JPH0910932A - Manufacture of welded tube - Google Patents

Manufacture of welded tube

Info

Publication number
JPH0910932A
JPH0910932A JP15747495A JP15747495A JPH0910932A JP H0910932 A JPH0910932 A JP H0910932A JP 15747495 A JP15747495 A JP 15747495A JP 15747495 A JP15747495 A JP 15747495A JP H0910932 A JPH0910932 A JP H0910932A
Authority
JP
Japan
Prior art keywords
welding
pipe
welded
arc
edge parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15747495A
Other languages
Japanese (ja)
Inventor
Hiromasa Fujimoto
宏昌 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP15747495A priority Critical patent/JPH0910932A/en
Publication of JPH0910932A publication Critical patent/JPH0910932A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To stably manufacture a welded tube with extremely few defective welds attributable to scattered spatter and attributable to the residual penetrator by smoothly discharging the oxide on the incompletely welded surface without increasing the scattered spatter amount. CONSTITUTION: Edge parts E, E on each opposite side of an open pipe OP are heated and melted by the high frequency current, and wires 4b, 4c which are a plurality of consumable electrodes to be fed from a consumable electrode gas shielded arc welding machine 4 are fed from the positions opposite to the heated and melted edge parts E, E on each side with the prescribed space therebetween in the longitudinal direction. The arc is ignited between the consumable electrodes 4b, 4c and the edge parts E, E, and the edge parts E, E on each side are butt welded by a squeeze roll 3 while the edge parts E, E are heated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、金属製の帯状材をその
幅方向に湾曲して両側のエッジ部を加熱溶融しつつ衝合
溶接して製管する溶接管の製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a welded pipe in which a metal strip is bent in the width direction thereof, and the edges of both sides are heated and melted while being abutted and welded together. .

【0002】[0002]

【従来の技術】一般に、この種の製管溶接法には、サブ
マージドアーク溶接法,プラズマ溶接法,TIG 溶接法,
高周波電縫溶接法等があり、このうち高周波電縫溶接法
は製管溶接プロセスの中で最も高効率なプロセスとして
広く採用されている。
2. Description of the Related Art Generally, this type of pipe welding method includes submerged arc welding method, plasma welding method, TIG welding method,
There are high-frequency electric resistance welding methods and the like. Among them, the high-frequency electric resistance welding method is widely adopted as the most efficient process in the pipe welding process.

【0003】図6は高周波電縫溶接法による溶接管の製
造態様を模式的に示す平面図であり、金属製の帯状材を
その幅方向両側のエッジ部E,Eが相対向するように成
形ロール群(図6では最終段のシームガイドロール1の
みを示す)で成形してオープンパイプOPと成した後、こ
のオープンパイプOPを誘導加熱コイル2に通して両側の
エッジ部E,Eに高周波電流を通じ、この部分を加熱溶
融させつつスクイズロール3により両側のエッジ部E,
E同士をV形状に漸近させ、衝合溶接して管Pを製造す
る。
FIG. 6 is a plan view schematically showing a manufacturing method of a welded pipe by a high frequency electric resistance welding method, in which a metal strip is formed so that edges E on both sides in the width direction face each other. After forming with a roll group (only the seam guide roll 1 at the final stage is shown in FIG. 6) to form an open pipe OP, the open pipe OP is passed through the induction heating coil 2 and a high frequency wave is applied to the edge portions E, E on both sides. An electric current is passed through the squeeze roll 3 while heating and melting this portion, so that the edges E,
The pipes E are asymptotically V-shaped and abutted and welded together to manufacture the pipe P.

【0004】ところで、このような高周波電縫溶接法に
あっては、エッジ部の高温酸化により生成されたペネト
レータと呼ばれる酸化物が溶接面に残留することにより
発生する溶接欠陥が多いという問題がある。ペネトレー
タが残留すると、拡管,曲げ等の溶接部に対する加工性
能を劣化させることは勿論のこと、溶接部の靱性,耐食
性をも劣化させ、実用上問題となることは周知である。
In the high-frequency electric resistance welding method, however, there is a problem in that many oxides called penetrators generated by high temperature oxidation of the edge portion remain on the welded surface, resulting in many welding defects. . It is well known that the remaining penetrator not only deteriorates the workability of the welded portion such as pipe expansion and bending but also deteriorates the toughness and corrosion resistance of the welded portion, which poses a practical problem.

【0005】ペネトレータは、適正な溶接条件を選択す
ることである程度まで低減することは可能であるが、従
来の高周波電縫溶接法ではこれを皆無とすることは極め
て難しい。このため、実操業において、ペネトレータの
発生し易い材料を用いる場合は、加熱部を不活性ガスで
シールドする方法が採用されているが、この方法でもペ
ネトレータに起因する溶接欠陥を完全に防止するには至
っていないのが実情である。
The penetrator can be reduced to some extent by selecting proper welding conditions, but it is extremely difficult to eliminate it by the conventional high frequency electric resistance welding method. For this reason, in actual operation, when using a material in which a penetrator is easily generated, a method of shielding the heating part with an inert gas is adopted, but this method also completely prevents welding defects caused by the penetrator. The reality is that it has not arrived.

【0006】そこで、近年、このようなペネトレータの
発生を防止する技術として、オープンパイプの両側エッ
ジ部を高周波電流によって予熱し、逆極性の消耗電極式
ガスシールドアーク溶接法によって電極と両側エッジ部
との間にアークを点弧させて加熱しつつ衝合溶接を行う
方法が考えられた。
Therefore, in recent years, as a technique for preventing the occurrence of such a penetrator, both side edge portions of the open pipe are preheated by a high frequency current, and the electrode and both side edge portions are connected to each other by a consumable electrode type gas shield arc welding method of opposite polarity. A method of performing abutting welding while igniting an arc during heating was considered.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、この方
法は電極と両側エッジ部との間に発生させるアークは1
つだけにすぎないので、アークによって加熱される範囲
は非常に小さいものとなってしまう。この結果、溶鋼の
流動部分が狭くなり、エッジ部の高温酸化によって生成
された酸化物が溶融池内から十分に浮き上がれずに溶接
面にペネトレータとなって残留し、溶接欠陥を形成して
しまう。
However, according to this method, the arc generated between the electrode and both side edges is 1
Since there is only one, the range heated by the arc will be very small. As a result, the fluidized portion of the molten steel becomes narrow, and the oxide generated by the high temperature oxidation of the edge portion does not sufficiently float from the inside of the molten pool and remains as a penetrator on the welding surface, forming a welding defect.

【0008】ところで、上記した従来の方法において、
溶接面に生成した酸化物を十分に排出するには、アーク
電流を通常よりも大きくする必要があったが、大電流ア
ークを点弧するとこれにより溶融池より飛散するスパッ
タの量も多くなるので、スクイズロールやパイプ外面に
付着し凝固した大量のスパッタがスクイズロールとパイ
プの間に挟み込まれ、結果的にパイプ外面にくぼみ疵を
つけてしまう。また、大電流アークを使用すると溶接ト
ーチの損傷も激しくなり、膨大な回数のトーチ交換が必
要となるので、スクイズロールへのスパッタの溶着及び
トーチの溶損等の事態が発生する度に製管作業を中断し
てスパッタを除去したり、トーチを交換したりする必要
が生じ、稼働率,歩留り,溶接トーチ原単位を悪化させ
る要因となっていた。
By the way, in the above-mentioned conventional method,
It was necessary to make the arc current larger than usual in order to sufficiently discharge the oxides generated on the welding surface, but when a high current arc is ignited, the amount of spatter scattered from the molten pool also increases. A large amount of spatter adhered to the outer surface of the squeeze roll or the pipe and solidified is sandwiched between the squeeze roll and the pipe, and as a result, the outer surface of the pipe is dented or flawed. Also, when a high current arc is used, the welding torch will be severely damaged and it will be necessary to replace the torch enormously.Therefore, every time a situation such as welding of spatter to the squeeze roll or melting of the torch occurs, pipe production It was necessary to interrupt the work to remove spatter and replace the torch, which was a factor of deteriorating the operating rate, yield, and welding torch basic unit.

【0009】本発明は、上記した従来の問題点に鑑みて
なされたものであり、飛散スパッタ量を増やすことな
く、不十分であった溶接面における酸化物の排出を円滑
に行い、残留ペネトレータに起因する溶接欠陥及び飛散
スパッタに起因するくぼみ疵の極めて少ない溶接管を安
定して製造できる方法を提供することを目的としてい
る。
The present invention has been made in view of the above-mentioned problems of the prior art, and it is possible to smoothly discharge the insufficient oxide on the welded surface without increasing the amount of scattered spatter, and to remove the residual penetrator. It is an object of the present invention to provide a method capable of stably producing a welded pipe having extremely few recessed and flawed defects caused by welding defects and scattered spatter.

【0010】[0010]

【課題を解決するための手段】一般に消耗電極式アーク
溶接法においては、形成された溶融池が大きいほど酸化
物の排出性が良く、また溶融池に飛び込むアークが小さ
いほど飛散するスパッタの量も少なくなる。従って、従
来のように1本の電極から大電流アークを点弧するので
はなく、適正な領域に配置した複数本の電極から従来よ
りも小さいが比較的大電流のアークを複数に分散して点
弧すれば、飛散スパッタ量を最小限に抑制できるととも
に、エッジ部に生成した高温酸化物の排出が円滑に行
え、残留ペネトレータが極めて少なく、しかもスパッタ
によるくぼみ疵も非常に少なくなることを本発明者は知
見した。
Generally, in the consumable electrode type arc welding method, the larger the molten pool formed, the better the oxide discharge property, and the smaller the arc that jumps into the molten pool, the more the amount of spatter scattered. Less. Therefore, instead of igniting a high-current arc from one electrode as in the conventional art, a plurality of electrodes arranged in appropriate regions are used to disperse arcs of a relatively large current, which are smaller than the conventional one, into a plurality of arcs. When ignited, the amount of scattered spatter can be minimized, the high-temperature oxide generated at the edge can be discharged smoothly, the residual penetrator is extremely small, and the dent defects due to sputtering are also extremely small. The inventor has found out.

【0011】本発明は上記した知見に基づいて成された
ものであり、オープンパイプの相対向する両側のエッジ
部を高周波電流にて加熱溶融させ、消耗電極式ガスシー
ルドアーク溶接機から供給される複数本の消耗電極を、
この加熱溶融した両側のエッジ部と長手方向に所定の間
隔を存して対向させた位置から供給し、これら消耗電極
とエッジ部との間にアークを点弧させてエッジ部を加熱
しつつスクイズロールにて両側のエッジ部を衝合溶接す
ることを要旨とする溶接管の製造方法である。
The present invention was made on the basis of the above-mentioned findings, and the edges of opposite sides of an open pipe are heated and melted by a high frequency current and supplied from a consumable electrode type gas shield arc welder. Multiple consumable electrodes,
The heated and melted edge portions are supplied from a position opposed to each other with a predetermined interval in the longitudinal direction, and an arc is ignited between these consumable electrodes and the edge portions to heat the edge portions and squeeze. This is a method for manufacturing a welded pipe, which is characterized in that the edges of both sides are butt-welded with a roll.

【0012】[0012]

【作用】本発明の溶接管の製造方法は、消耗電極式ガス
シールドアーク溶接機から供給される消耗電極を複数本
としているので、従来に比べて形成される溶融池を拡大
でき、エッジ部の高温酸化物の排出が円滑に行える。ま
た、複数本の消耗電極とエッジ部との間に点弧させるア
ークによってエッジ部に広く熱を供給することができる
ので、従来よりもアーク電流を小さくでき、飛散スパッ
タ量の発生を抑制できる。
In the method for producing a welded pipe of the present invention, since the consumable electrode type gas shielded arc welding machine supplies a plurality of consumable electrodes, the molten pool formed can be expanded as compared with the conventional one, and the edge portion The high temperature oxide can be discharged smoothly. In addition, since the heat can be widely supplied to the edge portion by the arc that is ignited between the plurality of consumable electrodes and the edge portion, the arc current can be made smaller than in the conventional case, and the generation of scattered spatter can be suppressed.

【0013】[0013]

【実施例】以下、本発明の溶接管の製造方法を図1及び
図2に示す一実施例に基づいて説明する。図1は本発明
の溶接管の製造方法による具体的実施状態を示す模式的
正面図、図2は同じく模式的平面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for manufacturing a welded pipe according to the present invention will be described below with reference to an embodiment shown in FIGS. FIG. 1 is a schematic front view showing a concrete implementation state by the method for manufacturing a welded pipe of the present invention, and FIG. 2 is a schematic plan view of the same.

【0014】図1,2において、OPはオープンパイプ、
Pは管、1はシームガイドロール、2は誘導加熱コイ
ル、3はスクイズロール、4は消耗電極式ガスシールド
アーク溶接機、5は制御装置、6は高周波電源、7はカ
ウンタを示している。オープンパイプOPはスケルプを成
形ロール群(図1,2では最終段のシームガイドロール
1のみを示している)に適用して断面U形から両側のエ
ッジ部E,Eが相対向する断面略O形になるまで曲成さ
れたものである。
1 and 2, OP is an open pipe,
P is a pipe, 1 is a seam guide roll, 2 is an induction heating coil, 3 is a squeeze roll, 4 is a consumable electrode type gas shield arc welder, 5 is a control device, 6 is a high frequency power supply, and 7 is a counter. In the open pipe OP, a skelp is applied to a forming roll group (only the seam guide roll 1 at the final stage is shown in FIGS. 1 and 2), and a cross section of a substantially U-shaped cross section in which both edge portions E are opposed to each other. It was formed into a shape.

【0015】このオープンパイプOPはシームガイドロー
ル1を出た後、誘導加熱コイル2に通されて両側のエッ
ジ部E,Eを加熱されつつ、スクイズロール3側に向か
うにしたがって両側のエッジ部E,Eの端面が相互にV
形状に漸近せしめられ、スクイズロール3にてアップセ
ットをかけられて溶接点Oで相互に衝合溶接され、管P
の状態となって仕上げ工程に向けて白抜き矢印方向に移
送されてゆく。
The open pipe OP, after exiting the seam guide roll 1, is passed through an induction heating coil 2 to heat the edge portions E, E on both sides, while the edge portions E on both sides are moved toward the squeeze roll 3 side. , E end faces are mutually V
The shape is asymptotic, upset by the squeeze roll 3, and butt-welded to each other at the welding point O, and the pipe P
In this state, they are transferred in the direction of the white arrow toward the finishing process.

【0016】ところで、前記消耗電極式ガスシールドア
ーク溶接機4は、所定のワイヤ送給装置を備えるととも
に、図示しない溶接電源に接続された溶接トーチ4aを
備えており、この溶接トーチ4aを通じて例えば2つの
リール4d,4eから消耗電極である2つのワイヤ4
b,4cを引き出し、オープンパイプOPの相対するエッ
ジ部E,Eがスクイズロール3によって衝合溶接される
地点、すなわち溶接点Oと誘導加熱コイル2との間にお
けるエッジ部E,Eとワイヤ4b,4cとの間にアーク
を点弧させてワイヤ4b,4cを溶融させつつ供給して
ゆくようになっている。
By the way, the consumable electrode type gas shield arc welding machine 4 is provided with a predetermined wire feeding device and a welding torch 4a connected to a welding power source (not shown). Two wires 4 as consumable electrodes from one reel 4d and 4e
b, 4c are pulled out, and the opposite edge portions E, E of the open pipe OP are abutted and welded by the squeeze roll 3, that is, the edge portions E, E between the welding point O and the induction heating coil 2 and the wire 4b. , 4c, an arc is ignited to melt and supply the wires 4b, 4c.

【0017】また、消耗電極式ガスシールドアーク溶接
機4には、エッジ部E,Eと対向させたワイヤ4b,4
cの位置をオープンパイプOPの管軸方向に一体的に移動
調節するための駆動部4fが設けられており、この駆動
部4fの操作により一対のスクイズロール3,3の両回
転軸心を含む平面から誘導加熱コイル2の側に向けて3
0〜80mmの範囲内でエッジ部E,Eに対するワイヤ
4b,4cの位置を前後方向に移動調節できるようにな
っている。なお、図示省略したが、さらに、ワイヤ4b
と4cの間隔を調節できるように構成してもよい。
Further, in the consumable electrode type gas shield arc welding machine 4, the wires 4b, 4 facing the edge portions E, E are provided.
A drive unit 4f for integrally moving and adjusting the position of c in the axial direction of the pipe of the open pipe OP is provided. By operating this drive unit 4f, both rotary shaft centers of the pair of squeeze rolls 3 and 3 are included. 3 from the plane toward the induction heating coil 2
The positions of the wires 4b, 4c with respect to the edge portions E, E can be moved and adjusted in the front-back direction within a range of 0 to 80 mm. Although not shown, the wire 4b is further included.
4c may be adjusted.

【0018】前記カウンタ7は誘導加熱コイル2の高周
波電源6における真空管プレート側の高周波電圧周波数
を例えば0.5msec. 毎に測定し、この測定データを前
記制御装置5が読み込んで周波数変動量及びその標準偏
差を求める。そして、この標準偏差が例えば0.15%
となるよう、換言すれば両側のエッジ端面間距離が0.
3〜1.1mmの範囲内において点弧を行わせるべく駆
動部4fに制御信号を出力し、溶接トーチ4aの位置を
調節する。そして、この調節位置でアークを点弧して連
続供給されるワイヤ4b,4cを溶融し、その溶融金属
を被溶接面に添加しつつスクイズロール3にて衝合溶接
を行って溶接管Pを得るべく監視及び制御する。
The counter 7 measures the high-frequency voltage frequency on the vacuum tube plate side of the high-frequency power source 6 of the induction heating coil 2 at intervals of, for example, 0.5 msec. Calculate the standard deviation. And this standard deviation is, for example, 0.15%
In other words, the distance between the edge end faces on both sides is 0.
A control signal is output to the drive unit 4f to adjust the position of the welding torch 4a so that the ignition is performed within the range of 3 to 1.1 mm. Then, the wires 4b, 4c that are continuously supplied by igniting an arc at this adjusting position are melted, and the molten metal is added to the surface to be welded, and the squeeze roll 3 is used for butt welding to form the welded pipe P. Monitor and control to obtain.

【0019】〔試験例〕重量%で、C:0.07%、S
i:0.23%、Mn:1.30%、Nb:0.066%、T
i:0.046%を含有する帯鋼から外径50.8m
m、肉厚4.9mmの電縫鋼管を製造した。製造に際し
ては、誘導加熱コイル2と溶接点Oの間に配置された消
耗電極式ガスシールドアーク溶接機4にてC:0.19
%、Si:0.23%、Mn:2.09%、Nb:0.066
%、Ti:0.046%を含有する直径1.2mmのワイ
ヤを連続的に溶融させ、その溶融金属をオープンパイプ
OPの被溶接面へ添加した。アークの点弧位置は一対のス
クイズロール3,3の両回転軸心を含む平面から誘導加
熱コイル2の方向へ20〜80mm隔てたオープンパイ
プOPの上方とした。また、ワイヤの間隔は5mmに固定
して行った。なお、消耗電極式ガスシールドアーク溶接
機4における溶接電源の電流,電圧はそれぞれ300
A,30Vとし、シールドガスとして純度99.999
%のArを用いた。
[Test Example] C: 0.07% by weight, S
i: 0.23%, Mn: 1.30%, Nb: 0.066%, T
i: Outer diameter of 50.8 m from steel strip containing 0.046%
An electric resistance welded steel pipe having a thickness of 4.9 mm and a wall thickness of 4.9 mm was manufactured. At the time of production, the consumable electrode type gas shielded arc welder 4 placed between the induction heating coil 2 and the welding point O was used for C: 0.19.
%, Si: 0.23%, Mn: 2.09%, Nb: 0.066
%, Ti: 0.046%, wire with a diameter of 1.2 mm is continuously melted and the molten metal is opened.
Added to the welded surface of OP. The ignition position of the arc was above the open pipe OP, which was separated by 20 to 80 mm in the direction of the induction heating coil 2 from the plane including both rotation axes of the pair of squeeze rolls 3, 3. The wire interval was fixed at 5 mm. The current and voltage of the welding power source in the consumable electrode type gas shield arc welder 4 are 300 and 300, respectively.
A, 30V, purity 99.999 as shield gas
% Ar was used.

【0020】以上の溶接条件にて製管を行ったときのア
ーク点弧位置(一対のスクイズロール3,3の両回転軸
心を含む平面からの距離)と、衝合溶接点上方から写真
撮影によって測定したエッジ端面間ギャップと、製管中
に測定した高周波電源6の発振周波数変動量及び溶接後
の偏平試験によって判定した管1m当たりの溶接欠陥長
さとの関係を図3に示す。
An arc ignition position (distance from a plane including both rotation axes of the pair of squeeze rolls 3 and 3) and a photograph taken from above the abutting welding point when the pipe is manufactured under the above welding conditions. The relationship between the edge-to-end face gap measured by the method, the oscillation frequency fluctuation amount of the high-frequency power source 6 measured during pipe manufacturing, and the welding defect length per 1 m of the pipe determined by the flattening test after welding is shown in FIG.

【0021】図3は横軸にスクイズロール3の中心と対
応する位置から誘導加熱コイル2側に測定した距離を、
また、縦軸にエッジ端面間ギャップ〔図3(a)〕、発
振周波数変動量の標準偏差〔図3(b)〕、溶接欠陥長
さ〔図3(c)〕をとって示している。また、図中には
消耗電極(ワイヤ)を1,2及び3本としたときの測定
値をそれぞれプロットしている。
FIG. 3 shows the distance measured from the position corresponding to the center of the squeeze roll 3 on the horizontal axis to the induction heating coil 2 side,
Further, the vertical axis shows the gap between the edge faces [FIG. 3 (a)], the standard deviation of the oscillation frequency fluctuation amount [FIG. 3 (b)], and the welding defect length [FIG. 3 (c)]. Further, in the figure, the measured values when the consumable electrodes (wires) are 1, 2 and 3 are respectively plotted.

【0022】消耗電極を1本とした時(図3中の□
印)、アーク点弧位置を一対のスクイズロール3,3の
両回転軸心を含む平面から40mm以上50mm以下、
エッジ端面間ギャップは0.3mm以上0.7mm以
下、発振周波数変動量の標準偏差は0.15%前後の各
範囲に保持することで溶接後の偏平試験によって認めら
れる溶接欠陥の長さを縮小し得ることはすでに開示され
ている。
When only one consumable electrode is used (□ in FIG. 3)
Mark), the arc firing position is 40 mm or more and 50 mm or less from a plane including both rotation axes of the pair of squeeze rolls 3, 3.
The gap between the edges of the edges is 0.3 mm or more and 0.7 mm or less, and the standard deviation of the oscillation frequency fluctuation amount is kept in each range of around 0.15% to reduce the length of welding defects recognized by the flatness test after welding. The possibilities are already disclosed.

【0023】しかし、消耗電極を2本にした時(図3中
の○印)には、先の1本のときの適正範囲、すなわち発
振周波数変動量の標準偏差が0.15%前後となる範囲
が拡大されており、それぞれアーク点弧位置を35mm
以上65mm以下、エッジ端面間ギャップは0.3mm
以上1.1mm以下の範囲で溶接欠陥の長さが縮小され
得ることが判る。消耗電極を3本とした時(図3中の●
印)にも、2本としたときと同様の結果が得られた。
However, when the number of consumable electrodes is set to two (marked with a circle in FIG. 3), the appropriate range in the case of the previous one, that is, the standard deviation of the oscillation frequency fluctuation amount becomes about 0.15%. The range is expanded, and the arc firing position is 35 mm for each.
65mm or less, the gap between the edge faces is 0.3mm
It is understood that the length of the welding defect can be reduced within the range of 1.1 mm or less. When using three consumable electrodes (● in Fig. 3)
The same result as when two lines were obtained was also obtained for the mark).

【0024】図4は横軸に溶接後の偏平試験によって判
定した管250mm当たりの溶接欠陥の個数、縦軸はこ
の溶接欠陥の実欠陥長さを示している。図4中に破線で
示す曲線は消耗電極を1本とした時、同じく棒グラフは
消耗電極を2本とした時、また実線で示す折れ線は消耗
電極を3本とした時のそれぞれの測定値を表している。
消耗電極を2及び3本とした時には、1本の時よりもそ
れぞれの実溶接欠陥長さを短くすることができた。この
結果、図3(c)に示すように、溶接欠陥長さが縮小さ
れるのである。
In FIG. 4, the horizontal axis shows the number of welding defects per 250 mm of pipe determined by the flatness test after welding, and the vertical axis shows the actual defect length of the welding defects. In FIG. 4, the curve indicated by the broken line is the measured value when one consumable electrode is used, the bar graph is the measured value when the consumable electrode is two, and the broken line shown by the solid line is the measured value when the consumable electrode is three. It represents.
When the number of consumable electrodes was 2 and 3, the actual welding defect length could be made shorter than when the number of consumable electrodes was 1. As a result, the welding defect length is reduced as shown in FIG.

【0025】また、上記した溶接条件にてアーク点弧位
置とスクイズロール3の中心と対応する位置との距離が
50mmとなるように調節したときの、消耗電極を2及
び3本としたときの各電極間の距離と、溶接後の偏平試
験によって判定した管1m当たりの溶接欠陥の長さの関
係を図5に示す。図5より消耗電極を2本(図5中の○
印)及び3本(図5中の●印)としたときのいずれもが
各電極間の距離が3.5mm以上6.0mm以下とした
ときに溶接後の偏平試験によって認められる溶接欠陥の
長さを縮小し得ることが判る。
In addition, when the distance between the arc firing position and the position corresponding to the center of the squeeze roll 3 is adjusted to 50 mm under the above welding conditions, the number of consumable electrodes is set to 2 and 3. FIG. 5 shows the relationship between the distance between the electrodes and the length of the welding defect per 1 m of the pipe determined by the flatness test after welding. Two consumable electrodes from Fig. 5 (○ in Fig. 5
(Marked) and 3 (marked with ● in FIG. 5), the length of the welding defect recognized by the flatness test after welding when the distance between the electrodes is 3.5 mm or more and 6.0 mm or less. It turns out that the size can be reduced.

【0026】[0026]

【発明の効果】以上説明したように、本発明の溶接管の
製造方法にあっては、複数本の消耗電極を使用し、かつ
従来よりも小さい電流でアークを点弧することによっ
て、飛散スパッタに起因するくぼみ疵とペネトレータに
起因する溶接欠陥の発生を抑制でき、高靱性,高耐食性
を備えた溶接管の製造が可能となる等の優れた効果を有
する。
As described above, according to the method of manufacturing a welded pipe of the present invention, a plurality of consumable electrodes are used and an arc is ignited with a smaller current than in the prior art, so that scattered spatter is generated. It is possible to suppress the occurrence of welding defects caused by the dents and the penetrator caused by the above, and it is possible to manufacture a welded pipe having high toughness and high corrosion resistance, which is an excellent effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の溶接管の製造方法による具体的実施状
態を示す模式的正面図である。
FIG. 1 is a schematic front view showing a concrete implementation state by the method for manufacturing a welded pipe of the present invention.

【図2】同じく模式的平面図である。FIG. 2 is a schematic plan view of the same.

【図3】本発明の溶接管の製造方法の試験結果を示すグ
ラフである。
FIG. 3 is a graph showing test results of the method for manufacturing a welded pipe of the present invention.

【図4】本発明の溶接管の製造方法の試験結果を示すグ
ラフである。
FIG. 4 is a graph showing test results of the method for manufacturing a welded pipe of the present invention.

【図5】本発明の溶接管の製造方法の試験結果を示すグ
ラフである。
FIG. 5 is a graph showing test results of the method for manufacturing a welded pipe of the present invention.

【図6】従来方法の実施状態を示す模式的平面図であ
る。
FIG. 6 is a schematic plan view showing an implementation state of a conventional method.

【符号の説明】[Explanation of symbols]

OP オープンパイプ P 管 E エッジ部 3 スクイズロール 4 消耗電極式ガスシールドアーク溶接機 4b ワイヤ 4c ワイヤ 6 高周波電源 OP Open pipe P pipe E Edge part 3 Squeeze roll 4 Consumable electrode type gas shield arc welder 4b wire 4c wire 6 High frequency power supply

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 オープンパイプの相対向する両側のエッ
ジ部を高周波電流にて加熱溶融させ、消耗電極式ガスシ
ールドアーク溶接機から供給される複数本の消耗電極
を、この加熱溶融した両側のエッジ部と長手方向に所定
の間隔を存して対向させた位置から供給し、これら消耗
電極とエッジ部との間にアークを点弧させてエッジ部を
加熱しつつスクイズロールにて両側のエッジ部を衝合溶
接することを特徴とする溶接管の製造方法。
1. An edge part on both sides of an open pipe, which is opposed to each other, is heated and melted by a high-frequency current, and a plurality of consumable electrodes supplied from a consumable electrode type gas shield arc welder are heated and melted on both sides. Are supplied from a position facing each other at a predetermined interval in the longitudinal direction, and an arc is ignited between these consumable electrodes and the edge to heat the edge while the squeeze roll is applied to both edges. A method for manufacturing a welded pipe, which comprises subjecting the welded joints to butt welding.
JP15747495A 1995-06-23 1995-06-23 Manufacture of welded tube Pending JPH0910932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15747495A JPH0910932A (en) 1995-06-23 1995-06-23 Manufacture of welded tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15747495A JPH0910932A (en) 1995-06-23 1995-06-23 Manufacture of welded tube

Publications (1)

Publication Number Publication Date
JPH0910932A true JPH0910932A (en) 1997-01-14

Family

ID=15650476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15747495A Pending JPH0910932A (en) 1995-06-23 1995-06-23 Manufacture of welded tube

Country Status (1)

Country Link
JP (1) JPH0910932A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2757447C1 (en) * 2020-12-21 2021-10-15 Дмитрий Борисович Фрункин Method for welding large diameter straight-seam pipes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2757447C1 (en) * 2020-12-21 2021-10-15 Дмитрий Борисович Фрункин Method for welding large diameter straight-seam pipes

Similar Documents

Publication Publication Date Title
US9677692B2 (en) Welded steel pipe joined with high-energy-density beam and method for producing the same
JP3735135B2 (en) Method for joining metal parts by fusion arc welding
JP4786402B2 (en) UOE steel pipe manufacturing method
JP4757696B2 (en) UOE steel pipe manufacturing method
JPS6317554B2 (en)
CN109641306B (en) Vertical narrow groove gas shielded arc welding method
JPH0615447A (en) Manufacture of welded tube
JPH0910932A (en) Manufacture of welded tube
CN115703163A (en) Multi-electrode single-side submerged arc welding method
JP2666647B2 (en) Manufacturing method of welded pipe
JP2833279B2 (en) Steel pipe welding method
JP2021154298A (en) Gas shield arc-welding method and gas shield arc-welding device
JPH0428472B2 (en)
JPH0852513A (en) Manufacture of welded tube
WO2022030162A1 (en) Ultra-narrow-gap submerged arc welding method and ultra-narrow-gap submerged arc welding device
JPS63220977A (en) Manufacture of welded steel pipe
JPH0381070A (en) Manufacture of welded pipe
SU1660885A1 (en) Method for arc hard facing
JPH0523869A (en) Manufacture of weld tube
JPH01192476A (en) Manufacture of welded steel pipe
JP3052036B2 (en) Strip welding method in ERW pipe manufacturing equipment
JP2002178153A (en) Narrow groove multi-layer arc welding method for extra-thick steel
CN112809137A (en) Welding method of hollow tungsten electrode coaxial MIG/MAG composite welding device
JP2002543983A (en) Automatic multi-plasma welding process and equipment
JP2000141031A (en) Welding method of extra-heavy steel plate