JPH09110428A - Method for oxidizing arsenous acid - Google Patents

Method for oxidizing arsenous acid

Info

Publication number
JPH09110428A
JPH09110428A JP26535095A JP26535095A JPH09110428A JP H09110428 A JPH09110428 A JP H09110428A JP 26535095 A JP26535095 A JP 26535095A JP 26535095 A JP26535095 A JP 26535095A JP H09110428 A JPH09110428 A JP H09110428A
Authority
JP
Japan
Prior art keywords
acid
chloride
oxidation
arsenous
arsenic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26535095A
Other languages
Japanese (ja)
Other versions
JP3816131B2 (en
Inventor
Toshikatsu Uematsu
敏勝 植松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Co Ltd
Original Assignee
Furukawa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Co Ltd filed Critical Furukawa Co Ltd
Priority to JP26535095A priority Critical patent/JP3816131B2/en
Publication of JPH09110428A publication Critical patent/JPH09110428A/en
Application granted granted Critical
Publication of JP3816131B2 publication Critical patent/JP3816131B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase the oxidation reaction rate at ordinary temps. and pressures and to obtain arsenic acid with good productivity by dissolving arsenous acid in a soln. contg. cupric chloride, hydrochloric acid and sodium chloride and passing air or oxygen through the soln. while agitating the soln. SOLUTION: Arsenous acid is dissolved in a soln. contg. cupric chloride, hydrochloric acid and sodium chloride, and air or oxygen is passed through the soln. while agitating the soln. to oxidize the arsenous acid to arsenic acid at ordinary temps. and pressures. The concn. of the cupric chloride is preferably controlled to 5-15g/l, the hydrochloric acid concn. to 1-10% of the cupric chloride concn. and the sodium chloride concn. to 1.3 to 2. 0 times that of the cupric chloride concn.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、亜ひ酸を常温、常
圧下で酸化してひ酸にする亜ひ酸の酸化方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for oxidizing arsenous acid by oxidizing arsenous acid at room temperature and atmospheric pressure to form arsenic acid.

【0002】[0002]

【従来の技術】三酸化二砒素や亜ひ酸は、非鉄金属精錬
時に大量に副生、あるいはひ素を含有する廃棄物の処理
時に発生する。これらの一部は、三酸化二砒素や亜ひ酸
の形態のままで金属ひ素用の原料にされたり、そのまま
の形あるいは他の物質と反応させてから木材防腐剤や農
薬として使用されている。他の物質と反応させる場合に
は、三酸化二ひ素あるいは亜ひ酸としてよりも、これら
を酸化した五酸化二ひ素あるいはひ酸として利用され
る。
2. Description of the Related Art Diarsenic trioxide and arsenous acid are produced as a large amount as a by-product during the refining of non-ferrous metals or during the processing of waste containing arsenic. Some of these are used as raw materials for metallic arsenic in the form of diarsenic trioxide or arsenous acid, or are used as wood preservatives or pesticides as they are or after reacting with other substances. . In the case of reacting with other substances, they are used as diarsenic pentoxide or arsenic acid obtained by oxidizing these, rather than as arsenic trioxide or arsenous acid.

【0003】三酸化二ひ素の水に対する溶解度は低い
が、五酸化二ひ素の溶解度は高く、20°Cで230g
/100gに達する。なお、三酸化二ひ素は水に接する
と容易に亜ひ酸になり、五酸化二ひ素は水にせっすると
ひ酸になる。ひ酸になると他の化合物と反応してひ酸塩
を形成し易いという性質がある。
Although the solubility of arsenic trioxide in water is low, the solubility of arsenic pentoxide is high, 230 g at 20 ° C.
/ 100g is reached. Note that diarsenic trioxide easily becomes arsenous acid when it comes into contact with water, and diarsenic pentoxide becomes arsenic acid when it comes into contact with water. Arsenic acid has the property that it easily reacts with other compounds to form arsenate.

【0004】亜ひ酸をひ酸にする実用的な酸化方法とし
ては、次のような方法が知られている。 (1)過剰の硝酸の存在下での酸化。 (2)硝酸の存在下で空気あるいは酸素を通気して酸
化。 (3)硝酸の存在下で空気あるいは酸素を100気圧以
上に加圧して酸化。 (4)過酸化水素で酸化。 (5)二価の銅イオンの酸化力で酸化。 (6)オゾンによる酸化。
The following methods are known as practical oxidation methods for converting arsenous acid into arsenic acid. (1) Oxidation in the presence of excess nitric acid. (2) Oxidation by passing air or oxygen in the presence of nitric acid. (3) Oxidation by pressurizing air or oxygen to 100 atm or more in the presence of nitric acid. (4) Oxidation with hydrogen peroxide. (5) Oxidation by the oxidizing power of divalent copper ions. (6) Oxidation by ozone.

【0005】[0005]

【発明が解決しようとする課題】しかし、(1)の酸化
反応には、大過剰の硝酸を添加しても100%の酸化率
が得られ難く、酸化中にNOX が発生するので排ガスの
処理が必要で、酸化後の液濃度が極端に低くなるという
欠点がある。(2)の酸化反応にも、(1)の酸化反応
と同様に、100%の酸化率が得られ難く、酸化中にN
X が発生するので排ガスの処理が必要になるという欠
点がある。
However, in the oxidation reaction of (1), it is difficult to obtain an oxidation rate of 100% even if a large excess of nitric acid is added, and NO x is generated during the oxidation, so that exhaust gas There is a drawback that the treatment requires treatment and the concentration of the liquid after oxidation becomes extremely low. Similar to the oxidation reaction of (1), it is difficult to obtain an oxidation rate of 100% in the oxidation reaction of (2).
There is a drawback that exhaust gas must be treated because O X is generated.

【0006】(3)の酸化反応は、非常に速く酸化が進
み、かつ100%の酸化するが、高価な耐圧容器が必要
である。(4)の酸化反応も、非常に速く酸化が進み、
かつ100%の酸化するが、高価な薬品を使用し、かつ
酸化後の液濃度が極端に低くなるという欠点がある。
(5)の酸化反応も、非常に速く酸化が進み、かつ10
0%の酸化するが、二価の銅イオンが還元されて生成す
る一価の銅イオンの水に対する溶解度が極端に低いこと
から一価の銅イオンの二価への酸化が遅いという問題が
ある。
In the oxidation reaction (3), the oxidation progresses very quickly and 100% is oxidized, but an expensive pressure vessel is required. As for the oxidation reaction of (4), the oxidation progresses very quickly,
Although it oxidizes to 100%, it has the drawbacks that an expensive chemical is used and the concentration of the liquid after oxidation becomes extremely low.
In the oxidation reaction of (5), the oxidation progresses very quickly, and 10
Although it oxidizes by 0%, the solubility of monovalent copper ion generated by reduction of divalent copper ion in water is extremely low, so that there is a problem that the oxidation of monovalent copper ion to divalent is slow. .

【0007】(6)オゾンによる酸化は、酸化後の液濃
度の低下はなく、酸化も速いという利点があるが、大量
のオゾンを発生させるための設備費が厖大となる。ま
た、100%酸化させるには過剰のオゾン添加が必要に
なるので、オゾン臭を除去する設備も必要になるという
欠点がある。
(6) Oxidation with ozone has the advantages that the liquid concentration does not decrease after oxidation and the oxidation is fast, but the equipment cost for generating a large amount of ozone becomes enormous. Further, since it is necessary to add an excessive amount of ozone for 100% oxidation, there is a drawback that equipment for removing ozone odor is also required.

【0008】本発明は、亜ひ酸の酸化におけるかかる問
題を解決するものであって、酸化反応が速く常温、常圧
での操作が可能で、反応時間を短縮して生産性を向上さ
せ、エネルギーコストを低減することができ、過大な設
備が不要で設備費用も低廉な亜ひ酸の酸化方法を提供す
ることを目的とする。
The present invention solves such a problem in the oxidation of arsenous acid, the oxidation reaction is fast, and the operation at room temperature and atmospheric pressure is possible, and the reaction time is shortened to improve the productivity. An object of the present invention is to provide an oxidation method of arsenous acid which can reduce energy cost, does not require excessive equipment, and has low equipment cost.

【0009】[0009]

【課題を解決するための手段】本発明の亜ひ酸の酸化方
法は、二価の銅イオンの酸化力を利用して亜ひ酸を酸化
するものである。亜ひ酸は二価の銅イオンで容易に酸化
することができる。また、一価の銅イオンは、酸素に接
すると簡単に酸化される。しかし、一価の銅イオンの水
に対する溶解度は極めて低く、例えば、塩化第一銅はほ
とんど不溶である。そのため、水中の一価の銅イオンは
直ち析出して結晶になるので、結果として二価への酸化
が起こりにくくなる。また、三酸化二ひ素の水に対する
溶解度は前記のごとく低いので、その結果酸化速度が遅
くなる。
The method for oxidizing arsenous acid of the present invention utilizes the oxidizing power of divalent copper ions to oxidize arsenous acid. Arsenous acid can be easily oxidized with divalent copper ions. Further, monovalent copper ions are easily oxidized when they come into contact with oxygen. However, the solubility of monovalent copper ions in water is extremely low, and, for example, cuprous chloride is almost insoluble. Therefore, monovalent copper ions in water are immediately precipitated to form crystals, and as a result, divalent oxidation is less likely to occur. Further, the solubility of diarsenic trioxide in water is low as described above, and as a result, the oxidation rate becomes slow.

【0010】本発明者は、塩化第一銅の水への溶解度
が、塩酸あるいは塩化ナトリウムと塩化第一銅との複塩
の形にすることで改善できること、および三酸化二ひ素
の水に対する溶解度も塩酸存在下で高くなること、さら
に塩酸酸性下で第一銅イオンが安定に存在し得ることを
見出し、この知見に基づいて本発明を完成するにいたっ
た。
The present inventor has found that the solubility of cuprous chloride in water can be improved by forming it into a double salt form of hydrochloric acid or sodium chloride and cuprous chloride, and the solubility of diarsenic trioxide in water. It was also found that cuprous ions can be stably present in the presence of hydrochloric acid and acidity of hydrochloric acid, and the present invention has been completed based on this finding.

【0011】すなわち、本発明の亜ひ酸の酸化方法は、
塩化第二銅、塩酸および塩化ナトリウムを含有する溶液
中に亜ひ酸を溶解させ、攪拌しつつ空気あるいは酸素を
通気することにより、亜ひ酸を常温常圧下で酸化してひ
酸とする。これにより、容易に亜ひ酸をひ酸に100%
酸化することができる。塩化第二銅の濃度は5g/l以
上、150g/l以下であることが好ましく、塩酸の濃
度は塩化第二銅の濃度の1%以上、10%以下であるこ
とが好ましく。また、塩化ナトリウムの濃度が塩化第二
銅の濃度の1.3倍以上、2.0倍以下であることが好
ましい。
That is, the method for oxidizing arsenous acid of the present invention is
Arsenous acid is dissolved in a solution containing cupric chloride, hydrochloric acid and sodium chloride, and air or oxygen is aerated while stirring to oxidize the arsenic acid at room temperature and atmospheric pressure to form arsenic acid. This makes it easy to convert arsenous acid to arsenic acid by 100%.
Can be oxidized. The concentration of cupric chloride is preferably 5 g / l or more and 150 g / l or less, and the concentration of hydrochloric acid is preferably 1% or more and 10% or less of the concentration of cupric chloride. Further, it is preferable that the concentration of sodium chloride is 1.3 times or more and 2.0 times or less than the concentration of cupric chloride.

【0012】[0012]

【発明の実施の形態】この亜ひ酸の酸化方法は、塩化第
二銅、塩酸および塩化ナトリウムを含有する溶液中に亜
ひ酸を溶解させ、攪拌しつつ空気あるいは酸素を通気す
ることにより、亜ひ酸を常温常圧下で酸化してひ酸とす
る。三酸化二ひ素は水溶液中では亜ひ酸として存在し、
亜ひ酸は第二銅イオンにより瞬時に酸化されてひ酸とな
り、その結果第二銅イオンは還元されて第一銅イオンに
なる。第一銅イオンの無機の酸性対としては、塩素イオ
ン、硝酸根や硫酸根が挙げられるが、硫酸第一銅は水に
接すると直ちに分解して銅と硫酸第二銅となり、硝酸第
一銅も錯塩としては存在するが単塩の形では分離されて
いない不安定な化合物であることから、これら2つの第
一銅塩は本発明には不適当である。
BEST MODE FOR CARRYING OUT THE INVENTION This method for oxidizing arsenous acid is carried out by dissolving arsenous acid in a solution containing cupric chloride, hydrochloric acid and sodium chloride, and aerating air or oxygen with stirring. Arsenic acid is oxidized at normal temperature and pressure to form arsenic acid. Diarsenic trioxide exists as arsenous acid in aqueous solution,
Arsenous acid is instantaneously oxidized by cupric ions to form arsenic acid, and as a result, cupric ions are reduced to cuprous ions. Examples of the inorganic acid pair of cuprous ion include chloride ion, nitrate radical and sulfate radical, but cuprous sulfate is immediately decomposed into copper and cupric sulfate upon contact with water. These two cuprous salts are not suitable for the present invention because they are unstable compounds that exist as complex salts but are not separated in the form of a single salt.

【0013】一方、塩化第一銅の水に対する溶解度は極
めて低く、還元性の水中では安定して存在し、単離され
てフタロシアニンブルー製造時の原料として大量に消費
されている。水中に溶存している塩化第一銅イオンは、
溶存酸素によって容易に酸化されて塩化第二銅イオンに
なり、塩化第二銅イオンになると水に対する溶解度は格
段に向上する。しかしながら、水中に固体として存在す
る塩化第一銅を溶存酸素で酸化することは困難であるこ
とから、酸化速度を速めるには、塩化第一銅の溶解度を
向上させる必要がある。
On the other hand, the solubility of cuprous chloride in water is extremely low, it exists stably in reducing water, and it is isolated and consumed in large quantities as a raw material in the production of phthalocyanine blue. Cuprous chloride ions dissolved in water are
It is easily oxidized by dissolved oxygen to form cupric chloride ion, and when it becomes cupric chloride ion, the solubility in water is remarkably improved. However, since it is difficult to oxidize cuprous chloride existing as a solid in water with dissolved oxygen, it is necessary to improve the solubility of cuprous chloride in order to accelerate the oxidation rate.

【0014】塩化第一銅イオンは、塩化ナトリウムある
いは塩酸と複塩を形成し、その塩は水に対してよく溶解
する。塩化ナトリウムの方が溶解度は高い。例えば、塩
化ナトリウム190g/lの水溶液に塩化第一銅を10
0g/l溶かすことができる。1molの亜ひ酸をひ酸
に酸化するには、塩化第二銅4molを必要とする。従
って、この塩化第二銅が亜ひ酸を酸化することによって
生成する塩化第一銅を、迅速に空気あるいは酸素で酸化
して塩化第二銅とする必要がある。銅イオンの絶対量が
少なくては必然的に亜ひ酸をひ酸に酸化する速度に限界
があり、一方、必要以上に多くしようとしても、塩化第
一銅イオンの溶解度の関係から限界がある。また、必要
以上に多くしても空気あるいは酸素との接触効率から無
意味であるばかりか、ひ酸中の不純物量が増加する。以
上の理由から塩化第二銅の濃度は、5g/l以上、15
0g/l以下が好ましく、10g/l以上、100g/
l以下がより好ましい。
Cuprous chloride ion forms a double salt with sodium chloride or hydrochloric acid, and the salt dissolves well in water. Sodium chloride has a higher solubility. For example, 10 g of cuprous chloride is added to an aqueous solution of 190 g / l of sodium chloride.
It can be dissolved at 0 g / l. Oxidation of 1 mol of arsenous acid to arsenic acid requires 4 mol of cupric chloride. Therefore, it is necessary to rapidly oxidize cuprous chloride produced by oxidizing cuprous chloride with arsenous acid into air or oxygen to form cupric chloride. When the absolute amount of copper ions is small, the rate of oxidizing arsenous acid to arsenic acid is inevitably limited. On the other hand, even if an attempt is made to make more than necessary, there is a limit due to the solubility of cuprous chloride ions. . Further, if the amount is more than necessary, it is meaningless because of the contact efficiency with air or oxygen, and the amount of impurities in arsenic acid increases. For the above reasons, the concentration of cupric chloride is 5 g / l or more, 15
0 g / l or less is preferable, 10 g / l or more, 100 g /
It is more preferably 1 or less.

【0015】塩化第一銅は、アルカリ性で加水分解し易
く亜酸化銅を生成する。液を塩酸酸性にすることで塩化
第一銅の分解を抑制することができる。また、液を塩酸
酸性にすると、三酸化二ひ素の水に対する溶解度を高め
る効果があることから、ひ素の酸化速度を促進する。し
かし、塩酸濃度が高いと三酸化二ひ素と塩酸が反応して
三塩化ひ素を発生するので、必要以上に塩酸濃度を高く
することは避けなければならない。以上の理由から、塩
酸の濃度は塩化第二銅の濃度の1%以上、10%以下が
好ましく、2%以上、5%以下がより好ましい。
Cuprous chloride is alkaline and easily hydrolyzed to form cuprous oxide. By making the solution acidic with hydrochloric acid, the decomposition of cuprous chloride can be suppressed. Further, acidifying the solution with hydrochloric acid has the effect of increasing the solubility of diarsenic trioxide in water, and thus accelerates the oxidation rate of arsenic. However, when the concentration of hydrochloric acid is high, arsenic trioxide and hydrochloric acid react to generate arsenic trichloride, so it is necessary to avoid increasing the concentration of hydrochloric acid more than necessary. For the above reasons, the concentration of hydrochloric acid is preferably 1% or more and 10% or less of the concentration of cupric chloride, and more preferably 2% or more and 5% or less.

【0016】なお、鉱酸として硫酸や硝酸があるが、硫
酸は亜ひ酸と接すると亜ひ酸の一部をひ素に還元するこ
とから好ましくなく、硝酸は酸化剤として作用するので
この面では好ましいが、NOX を発生するので好ましく
ない。塩化第一銅を水に溶解するには、塩化ナトリウム
が必須である。塩化第二銅5g/lは塩化第一銅3.7
g/lに、150g/lは110g/lに相当する。1
10g/lの塩化第一銅を水に溶解するには、塩化ナト
リウムが最低190g/l、安定に溶解させるには25
0g/lを必要とする。また、塩化第一銅3.7g/l
を水に溶解するには、塩化ナトリウムが最低10g/l
必要である。
Although there are sulfuric acid and nitric acid as mineral acids, sulfuric acid is not preferable because it reduces a part of arsenous acid to arsenic when it comes into contact with arsenous acid, and nitric acid acts as an oxidizing agent. Although preferable, it is not preferable because it generates NO x . Sodium chloride is essential for dissolving cuprous chloride in water. Cupric chloride 5 g / l is cuprous chloride 3.7
g / l, 150 g / l corresponds to 110 g / l. 1
Sodium chloride should be at least 190g / l to dissolve 10g / l cuprous chloride in water, and 25 to dissolve it stably.
Requires 0 g / l. Also, cuprous chloride 3.7 g / l
Sodium chloride should be dissolved in water at least 10g / l
is necessary.

【0017】以上の理由から、塩化ナトリウムの濃度
は、塩化第二銅の濃度の1.3倍以上、2.0倍以下が
好ましく、1.5倍以上、2.0倍以下がより好まし
い。水中の溶存酸素量を増加させるには、水温を低く
し、酸素濃度の高いガスを使用することが好適であるこ
とは当然である。空気または酸素ガスの通気量は、系内
に第二銅イオンが常に存在するように供給することが好
ましい。
For the above reasons, the concentration of sodium chloride is preferably 1.3 times or more and 2.0 times or less, more preferably 1.5 times or more and 2.0 times or less, that of cupric chloride. In order to increase the amount of dissolved oxygen in water, it is natural that it is preferable to use a gas having a low water temperature and a high oxygen concentration. It is preferable to supply air or oxygen gas so that cupric ions are always present in the system.

【0018】[0018]

【実施例】【Example】

〔実施例1〕塩酸の濃度が2g/l、塩化ナトリウムの
濃度が50g/lの溶液1リットルを攪拌しつつ三酸化
二ひ素50gを添加し、つぎに塩化第二銅30gを加え
るのと同時に散気管から空気を500ml/分で5時間
通気して三価のひ素を5価に酸化した。操作はすべて常
温、常圧で行った。このときの酸化率を表1に示す。
[Example 1] 50 g of diarsenic trioxide was added to 1 liter of a solution having a hydrochloric acid concentration of 2 g / l and a sodium chloride concentration of 50 g / l with stirring, and then 30 g of cupric chloride was added at the same time. Air was passed through the air diffuser at 500 ml / min for 5 hours to oxidize trivalent arsenic to pentavalent. All operations were performed at room temperature and pressure. The oxidation rate at this time is shown in Table 1.

【0019】〔比較例1〕塩化ナトリウムを添加せず、
その他はすべて実施例1と同様に操作した。酸化率を表
1に示す。 〔比較例2〕塩化ナトリウムと塩化第二銅を添加せず、
その他はすべて実施例1と同様に操作した。酸化率を表
1に示す。
Comparative Example 1 Without adding sodium chloride,
Everything else was the same as in Example 1. The oxidation rate is shown in Table 1. [Comparative Example 2] Without adding sodium chloride and cupric chloride,
Everything else was the same as in Example 1. The oxidation rate is shown in Table 1.

【0020】〔比較例3〕塩酸、塩化ナトリウム、およ
び塩化第二銅を添加せず、その他はすべて実施例1と同
様に操作した。酸化率を表1に示す。
Comparative Example 3 The same operation as in Example 1 was carried out except that hydrochloric acid, sodium chloride and cupric chloride were not added. The oxidation rate is shown in Table 1.

【0021】[0021]

【表1】 表1より、実施例1では酸化率が極めて高いのに対し、
塩化ナトリウムや塩化第二銅や塩酸を添加しなかった比
較例1、比較例2、比較例3では酸化率が低くなってい
ることが分かる。
[Table 1] From Table 1, while the oxidation rate is extremely high in Example 1,
It can be seen that the oxidation rates are low in Comparative Example 1, Comparative Example 2, and Comparative Example 3 in which sodium chloride, cupric chloride, or hydrochloric acid was not added.

【0022】[0022]

【発明の効果】このように、本発明では、亜ひ酸を空気
あるいは酸素で酸化するとき、塩酸、塩化ナトリウムお
よび塩化第二銅を共存させることにより酸化が促進され
るので、常温、常圧での操作が可能になり、反応時間を
短縮して生産性を向上させ、エネルギーコストを低減す
ることができる。また、過大な設備が不要で装置材質の
選択幅が広くなり設備費用も低廉となる。
As described above, according to the present invention, when arsenous acid is oxidized with air or oxygen, the oxidation is promoted by the coexistence of hydrochloric acid, sodium chloride and cupric chloride. It is possible to operate at, the reaction time can be shortened, the productivity can be improved, and the energy cost can be reduced. In addition, there is no need for excessive equipment, and the range of choices for equipment materials is wide, and equipment costs are low.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 塩化第二銅、塩酸および塩化ナトリウム
を含有する溶液中に亜ひ酸を溶解させ、攪拌しつつ空気
あるいは酸素を通気することにより、亜ひ酸を常温常圧
下で酸化してひ酸とする亜ひ酸の酸化方法。
1. Arsenic acid is dissolved in a solution containing cupric chloride, hydrochloric acid and sodium chloride, and arsenic acid is oxidized under normal temperature and pressure by aeration with air or oxygen while stirring. A method for oxidizing arsenous acid to form arsenic acid.
【請求項2】 塩化第二銅の濃度が5g/l以上、15
0g/l以下であることを特徴とする請求項1記載の亜
ひ酸の酸化方法。
2. The concentration of cupric chloride is 5 g / l or more, 15
The method for oxidizing arsenous acid according to claim 1, wherein the amount is 0 g / l or less.
【請求項3】 塩酸の濃度が塩化第二銅の濃度の1%以
上、10%以下であることを特徴とする請求項1記載の
亜ひ酸の酸化方法。
3. The method for oxidizing arsenous acid according to claim 1, wherein the concentration of hydrochloric acid is 1% or more and 10% or less of the concentration of cupric chloride.
【請求項4】 塩化ナトリウムの濃度が塩化第二銅の濃
度の1.3倍以上、2.0倍以下であることを特徴とす
る請求項1記載の亜ひ酸の酸化方法。
4. The method for oxidizing arsenous acid according to claim 1, wherein the concentration of sodium chloride is 1.3 times or more and 2.0 times or less the concentration of cupric chloride.
JP26535095A 1995-10-13 1995-10-13 Arsenic oxidation method Expired - Fee Related JP3816131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26535095A JP3816131B2 (en) 1995-10-13 1995-10-13 Arsenic oxidation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26535095A JP3816131B2 (en) 1995-10-13 1995-10-13 Arsenic oxidation method

Publications (2)

Publication Number Publication Date
JPH09110428A true JPH09110428A (en) 1997-04-28
JP3816131B2 JP3816131B2 (en) 2006-08-30

Family

ID=17415961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26535095A Expired - Fee Related JP3816131B2 (en) 1995-10-13 1995-10-13 Arsenic oxidation method

Country Status (1)

Country Link
JP (1) JP3816131B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009011316A1 (en) * 2007-07-13 2009-01-22 Dowa Metals & Mining Co., Ltd. Method of treating copper-arsenic compound
WO2009011317A1 (en) * 2007-07-13 2009-01-22 Dowa Metals & Mining Co., Ltd. Method of treating nonferrous smelting intermediary product containing arsenic
WO2009019955A1 (en) * 2007-08-09 2009-02-12 Dowa Metals & Mining Co., Ltd. Method for treatment of arsenic-containing nonferrous smelting intermediate product
US8097228B2 (en) 2007-07-13 2012-01-17 Dowa Metals and Mining Co., Ltd. Method of processing diarsenic trioxide
US8147779B2 (en) 2007-07-13 2012-04-03 Dowa Metals & Minning Co., Ltd. Method of alkali processing substance containing arsenic

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009011316A1 (en) * 2007-07-13 2009-01-22 Dowa Metals & Mining Co., Ltd. Method of treating copper-arsenic compound
WO2009011317A1 (en) * 2007-07-13 2009-01-22 Dowa Metals & Mining Co., Ltd. Method of treating nonferrous smelting intermediary product containing arsenic
US8092764B2 (en) 2007-07-13 2012-01-10 Dowa Metals and Mining Co., Ltd. Method of processing non-ferrous smelting intermediate containing arsenic
US8097228B2 (en) 2007-07-13 2012-01-17 Dowa Metals and Mining Co., Ltd. Method of processing diarsenic trioxide
US8110162B2 (en) 2007-07-13 2012-02-07 Dowa Metals & Mining Co., Ltd. Method of processing copper arsenic compound
US8147779B2 (en) 2007-07-13 2012-04-03 Dowa Metals & Minning Co., Ltd. Method of alkali processing substance containing arsenic
WO2009019955A1 (en) * 2007-08-09 2009-02-12 Dowa Metals & Mining Co., Ltd. Method for treatment of arsenic-containing nonferrous smelting intermediate product
US8092765B2 (en) 2007-08-09 2012-01-10 Dowa Metals and Mining Co., Ltd. Method of processing non-ferrous smelting intermediates containing arsenic

Also Published As

Publication number Publication date
JP3816131B2 (en) 2006-08-30

Similar Documents

Publication Publication Date Title
Robinson et al. Synthesis of peroxynitrite from nitrite and hydrogen peroxide
US4707349A (en) Process of preparing a preferred ferric sulfate solution, and product
JP2716185B2 (en) Decomposition of nitrophenol
RU2003107342A (en) METHOD FOR PRODUCING IRON OXIDES
JP7372691B2 (en) How to obtain scorodite with a high arsenic content from an acidic solution with a high sulfuric acid content
JP3816131B2 (en) Arsenic oxidation method
JP2819066B2 (en) Method for producing chlorine dioxide
JP2741137B2 (en) Production method of iron-based flocculant
JP3294181B2 (en) Method for producing calcium arsenate
JPS5834197B2 (en) High speed inosyoriho
JP2000191328A (en) Production of ferric sulfate solution
US2311314A (en) Purification of water
JP3586566B2 (en) Method for efficiently producing high-purity ferric polysulfate
EP0244682B1 (en) Wood preservative compositions and a process for their production
JP4639309B2 (en) Treatment method of wastewater containing cyanide
JP3985125B2 (en) Ferric chloride solution manufacturing method, system thereof, and apparatus thereof
EP0316487B1 (en) A process of preparing ferric sulfate solution
JPH06510946A (en) Detoxification of cyanide aqueous solution
JP2003181476A (en) Method for decomposing chelating agent
JP2001300553A (en) Method for treating cyanide-containing wastewater
EP0110848B1 (en) A method for producing water-purifying chemicals
JPH0513094B2 (en)
JP3532074B2 (en) Method for producing ferric solution of low nitrogen polysulfate
JP3641148B2 (en) Method for producing polyferric sulfate
JP2003104728A (en) Method for treating iron-containing sulfuric acid solution

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050701

Free format text: JAPANESE INTERMEDIATE CODE: A971007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Effective date: 20060607

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees