
【0010】[0010]
【発明の実施の形態】以下、本発明の実施例を図面に基
づいて説明する。本発明の実施例による自動変速機用油
圧制御装置を車両用の自動変速機(以下、「自動変速
機」をATという)に適用したシステム構成を図2に示
す。ATはエンジンで生成したトルクをトルクコンバー
タなどの流体伝動装置を介して変速駆動装置に伝達し、
この変速駆動装置内の複数の遊星歯車装置によって変速
して出力する。Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 shows a system configuration in which the hydraulic control device for an automatic transmission according to the embodiment of the present invention is applied to an automatic transmission for a vehicle (hereinafter, “automatic transmission” is referred to as an AT). The AT transmits the torque generated by the engine to the variable-speed drive via a fluid transmission device such as a torque converter.
The speed is shifted by a plurality of planetary gear devices in the speed change drive device and output.
【0011】車両用ATの動作は、周知のように自動ま
たは手動でトランスミッション300内のギア接続が切
換えられ、トルクコンバータ200に接続された図示し
ないエンジンからの回転力が車両の後輪または前輪に伝
達される。自動変速手段90とその周辺装置全体は、ト
ランスミッション300下部のAT内部の図示しないオ
イルパン内部にあり、オイルパン内部の油圧制御装置4
00の周囲は油圧回路のドレインになっている。As is well known, the operation of the vehicle AT automatically or manually switches the gear connection in transmission 300, and the rotational force from an engine (not shown) connected to torque converter 200 is applied to the rear wheels or front wheels of the vehicle. Is transmitted. The automatic speed change means 90 and its peripheral devices are entirely inside an oil pan (not shown) inside the AT below the transmission 300, and a hydraulic control device 4 inside the oil pan is provided.
The area around 00 is the drain of the hydraulic circuit.
【0012】トランスミッション300内には、エンジ
ンの回転軸に直結して回転駆動される公知の油圧ポンプ
56が設けられており、各油圧装置からオイルパン等に
排出された駆動油を吸入ポート57より吸入し、ライン
圧制御手段64を介し各装置へ圧油を供給している。こ
の油圧ポンプ56からの圧油は、変動のある高ポンプ油
圧であり、ライン圧制御手段64により一定の高圧なラ
イン圧に制御し各油圧機器へ供給される。各摩擦係合装
置はトランスミッション300内にある図示しないプラ
ネタリギア等の各変速比を構成するギアに連結されてお
り、これら摩擦係合装置を係合または解除することによ
り、変速比を切換えて車両の変速制御を行っている。ロ
ックアップ制御手段65はL/U(ロッックアップ装
置)に加える油圧を調整するものである。The transmission 300 is provided with a known hydraulic pump 56 which is directly connected to the rotating shaft of the engine and is driven to rotate. The driving oil discharged from each hydraulic device to an oil pan or the like is supplied from an intake port 57. The pressure oil is supplied to each device via the line pressure control means 64 by suction. The pressure oil from the hydraulic pump 56 is a high pump oil pressure that fluctuates, is controlled to a constant high line pressure by the line pressure control means 64, and is supplied to each hydraulic device. Each of the friction engagement devices is connected to a gear constituting each speed ratio, such as a planetary gear (not shown), in the transmission 300, and the speed ratio is switched by engaging or disengaging these friction engagement devices. Gear shift control. The lock-up control means 65 adjusts the hydraulic pressure applied to the L / U (lock-up device).
【0013】ライン圧制御手段64の回路構成を図1に
示す。ライン圧制御手段64は、ライン圧を生成する調
圧弁としてのプライマリ調圧弁1と、プライマリ調圧弁
1に指令圧を加える電磁弁5と、出力通路14の油圧を
所定圧以下に設定する減圧弁3と、プライマリ調圧弁1
に加える指令圧を切り換える第1切換弁7と、第1切換
弁7を切換える作動油圧を高圧または低圧に設定する第
2切換弁としての電磁弁6とから構成されている。The circuit configuration of the line pressure control means 64 is shown in FIG. The line pressure control means 64 includes a primary pressure regulating valve 1 as a pressure regulating valve that generates a line pressure, a solenoid valve 5 that applies a command pressure to the primary pressure regulating valve 1, and a pressure reducing valve that sets the hydraulic pressure in the output passage 14 to a predetermined pressure or less. 3 and primary pressure regulator 1
And a solenoid valve 6 as a second switching valve that sets the operating hydraulic pressure for switching the first switching valve 7 to high pressure or low pressure.
【0014】プライマリ調圧弁1は、制御通路12の油
圧から受ける力とスプリング2の付勢力の合計と、ライ
ン圧通路13の油圧から受ける力とのつり合いによって
位置が決められ、プライマリ調圧弁1の力のつり合いに
よりライン圧通路13のライン圧が決定する。図3に示
すように、ライン圧通路13の油圧は制御通路12の油
圧(指令圧)が高くなると上昇する。プライマリ調圧弁
1と図示しないセカンダリ調圧弁とは油路で接続されて
おり、セカンダリ調圧弁においてロックアップ装置に加
える作動油圧の元圧を生成する。The position of the primary pressure regulating valve 1 is determined by the balance between the total force of the hydraulic pressure of the control passage 12 and the urging force of the spring 2 and the force of the hydraulic pressure of the line pressure passage 13. The line pressure of the line pressure passage 13 is determined by the balance of forces. As shown in FIG. 3, the hydraulic pressure in the line pressure passage 13 increases as the hydraulic pressure (command pressure) in the control passage 12 increases. The primary pressure regulating valve 1 and a secondary pressure regulating valve (not shown) are connected by an oil passage, and the secondary pressure regulating valve generates the source pressure of the working hydraulic pressure applied to the lockup device.
【0015】減圧弁3は出力通路14の油圧から受ける
力とスプリング4の付勢力とのつり合いにより位置が決
定し、出力通路14の圧力を所定圧以下にしている。電
磁弁5はデューティ制御可能な三方向電磁弁であり、ス
ロットル開度およびシフトレンジに応じてデューティ制
御することにより通常指令圧である指令圧通路15の油
圧を低圧から最大で最大指令圧である出力通路14の油
圧まで高精度に制御する。指令圧通路15の油圧は、ス
ロットル開度が大きくなるにしたがい上昇し、前進レン
ジ(D、3、2、1レンジ)よりも後進レンジ(Rレン
ジ)の方が最大値が高くなるように制御される。The position of the pressure reducing valve 3 is determined by the balance between the force received from the hydraulic pressure in the output passage 14 and the urging force of the spring 4, and the pressure in the output passage 14 is kept below a predetermined pressure. The solenoid valve 5 is a duty-controllable three-way solenoid valve, and by performing duty control according to the throttle opening and the shift range, the hydraulic pressure in the command pressure passage 15, which is the normal command pressure, is from the low pressure to the maximum command pressure. The oil pressure in the output passage 14 is also controlled with high accuracy. The hydraulic pressure in the command pressure passage 15 increases as the throttle opening increases, and is controlled so that the reverse range (R range) has a higher maximum value than the forward range (D, 3, 2, 1 range). To be done.
【0016】電磁弁6は二方向電磁弁であり、図示しな
いコイルへの通電がオンされて開弁すると切換通路16
の油圧が高圧になる。コイルへの通電をオフすると、図
示しないスプリングの付勢力により閉弁して切換通路1
6の油圧が低圧になる。第1切換弁7は、切換通路16
の油圧の高低により制御通路12を指令圧通路15また
は出力通路14に選択的に連通させる。切換通路16の
油圧が高圧時、制御通路12は指令圧通路15と連通
し、切換通路16の油圧が低圧時、制御通路12は出力
通路14と連通する。本発明では、第1切換弁の構成を
変更することにより、切換通路16の油圧が低圧時に制
御通路12を指令圧通路15と連通させ、切換通路16
の油圧が高圧時に制御通路12を出力通路14と連通さ
せることも可能である。The solenoid valve 6 is a two-way solenoid valve. When the coil (not shown) is energized and opened, the switching passage 16 is opened.
Oil pressure becomes high. When the coil is de-energized, it is closed by the urging force of a spring (not shown) and the switching passage 1
The hydraulic pressure of 6 becomes low pressure. The first switching valve 7 has a switching passage 16
The control passage 12 is selectively communicated with the command pressure passage 15 or the output passage 14 depending on the level of the hydraulic pressure. When the hydraulic pressure in the switching passage 16 is high, the control passage 12 communicates with the command pressure passage 15, and when the hydraulic pressure in the switching passage 16 is low, the control passage 12 communicates with the output passage 14. In the present invention, by changing the configuration of the first switching valve, the control passage 12 communicates with the command pressure passage 15 when the hydraulic pressure in the switching passage 16 is low, and the switching passage 16
It is also possible to make the control passage 12 communicate with the output passage 14 when the hydraulic pressure is high.
【0017】次に、ライン圧制御手段64の作動につい
て説明する。 (1) 電磁弁5の正常時、電磁弁6は開弁しており、切換
通路16が高圧であるためスプリング8の付勢力に抗し
て第1切換弁7は図1に示す位置となるので、指令圧通
路15と制御通路12とが連通する。したがって、電磁
弁5により指令圧通路15の油圧をデューティ制御し、
スロットル開度およびシフトレンジに応じた油圧を制御
通路12を介してプライマリ調圧弁1に加えることによ
り、ライン圧通路13の油圧を図3に示すように設定す
ることができる。つまり、指令圧に比例してライン圧通
路13のライン圧が上昇する。Next, the operation of the line pressure control means 64 will be described. (1) When the solenoid valve 5 is normal, the solenoid valve 6 is open and the switching passage 16 has a high pressure, so that the first switching valve 7 is in the position shown in FIG. 1 against the biasing force of the spring 8. Therefore, the command pressure passage 15 and the control passage 12 communicate with each other. Therefore, the solenoid valve 5 duty-controls the hydraulic pressure of the command pressure passage 15,
By applying the oil pressure corresponding to the throttle opening and the shift range to the primary pressure regulating valve 1 via the control passage 12, the oil pressure in the line pressure passage 13 can be set as shown in FIG. That is, the line pressure in the line pressure passage 13 increases in proportion to the command pressure.
【0018】(2) 電磁弁5が例えば異物の混入等により
低圧側でロックしたときのような油圧制御装置の故障時
には、この故障状態を図示しない検出手段で検出して検
知信号をECUに送出することにより、ECUはこの検
知信号により電磁弁6への通電をオフ制御する。電磁弁
6を閉弁することで切換通路16は低圧になり、第1切
換弁7はスプリング8の付勢力により図1に示す位置よ
り左に移動するので、出力通路14と制御通路12とが
連通する。出力通路14の油圧は電磁弁5が指令圧通路
15に生成する指令圧の最大値とほぼ等しいので、制御
通路12からプライマリ調圧弁1に加わる最大指令圧に
よりライン圧通路13の油圧はRレンジの最大圧とほぼ
等しくなる。したがって、電磁弁5の異常時でも摩擦係
合装置としてのクラッチ、ブレーキが滑ることなく係合
し車両が安全に走行することが可能である。(2) When the hydraulic control device fails, such as when the solenoid valve 5 is locked on the low pressure side due to the inclusion of foreign matter or the like, this failure state is detected by detection means (not shown) and a detection signal is sent to the ECU. By doing so, the ECU controls the power supply to the solenoid valve 6 to be off by this detection signal. By closing the solenoid valve 6, the switching passage 16 becomes a low pressure, and the first switching valve 7 moves to the left from the position shown in FIG. 1 by the biasing force of the spring 8, so that the output passage 14 and the control passage 12 are separated from each other. Communicate. Since the hydraulic pressure in the output passage 14 is substantially equal to the maximum value of the command pressure generated by the solenoid valve 5 in the command pressure passage 15, the hydraulic pressure in the line pressure passage 13 is in the R range due to the maximum command pressure applied to the primary pressure regulating valve 1 from the control passage 12. Is almost equal to the maximum pressure of. Therefore, even when the electromagnetic valve 5 is abnormal, the clutch and the brake as the friction engagement device are engaged without slipping, and the vehicle can travel safely.
【0019】(3) また電磁弁6の故障時には、電磁弁6
に収容されたスプリングの付勢力により電磁弁6が閉弁
して切換通路16の油圧が低圧になるので、電磁弁5の
正常、故障に係わらず第1切換弁7により制御通路12
と出力通路14とが連通する。これにより、電磁弁6の
故障時にもプライマリ調圧弁1がライン圧の最大値を生
成するので、クラッチ、ブレーキが滑ることなく係合し
車両が安全に走行することが可能である。(3) When the solenoid valve 6 fails, the solenoid valve 6
Since the solenoid valve 6 is closed by the urging force of the spring housed in the control valve 16 and the hydraulic pressure in the switching passage 16 becomes low, the control valve 12 is controlled by the first switching valve 7 regardless of whether the solenoid valve 5 is normal or defective.
And the output passage 14 communicate with each other. Accordingly, even when the solenoid valve 6 fails, the primary pressure regulating valve 1 generates the maximum value of the line pressure, so that the clutch and the brake are engaged without slipping and the vehicle can travel safely.
【0020】次に、ライン圧制御手段64と自動変速機
のトルクコンバータ200とロックアップ制御手段65
とを組み合わせた回路構成を図4に示す。第3切換弁2
1、第4切換弁23、第5切換弁24はロックアップ解
除手段を構成する。切換通路16は第3切換弁21を図
4の右方向に切換作動させるように第3切換弁21に接
続している。油圧制御装置の故障時に切換通路16が低
圧になると第3切換弁21が図4に示す位置から左に移
動し、圧力供給通路22がドレイン通路25と連通する
ため第4切換弁23が図4に示す位置から左に移動し、
圧力供給通路26がドレイン通路27と連通する。する
と、第5切換弁24はスプリング28の付勢力により図
4に示す位置で固定されるので、ロックアップ装置とし
てのロックアップクラッチ30が解除されてロックアッ
プ禁止状態となる。したがって、油圧制御装置の故障時
にも常時ロックアップを禁止できるため、エンジンが停
止することなく走行状態を確保することができる。Next, the line pressure control means 64, the torque converter 200 of the automatic transmission, and the lockup control means 65.
FIG. 4 shows a circuit configuration in which and are combined. Third switching valve 2
The first, fourth switching valve 23, and fifth switching valve 24 constitute lockup releasing means. The switching passage 16 is connected to the third switching valve 21 so as to switch the third switching valve 21 to the right in FIG. When the pressure in the switching passage 16 becomes low when the hydraulic control device fails, the third switching valve 21 moves to the left from the position shown in FIG. 4, and the pressure supply passage 22 communicates with the drain passage 25. Move to the left from the position shown in
The pressure supply passage 26 communicates with the drain passage 27. Then, the fifth switching valve 24 is fixed at the position shown in FIG. 4 by the urging force of the spring 28, so that the lockup clutch 30 as a lockup device is released and the lockup prohibition state is set. Therefore, even when the hydraulic control device is out of order, the lockup can be prohibited at all times, so that the traveling state can be secured without stopping the engine.
【0021】さらに、図4に示す回路構成に手動切換弁
80、自動変速手段90およびトランスミッション30
0を組み合わせた回路構成を図5に示す。図5に示す構
成では、トランスミッション300のクラッチ101、
103、104、106、ブレーキ102、105に加
わる油圧を切り換える第6切換弁120の作動油圧とし
て切換通路16の油圧を用いることにより、電磁弁6が
共有化できて部品点数が低減できる。正常時には電磁弁
6が開弁しているため圧力供給通路125の油圧が高圧
となり、第6切換弁120が図5に示す位置となる。こ
のとき、中立レンジ(Nレンジ、Pレンジ)を選択する
と、第6切換弁120を介して電磁弁107〜112に
ライン圧が加わる。電磁弁107〜112としてデュー
テイ制御可能な三方向電磁弁を用いれば、すべてのクラ
ッチ、ブレーキに加わる油圧を滑らかに低下させること
ができるので、中立レンジへのレンジ切換えにより発生
するショックを低減できる。Further, the circuit configuration shown in FIG. 4 has a manual switching valve 80, an automatic transmission means 90 and a transmission 30.
A circuit configuration in which 0s are combined is shown in FIG. In the configuration shown in FIG. 5, the clutch 101 of the transmission 300,
The solenoid valve 6 can be shared and the number of parts can be reduced by using the hydraulic pressure of the switching passage 16 as the operating hydraulic pressure of the sixth switching valve 120 that switches the hydraulic pressures applied to the brake valves 103, 104, 106 and the brakes 102, 105. Since the solenoid valve 6 is normally open, the hydraulic pressure in the pressure supply passage 125 is high, and the sixth switching valve 120 is in the position shown in FIG. At this time, when the neutral range (N range, P range) is selected, the line pressure is applied to the solenoid valves 107 to 112 via the sixth switching valve 120. If a duty-controllable three-way solenoid valve is used as the solenoid valves 107 to 112, the hydraulic pressure applied to all the clutches and brakes can be smoothly reduced, so that the shock generated by the range switching to the neutral range can be reduced.
【0022】また、油圧制御装置の故障時には電磁弁6
が閉弁して圧力供給通路125が低圧となるため、中立
レンジでは切換弁120が図5に示す位置から右に移動
し圧力供給通路113〜118がドレイン通路124に
連通する。したがって、クラッチ、ブレーキが係合する
ことなく油圧制御装置の故障時にも安全である。When the hydraulic control device fails, the solenoid valve 6
Is closed and the pressure supply passage 125 becomes low pressure, the switching valve 120 moves to the right from the position shown in FIG. 5 and the pressure supply passages 113 to 118 communicate with the drain passage 124 in the neutral range. Therefore, it is safe even when the hydraulic control device fails without engaging the clutch and brake.
【図1】本発明の一実施例によるライン圧制御手段を示
す模式的回路図である。FIG. 1 is a schematic circuit diagram showing a line pressure control means according to an embodiment of the present invention.
【図2】本実施例による自動変速機のシステム構成を示
すブロック図である。FIG. 2 is a block diagram showing a system configuration of the automatic transmission according to the embodiment.
【図3】本実施例の指令圧とライン圧との関係を示す特
性図である。FIG. 3 is a characteristic diagram showing a relationship between a command pressure and a line pressure according to the present embodiment.
【図4】本実施例のライン圧制御手段とトルクコンバー
タとロックアップ制御手段とを組み合わせた模式的回路
図である。FIG. 4 is a schematic circuit diagram in which a line pressure control means, a torque converter, and a lockup control means of this embodiment are combined.
【図5】本実施例の自動変速装置を示す模式的回路図で
ある。FIG. 5 is a schematic circuit diagram showing an automatic transmission of the present embodiment.
1 プライマリ調圧弁(調圧弁) 3 減圧弁 5 油圧制御弁 6 電磁弁(第2切換弁) 7 第1切換弁 30 ロックアップクラッチ(ロックアップ装置) 80 手動切換弁 90 自動変速手段 200 トルクコンバータ 300 トランスミッション 400 油圧制御装置 500 セレクトレバー DESCRIPTION OF SYMBOLS 1 Primary pressure regulating valve (pressure regulating valve) 3 Pressure reducing valve 5 Hydraulic control valve 6 Solenoid valve (second switching valve) 7 First switching valve 30 Lock-up clutch (lock-up device) 80 Manual switching valve 90 Automatic transmission means 200 Torque converter 300 Transmission 400 Hydraulic control device 500 Select lever
Claims (6)
装置に加わる油圧をそれぞれ切換え、前記複数の摩擦係
合装置をそれぞれ係合または解除させることにより複数
の変速段を切換制御する自動変速機用油圧制御装置であ
って、 前記複数の摩擦係合装置を係合するライン圧を制御する
ライン圧制御手段と、 前記油圧制御装置の故障状態を検出する検出手段と、 前記検出手段からの制御信号により前記複数の摩擦係合
装置に加わるライン圧をほぼ最大値に切換可能な切換手
段と、 を備えることを特徴とする自動変速機用油圧制御装置。1. An automatic gear shift control for switching a plurality of gear stages by switching hydraulic pressures applied to a plurality of friction engagement devices provided in an automatic transmission and engaging or disengaging the plurality of friction engagement devices, respectively. A machine hydraulic control device, comprising: line pressure control means for controlling a line pressure for engaging the plurality of friction engagement devices; detection means for detecting a failure state of the hydraulic control device; A hydraulic control device for an automatic transmission, comprising: switching means capable of switching the line pressure applied to the plurality of friction engagement devices to a substantially maximum value by a control signal.
タに併設されたロッックアップ装置とを備え、前記検出
手段の制御信号によりロックアップ状態を解除可能なロ
ックアップ解除手段を前記ロックアップ装置に設けるこ
とを特徴とする請求項1記載の自動変速機用油圧制御装
置。2. A lock-up device provided with a torque converter and a lock-up device provided together with the torque converter, wherein the lock-up device is provided with a lock-up releasing device capable of releasing a lock-up state by a control signal of the detecting device. The hydraulic control device for an automatic transmission according to claim 1.
定する通常指令圧を生成する油圧制御弁と、前記通常指
令圧に応じたライン圧を生成する調圧弁とを有し、 前記切換手段は、前記調圧弁が生成するライン圧のほぼ
最大値を前記調圧弁に生成させる最大指令圧と前記通常
指令圧とを切換えて前記調圧弁に加える第1切換弁と、
前記第1切換弁を切換える作動油圧を高圧または低圧に
切換える第2切換弁とを有し、 前記油圧制御弁の正常時、前記第1切換弁は前記通常指
令圧を選択し、前記油圧制御弁の異常時、前記第1切換
弁は前記最大指令圧を選択することを特徴とする請求項
1または2記載の自動変速機用油圧制御装置。3. The line pressure control means has a hydraulic control valve for generating a normal command pressure for setting the line pressure and a pressure regulating valve for generating a line pressure according to the normal command pressure, and the switching means. Is a first switching valve which switches between the maximum command pressure for causing the pressure regulating valve to generate a substantially maximum value of the line pressure generated by the pressure regulating valve and the normal command pressure, and which is applied to the pressure regulating valve.
A second switching valve for switching the operating hydraulic pressure for switching the first switching valve to a high pressure or a low pressure, and when the hydraulic control valve is normal, the first switching valve selects the normal command pressure, and the hydraulic control valve The hydraulic control device for an automatic transmission according to claim 1 or 2, wherein the first switching valve selects the maximum command pressure when the abnormality occurs.
三方向電磁弁であることを特徴とする請求項3記載の自
動変速機用油圧制御装置。4. The hydraulic control device for an automatic transmission according to claim 3, wherein the hydraulic control valve is a three-way solenoid valve capable of duty control.
とを特徴とする請求項3または4記載の自動変速機用油
圧制御装置。5. The hydraulic control device for an automatic transmission according to claim 3, wherein the second switching valve is a two-way solenoid valve.
弁は前記第1切換弁を切換作動させる油圧を高圧または
低圧のいずれか一方に固定することにより、前記第1切
換弁は前記最大指令圧を選択することを特徴とする請求
項3、4または5記載の自動変速機用油圧制御装置。6. When the second switching valve is in an abnormal state, the second switching valve fixes the hydraulic pressure for switching the first switching valve to either high pressure or low pressure so that the first switching valve operates. The hydraulic control device for an automatic transmission according to claim 3, 4 or 5, wherein the maximum command pressure is selected.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27005695A JP3735847B2 (en) | 1995-10-18 | 1995-10-18 | Hydraulic control device for automatic transmission |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27005695A JP3735847B2 (en) | 1995-10-18 | 1995-10-18 | Hydraulic control device for automatic transmission |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09112677A true JPH09112677A (en) | 1997-05-02 |
JP3735847B2 JP3735847B2 (en) | 2006-01-18 |
Family
ID=17480912
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27005695A Expired - Lifetime JP3735847B2 (en) | 1995-10-18 | 1995-10-18 | Hydraulic control device for automatic transmission |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3735847B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012247050A (en) * | 2011-05-31 | 2012-12-13 | Honda Motor Co Ltd | Hydraulic pressure supply device of transmission |
-
1995
- 1995-10-18 JP JP27005695A patent/JP3735847B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012247050A (en) * | 2011-05-31 | 2012-12-13 | Honda Motor Co Ltd | Hydraulic pressure supply device of transmission |
Also Published As
Publication number | Publication date |
---|---|
JP3735847B2 (en) | 2006-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2689421B2 (en) | Hydraulic control device for automatic transmission for vehicles | |
US6183391B1 (en) | Control apparatus for automatic transmission | |
US20060270515A1 (en) | Automatic transmission control method and system having fail-safe function | |
US20030083169A1 (en) | Hydraulic pressure controller for automatic transmission | |
US6270439B1 (en) | Hydraulic pressure control apparatus of automatic transmission | |
EP2221512B1 (en) | Hydraulic control device of automatic transmission | |
US6929584B2 (en) | Hydraulic pressure control apparatus and method for vehicular automatic transmission | |
US4722251A (en) | Hydraulic circuit for controlling an automatic transmission | |
JP4014687B2 (en) | Hydraulic control device for automatic transmission | |
JP3190447B2 (en) | Control device for automatic transmission | |
JPH0712201A (en) | Speed change control device for continuously variable transmission for vehicle | |
JP3791716B2 (en) | Hydraulic control device for automatic transmission | |
US20110246037A1 (en) | Hydraulic control apparatus for lockup clutch | |
JPH05346160A (en) | Control device for automatic transmission | |
JP2909942B2 (en) | Hydraulic control device for automatic transmission for vehicles | |
JP3735847B2 (en) | Hydraulic control device for automatic transmission | |
JP3735904B2 (en) | Hydraulic control device for automatic transmission | |
US5121656A (en) | Shift control system for an automatic transmission | |
JP4565832B2 (en) | Control device for continuously variable transmission | |
JP3165259B2 (en) | Control device for automatic transmission | |
JPH023727A (en) | Hydraulic controller for automatic transmission for vehicle | |
JP2874160B2 (en) | Hydraulic control device for automatic transmission for vehicles | |
JP3703038B2 (en) | Hydraulic control device for automatic transmission | |
JPH09317876A (en) | Hydraulic control device for automatic transmission | |
JPH0727215A (en) | Hydraulic control device of automatic transmission for vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050401 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050413 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050610 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050711 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050902 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051003 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051016 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091104 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101104 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111104 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111104 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121104 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131104 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |