JPH09109082A - Joint structure of industrial robot - Google Patents

Joint structure of industrial robot

Info

Publication number
JPH09109082A
JPH09109082A JP26401295A JP26401295A JPH09109082A JP H09109082 A JPH09109082 A JP H09109082A JP 26401295 A JP26401295 A JP 26401295A JP 26401295 A JP26401295 A JP 26401295A JP H09109082 A JPH09109082 A JP H09109082A
Authority
JP
Japan
Prior art keywords
speed reducer
joint
movable element
industrial robot
robot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26401295A
Other languages
Japanese (ja)
Inventor
Akira Nihei
亮 二瓶
Toshihiko Inoue
俊彦 井上
Masahiro Ueno
正博 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP26401295A priority Critical patent/JPH09109082A/en
Publication of JPH09109082A publication Critical patent/JPH09109082A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To attain machining of joint structure of a robot body easily with high accuracy so as to reduce machining cost. SOLUTION: In the joint structure 24 of an industrial robot, an area of the fitting bearing surface 20b of a movable element 20 to which a coaxial type speed reducer 28 is fitted, is secured as the high accuracy surface by simple facing. The end face of the speed reucer 28 is brought into contact with the high accuracy bearing surface 20b, and the peripheral part of an outer ring 36 of a main bearing 34 is closely fitted and positioned into a fitting hole bored by precision machining in the side face 20b of the movable element 20. The fitting of the speed reducer 28 by socket and spigot jointing is thereby attained so as to be coaxially direct-coupled with high accuracy to an output shaft 26 of a driving motor M.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、産業用ロボットの
関節構造に関し、特に、2つの可動機素の関節部に駆動
モータと同軸減速機とを直列配置で組み込んで2つの可
動機素の間における相対回転を生起させる関節構造の加
工を簡単かつ高精度化させることが可能な産業用ロボッ
トの関節構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a joint structure of an industrial robot, and more particularly to a structure in which a drive motor and a coaxial speed reducer are installed in series in a joint portion of two movable elements to provide a space between the two movable elements. The present invention relates to a joint structure of an industrial robot capable of easily and highly accurately processing a joint structure that causes relative rotation.

【0002】[0002]

【従来の技術】産業用ロボットの関節部、例えば多関節
型ロボット機体の第1アーム、第2アームの2つの可動
機素を結合する関節部においては、一方の可動機素に組
付けた回転検出器付きのサーボモータ等から成る駆動モ
ータの回転出力軸を同じ可動機素に取り付けた遊星減速
機その他の周知の同軸型減速機の出力要素を他方の可動
機素に結合して駆動モータの回転出力を減速伝動して後
者の被駆動可動機素を関節軸線回りに所定の回転をさせ
る構成が広く用いられている。
2. Description of the Related Art A joint part of an industrial robot, for example, a joint part that connects two movable elements of a first arm and a second arm of a multi-joint type robot body, has a rotation attached to one movable element. The output element of a planetary speed reducer or other well-known coaxial type speed reducer in which the rotary output shaft of a drive motor composed of a servo motor with a detector is attached to the same movable element, and the output element of the drive motor is connected to the other movable element. A configuration is widely used in which the rotational output is decelerated and transmitted, and the latter driven movable element is rotated a predetermined amount around the joint axis.

【0003】図4に2つの可動機素の間に設けられた関
節部の従来例が示されており、ロボット機体の第1アー
ム51と第2アーム52との間の関節部50として設け
られている。この関節部50においては、第1アーム5
1の左側に関節用アクチュエータを形成する駆動モータ
53がボルトねじ等の取付け手段によって取付けられて
おり、この駆動モータ53は出力軸54を有している。
第1アーム51の他側には同軸型の減速機55が取付け
られ、この減速機55は回転入力を印加される入力軸5
6と減速出力回転を送出する出力軸57とを有し、入力
軸56が駆動モータ53の出力軸54に結合され、減速
機出力軸57が第2のアーム52へ結合され、同第2ア
ーム52を第1アーム51に対して相対的に関節部50
の軸線回りに回転させる構成となっている。
FIG. 4 shows a conventional example of a joint portion provided between two movable elements, which is provided as a joint portion 50 between a first arm 51 and a second arm 52 of a robot body. ing. In this joint 50, the first arm 5
A drive motor 53 forming an actuator for the joint is attached to the left side of 1 by an attaching means such as a bolt screw, and the drive motor 53 has an output shaft 54.
A coaxial type speed reducer 55 is attached to the other side of the first arm 51, and the speed reducer 55 has an input shaft 5 to which a rotational input is applied.
6 and an output shaft 57 for outputting decelerated output rotation, the input shaft 56 is coupled to the output shaft 54 of the drive motor 53, the reducer output shaft 57 is coupled to the second arm 52, and the second arm 52 is a joint part 50 relative to the first arm 51.
It is configured to rotate around the axis of.

【0004】この場合に、同軸減速機55は、その機体
の外箱58の直角端面部を第1アーム51の端部に形成
した座面59に略密嵌状態(所謂、インロー状態)に嵌
合させ、減速機55を位置決めしている。つまり、減速
機55の外箱58の外径と座面59の内径との間を密嵌
し、かつ減速機の端面を座面59に当接させる構造とし
ている。このように、減速機55が第1アーム51の側
面に削設された座面59にインロー状態に嵌合、位置決
めされることにより、駆動モータ53と同軸減速機55
との間の高精度の同軸結合が達成され、従ってロボット
機体の関節部50における動作精度を高精度に確立する
ことができるのである。
In this case, the coaxial speed reducer 55 is fitted into the seat surface 59 formed at the end of the first arm 51 at the right-angle end surface of the outer casing 58 of the machine body in a substantially close-fitting state (so-called spigot state). And the speed reducer 55 is positioned. That is, the outer diameter of the outer box 58 of the speed reducer 55 and the inner diameter of the seat surface 59 are tightly fitted, and the end surface of the speed reducer is brought into contact with the seat surface 59. In this way, the reduction gear 55 is fitted and positioned in the seating surface 59 cut on the side surface of the first arm 51 in the spigot state, and thus the drive motor 53 and the coaxial reduction gear 55.
A highly accurate coaxial coupling between the robot body and the robot body is achieved, and therefore, the motion accuracy of the joint portion 50 of the robot body can be established with high accuracy.

【0005】[0005]

【発明が解決しようとする課題】然しながら、従来の関
節部50の構造によると、同軸型減速機55がインロー
状態に嵌合される座面59の加工に当たって環状の肩部
を精密に削設する必要があることから、小径のエンドミ
ル工具等を用いた長時間加工を要し、また、当該肩部が
段差状に存在することから、減速機端面が当接する座面
59を先ず、フェイスミル等の比較的大径の面加工用切
削工具により一気に効率良く高速切削加工できないと言
う不利がある。この結果、関節部50の加工々数増を招
き、割高になると言う問題点がある。
However, according to the conventional structure of the joint portion 50, the annular shoulder portion is precisely excavated when processing the seat surface 59 on which the coaxial reduction gear 55 is fitted in the spigot state. Since it is necessary, long-time machining using a small-diameter end mill tool or the like is required, and since the shoulder portion exists in a stepped shape, the seat surface 59 with which the end face of the reducer abuts must first be face mill or the like. However, the relatively large diameter cutting tool for surface machining cannot be efficiently and rapidly cut at a stretch. As a result, there is a problem in that the number of machining of the joint portion 50 is increased and the cost is increased.

【0006】また、座面59と当接する同軸型減速機5
5の端面の隅部面取りが小さく形成された減速機の場
合、可動機素51の座面59側の座面内奥の隅部を上記
の小さな隅部面取りを有した減速機55の端面が正しく
座面59に位置決めされるように加工することが極めて
困難であり、逃げ隅部を形成する等の方法では、工具交
換を行いながら、特殊な切削工程の遂行が必要になる等
の負担が加算され、ますます工数の増加に伴うコスト増
の問題が拡大される結果となる。
Further, the coaxial type speed reducer 5 which abuts on the seat surface 59.
In the case of the speed reducer in which the corner chamfer of the end face of 5 is formed small, the end face of the speed reducer 55 having the above small corner chamfer is located at the inner corner of the seat face 59 side of the movable element 51. It is extremely difficult to perform machining so as to be correctly positioned on the seat surface 59, and the method of forming a relief corner portion or the like imposes a burden such as performing a special cutting process while exchanging tools. As a result, the problem of cost increase due to the increase in man-hours is further expanded.

【0007】依って、本発明の目的は、このような従来
のロボット機体の関節部における構造を改善して加工を
簡単化し、かつ工数低減による製造コストの低減を図る
ことにある。
Therefore, an object of the present invention is to improve the structure of the joint portion of such a conventional robot body to simplify the processing and to reduce the manufacturing cost by reducing the man-hours.

【0008】[0008]

【課題を解決するための手段】上述の目的に鑑みて、本
発明がとる解決手段は、同軸型減速機が取付けられる可
動機素の取付け座面領域を単純な面削設加工により高精
度面として確保し、減速機の端面をその高精度座面に当
接すると共に該減速機の内部に設けられている主軸受の
外輪周部を可動機素に穿孔した取付孔に密嵌、位置決め
することにより減速機のインロー取付けを達成し、駆動
モータの出力軸との高精度の同軸直接結合を可能にし
た。
SUMMARY OF THE INVENTION In view of the above-mentioned object, the solution of the present invention is to provide a high-accuracy surface by a simple surface-cutting process for a mounting seat surface area of a movable element on which a coaxial reducer is mounted. As a result, the end surface of the speed reducer is brought into contact with the high-precision seating surface, and the outer ring peripheral portion of the main bearing provided inside the speed reducer is tightly fitted and positioned in the mounting hole drilled in the movable element. This achieved a spigot mounting of the reducer, enabling highly accurate coaxial direct coupling with the output shaft of the drive motor.

【0009】すなわち、本発明によれば、産業用ロボッ
トの2つの可動機素の結合関節部に駆動モータからの回
転出力を同軸型減速機に直結し、該同軸型減速機の減速
出力を被駆動体の可動機素に伝動する産業用ロボットの
関節構造において、前記2つの可動機素の間に介挿され
る前記同軸型減速機の内部に内蔵された主軸受の外輪を
前記2つの可動機素の一方の可動機素に削設した平坦当
接面の中央域に穿設した嵌合孔に嵌設、位置決めすると
共に該位置決めされた同軸型減速機の入力軸と前記駆動
モータのモータ出力軸とを同軸結合する構成とした産業
用ロボットの関節構造を提供するものである。
That is, according to the present invention, the rotation output from the drive motor is directly connected to the joint joint of the two movable elements of the industrial robot, and the deceleration output of the coaxial reducer is received. In a joint structure of an industrial robot that transmits power to a movable element of a driving body, an outer ring of a main bearing built inside the coaxial type reduction gear interposed between the two movable elements has an outer ring of the two movable elements. The input shaft of the coaxial reduction gear and the motor output of the drive motor which are fitted and positioned in a fitting hole formed in the central region of the flat contact surface cut in one of the movable elements. The joint structure of an industrial robot is configured to be coaxially coupled with an axis.

【0010】上述した構成によれば、同軸型減速機の取
付端面をロボット機械の可動機素の平坦当接面に当接さ
せながら、嵌合孔に密嵌、位置決めされるので、同減速
機はインロー状態に可動機素に取着され、このように正
確に位置決めされた減速機に駆動モータを直結した関節
部の構造とすれば、関節部における可動機素の動作精度
は高精度に維持され、かつ、関節部の加工には平坦当接
面をフェイスミル等の大径工具で高精度に、しかも簡単
に削り加工することができ、更に嵌合孔は所要径のフラ
イス工具でボーリング加工すれば良いことから低工数で
ありながら高精度の機械加工を遂行でき、加工コストの
低減を図ることが可能となるのである。
According to the above-mentioned structure, since the mounting end surface of the coaxial type speed reducer is brought into close contact with the flat contact surface of the movable element of the robot machine while being closely fitted and positioned in the fitting hole, the speed reducer is the same. Is attached to the movable element in the spigot state, and if the structure of the joint is such that the drive motor is directly connected to the speed reducer positioned in this way, the operating accuracy of the movable element at the joint can be maintained at high accuracy. In addition, for the machining of joints, the flat contact surface can be precisely and easily machined with a large-diameter tool such as a face mill, and the fitting hole is boring with a milling tool of the required diameter. Therefore, it is possible to perform high-precision machining with a low man-hour, and it is possible to reduce the machining cost.

【0011】なお、減速機の主軸受の外輪が嵌合される
可動機素の嵌合孔は、直進孔(ストレート孔)または直
進孔の内奥側を大径の逃げ孔とする構造で良く、ボーリ
ングツールの高速送りで比較的短時間の穿孔加工々程に
より所要の高精度嵌合孔を得ることができる。
The fitting hole of the movable element into which the outer ring of the main bearing of the reduction gear is fitted may be a straight hole or a structure having a large diameter escape hole inside the straight hole. The required high-precision fitting hole can be obtained by the high-speed feed of the boring tool and the relatively short drilling process.

【0012】[0012]

【発明の実施の形態】以下、本発明を添付図面に示す好
ましい実施形態に基づいて、更に、詳細に説明する。図
1は、本発明の実施形態に係る産業用ロボットの関節構
造、特に、2つのロボットアームの間の関節部に本発明
を適用した形態を示す断面図、図2は、その要部の部分
拡大断面図、図3は、本発明に係る関節構造を用いるの
に適した多関節型産業用ロボットの全体的構成を示す略
示斜視図、図4は従来の関節の構造を示す断面図であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will now be described in more detail based on the preferred embodiments shown in the accompanying drawings. FIG. 1 is a sectional view showing a joint structure of an industrial robot according to an embodiment of the present invention, in particular, a form in which the present invention is applied to a joint portion between two robot arms, and FIG. 2 is a main portion thereof. FIG. 3 is an enlarged sectional view, FIG. 3 is a schematic perspective view showing the overall structure of an articulated industrial robot suitable for using the joint structure according to the present invention, and FIG. 4 is a sectional view showing the structure of a conventional joint. is there.

【0013】ここで、先ず、図3を参照すると、一般的
に多関節型産業用ロボットの機体が図示されており、同
ロボット機体10は、床面等に固定される静止ベース1
2、このベース12に立設されて縦軸線回りに旋回可能
な旋回台座14、この旋回台座14の頂部を関節部14
aとして下端が枢着されることにより水平軸線回りに回
動が可能な第1のロボットアーム16、この第1ロボッ
トアーム16の先端を関節部16aとして基端が枢着さ
れることにより、上記の水平軸線と並行な軸線回りに回
動が可能な第2のロボットアーム18等を具備し、第2
ロボットアーム18の先端の関節部(図示略)に手首を
備え、またその手首に種々のエンドエフェクタが装着さ
れて所望のロボット動作を遂行する構成を有している。
First, referring to FIG. 3, a body of an articulated industrial robot is generally shown. The robot body 10 includes a stationary base 1 fixed to a floor or the like.
2. A swivel pedestal 14 that is erected on the base 12 and is capable of swiveling about a vertical axis, and a top portion of the swivel pedestal 14 is a joint portion
The first robot arm 16 is rotatable about a horizontal axis by pivotally attaching the lower end as a, and the base end is pivotally attached by using the tip end of the first robot arm 16 as the joint portion 16a. A second robot arm 18 etc. that can rotate about an axis parallel to the horizontal axis of
The robot arm 18 has a wrist at a joint (not shown) at the tip thereof, and various end effectors are attached to the wrist to perform a desired robot operation.

【0014】ここで、本発明による関節構造は、関節部
14aや16aに適用することが可能であり、それによ
って関節部14aや16aの製造加工等に当たっての高
精度を維持しながら、工数を低減させてコストダウンを
図ることができるのである。図3において、M1,M2
は第1、第2ロボットアーム16、18の駆動モータを
示しており、図示に現れない同軸型の減速機を経て被駆
動体である第1ロボットアーム16または第2ロボット
アーム18を回転駆動するものである。
Here, the joint structure according to the present invention can be applied to the joint portions 14a and 16a, thereby reducing the number of man-hours while maintaining high accuracy in manufacturing and processing the joint portions 14a and 16a. Therefore, the cost can be reduced. In FIG. 3, M1, M2
Represents a drive motor for the first and second robot arms 16 and 18, and rotationally drives the first robot arm 16 or the second robot arm 18 which is a driven body via a coaxial type speed reducer (not shown). It is a thing.

【0015】ここで、図1を参照すると、例えば、第1
ロボットアームを1つの可動機素20とし、その先端と
第2ロボットアームを他の可動機素22としてその基端
との間に形成された関節部24に本発明を適用した実施
形態を示している。この関節部24は、駆動モータMを
第1の可動機素20の端部の側面20aに固定して、モ
ータ出力軸26を該第1可動機素20の内部に臨かせ、
また、第1可動機素20の端部の他の側面20bに同軸
型減速機28の一端面、入力端面側が当接固定されてい
る。このとき、第1可動機素20の内部に臨んだ減速機
28の入力端には駆動モータMのモータ出力軸26に直
結される入力部30を有し、この入力部30は歯車機構
32を介して減速機28内部にモータ出力を導入し、そ
のモータ出力を減速して減速出力として第2可動機素2
2に伝動する構成を有している。このとき、駆動モータ
Mの出力軸26と同軸減速機28の入力部30とは、高
精度に同軸、同心に結合されることを要し、このため
に、予め減速機28を取付け、位置決めを高精度化して
おくことが要請される。
Referring now to FIG. 1, for example, the first
An embodiment is shown in which the present invention is applied to a joint portion 24 formed between a robot arm as one movable element 20 and a second robot arm as another movable element 22 and its proximal end. There is. The joint portion 24 fixes the drive motor M to the side surface 20a at the end of the first movable element 20 so that the motor output shaft 26 faces the inside of the first movable element 20.
Further, one end face and the input end face side of the coaxial reducer 28 are fixed in contact with the other side face 20b of the end portion of the first movable element 20. At this time, an input unit 30 directly connected to the motor output shaft 26 of the drive motor M is provided at the input end of the speed reducer 28 facing the inside of the first movable element 20, and the input unit 30 includes the gear mechanism 32. The motor output is introduced into the speed reducer 28 via the speed reducer 28, and the motor output is decelerated and used as a deceleration output.
2 has a configuration for transmitting. At this time, the output shaft 26 of the drive motor M and the input portion 30 of the coaxial speed reducer 28 need to be coaxially and concentrically coupled with high precision. For this reason, the speed reducer 28 is attached and positioned in advance. Higher accuracy is required.

【0016】従って、本発明によれば、第1可動機素2
0の側面20bを高精度の平坦座面に予め切削加工し、
同側面20bの平坦座面内に大径孔20cを、例えば、
フライスカッター等で高精度に孔明け加工して、同大径
孔20c内に同軸型減速機28の内部に設けられている
1つの主軸受34を突出させ、その外輪36の外周面を
インロー状態に軸−孔嵌合する構造とし、更にその減速
機28の端面28aを図2に明示するように平坦側座面
20bに当接して高精度の位置決め嵌合を達成している
のである。このとき、同減速機28の出力端38を被駆
動体である第2可動機素22に結合して駆動モータM、
減速機28の直結された共通軸線Mpを関節部24の軸
線にして回動し得る構成としている。
Therefore, according to the present invention, the first movable element 2
The side surface 20b of 0 is preliminarily cut into a highly accurate flat seating surface,
A large diameter hole 20c is formed in the flat seating surface of the side surface 20b, for example,
High precision drilling is performed with a milling cutter or the like, and one main bearing 34 provided inside the coaxial reduction gear 28 is projected into the large diameter hole 20c, and the outer peripheral surface of the outer ring 36 thereof is in a spigot state. The shaft-hole fitting structure is adopted, and the end surface 28a of the speed reducer 28 is brought into contact with the flat side seat surface 20b as shown in FIG. 2 to achieve highly accurate positioning fitting. At this time, the output end 38 of the speed reducer 28 is connected to the second movable element 22 which is a driven body to drive the drive motor M,
The common axis line Mp directly connected to the speed reducer 28 is used as the axis line of the joint portion 24 so that the reduction gear 28 can rotate.

【0017】図2は図1にAで示した領域を拡大図示し
ており、上述した減速機28の取付け、位置決めを詳示
したものである。上述した構造によれば、減速機28の
取付けに当たり、第1可動機素20の側面20bの加工
は、同面20bを平坦面に形成する面加工と、その平坦
面に直角な大径孔20cを穿設するだけであり、図4に
示すような肩構造部が無い。従って前者の面加工は周知
のフェイスミルを用いて一気に大きな平坦座面領域を、
容易にかつ高効率で切削加工できる。その上、大径孔2
0cの穿孔は孔明け用のボーリングカッターにより同じ
く高精度に、かつ効率良く、遂行することができるので
ある。この結果、加工過程では、工数の削減効果が著し
く、工具交換も面加工用のフェイスミルとボーリングカ
ッタとの交換だけが基本的に必要とされるのみであるこ
とから、機械加工を高能率に進捗させることが可能とな
り、結果的に加工コストの低減を得ることができること
は言うまでもない。
FIG. 2 is an enlarged view of the area indicated by A in FIG. 1, which shows in detail the mounting and positioning of the speed reducer 28 described above. According to the above-described structure, when mounting the speed reducer 28, the side surface 20b of the first movable element 20 is machined such that the side surface 20b is formed into a flat surface and the large diameter hole 20c perpendicular to the flat surface is formed. Is not provided, and there is no shoulder structure portion as shown in FIG. Therefore, the former surface processing uses a well-known face mill to quickly create a large flat seating surface area,
Easy and highly efficient cutting is possible. Besides, large diameter hole 2
The drilling of 0c can be performed with high accuracy and efficiency by the boring cutter for boring. As a result, the number of man-hours is significantly reduced in the machining process, and the tool replacement basically only requires the replacement of the face mill for surface machining and the boring cutter, which makes machining highly efficient. Needless to say, it is possible to make progress and, as a result, a reduction in processing cost can be obtained.

【0018】更に、減速機28についても、従来の方法
では、減速機自体の外径をインロー嵌合のために切削ま
たは研削加工を必要としたが、本発明によれば、精密な
軸受外輪36を利用して嵌合、位置決めを確立している
ので、かかる減速機28側への加工は一切、不要となる
簡便性を確保できるのである。なお、上述した第1、第
2の可動機素20、22としては図3に示した第1、第
2ロボットアーム16、18であっても良く、或いは旋
回台座14と第1ロボットアーム16であっても良い。
更に、静止ベース12と旋回台座14との間の関節部に
も適用することが可能でることは当業者なら容易に理解
することができるであろう。
Further, as for the speed reducer 28, in the conventional method, the outer diameter of the speed reducer itself needs to be cut or ground for the spigot fitting, but according to the present invention, the precise bearing outer ring 36 is used. Since the fitting and the positioning are established by utilizing the above, it is possible to ensure the convenience that the processing on the speed reducer 28 side is not necessary at all. The above-mentioned first and second movable elements 20 and 22 may be the first and second robot arms 16 and 18 shown in FIG. 3, or the swivel pedestal 14 and the first robot arm 16 may be used. It may be.
Further, those skilled in the art can easily understand that the joint between the stationary base 12 and the swivel pedestal 14 can be applied.

【0019】[0019]

【発明の効果】本発明によれば、産業用ロボットの関節
構造において、同軸型減速機が取付けられる可動機素の
取付け座面領域を単純な面削設加工により高精度面とし
て確保し、減速機の端面をその高精度座面に当接すると
共に該減速機の内部に設けられている主軸受の外輪周部
を可動機素に穿孔した精密加工の取付孔に密嵌、位置決
めすることにより減速機のインロー嵌合を達成し、駆動
モータの出力軸との高精度の同軸直接結合を可能にした
のである。従って、関節構造の加工製造において機械加
工を容易にし、工数削減を図ることが可能となったの
で、産業用ロボットの関節部の加工、ひいてはロボット
機体全体の加工コストを低減させ得ると言う効果を奏す
るのである。
According to the present invention, in the joint structure of the industrial robot, the mounting seat surface area of the movable element on which the coaxial type speed reducer is mounted is secured as a highly accurate surface by simple surface cutting, and the deceleration is achieved. Deceleration by abutting the end face of the machine with its high-precision seating surface and by tightly fitting and positioning the outer ring periphery of the main bearing inside the speed reducer into the precision machined mounting hole drilled in the movable element. The machine's spigot fitting was achieved, and highly accurate coaxial direct coupling with the output shaft of the drive motor was possible. Therefore, it becomes possible to facilitate the machining in the manufacturing and manufacturing of the joint structure and reduce the number of man-hours. Therefore, it is possible to reduce the processing cost of the joint part of the industrial robot and the processing cost of the entire robot body. To play.

【0020】もちろん、このようにして高精度の製造加
工により得られるロボットの特に関節部の動作精度の向
上が達成でき、ひいては所望のプログラムに従って所定
のロボット動作を遂行する際のロボット全動作の動作精
度も向上することは明らかである。
In this way, of course, it is possible to improve the motion accuracy of the robot, especially the joints, which is obtained by highly accurate manufacturing and processing, and thus the motion of all the motions of the robot when performing a predetermined robot motion according to a desired program. It is clear that the accuracy is also improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に係る産業用ロボットの関節
構造、特に、2つのロボットアームの間の関節部に本発
明を適用した形態を示す断面図である。
FIG. 1 is a cross-sectional view showing a joint structure of an industrial robot according to an embodiment of the present invention, in particular, a form in which the present invention is applied to a joint portion between two robot arms.

【図2】図1のA部の部分拡大断面図である。FIG. 2 is a partially enlarged sectional view of a portion A of FIG.

【図3】本発明に係る関節構造を用いるのに適した多関
節型産業用ロボットの全体的構成を示す略示斜視図であ
る。
FIG. 3 is a schematic perspective view showing an overall configuration of an articulated industrial robot suitable for using the joint structure according to the present invention.

【図4】従来のロボット関節の構造を示す断面図であ
る。
FIG. 4 is a sectional view showing the structure of a conventional robot joint.

【符号の説明】[Explanation of symbols]

10…ロボット機体 12…静止ベース 14…旋回台座 14a…関節部 16…第1ロボットアーム 16a…関節部 18…第2ロボットアーム 20…第1の可動機素 20b…側面部 20c…大径孔 22…第2の可動機素 24…関節部 26…出力軸 28…同軸減速機 28a…端面 30…入力部 34…主軸受 36…外輪 38…出力端 10 ... Robot body 12 ... Stationary base 14 ... Revolving base 14a ... Joint part 16 ... 1st robot arm 16a ... Joint part 18 ... 2nd robot arm 20 ... 1st movable element 20b ... Side part 20c ... Large diameter hole 22 ... second movable element 24 ... joint portion 26 ... output shaft 28 ... coaxial speed reducer 28a ... end face 30 ... input portion 34 ... main bearing 36 ... outer ring 38 ... output end

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 産業用ロボットの2つの可動機素の結合
関節部に駆動モータからの回転出力を同軸型減速機に直
結し、該同軸型減速機の減速出力を被駆動体の可動機素
に伝動する産業用ロボットの関節構造において、 前記2つの可動機素の間に介挿される前記同軸型減速機
の内部に内蔵された主軸受の外輪を前記2つの可動機素
の一方の可動機素に削設した平坦当接面の中央域に穿設
した嵌合孔に嵌設、位置決めすると共に該位置決めされ
た同軸型減速機の入力軸と前記駆動モータのモータ出力
軸とを同軸結合する構成としたことを特徴とする産業用
ロボットの関節構造。
Claim: What is claimed is: 1. A rotary output from a drive motor is directly connected to a joint joint of two movable elements of an industrial robot, and the deceleration output of the coaxial type speed reducer is used as a movable element of a driven body. In a joint structure of an industrial robot that is transmitted to a vehicle, an outer ring of a main bearing built inside the coaxial type speed reducer interposed between the two movable elements is a movable element of one of the two movable elements. It is fitted and positioned in a fitting hole formed in the central region of the flat abutment surface that has been machined into a bare piece, and the positioned input shaft of the coaxial reduction gear and the motor output shaft of the drive motor are coaxially coupled. A joint structure of an industrial robot characterized by being configured.
JP26401295A 1995-10-12 1995-10-12 Joint structure of industrial robot Pending JPH09109082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26401295A JPH09109082A (en) 1995-10-12 1995-10-12 Joint structure of industrial robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26401295A JPH09109082A (en) 1995-10-12 1995-10-12 Joint structure of industrial robot

Publications (1)

Publication Number Publication Date
JPH09109082A true JPH09109082A (en) 1997-04-28

Family

ID=17397331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26401295A Pending JPH09109082A (en) 1995-10-12 1995-10-12 Joint structure of industrial robot

Country Status (1)

Country Link
JP (1) JPH09109082A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006098388A (en) * 2004-09-02 2006-04-13 Tokyo Electron Ltd Turning device for heavy object
US10632628B2 (en) 2017-12-22 2020-04-28 Fanuc Corporation Robot

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006098388A (en) * 2004-09-02 2006-04-13 Tokyo Electron Ltd Turning device for heavy object
US8007389B2 (en) 2004-09-02 2011-08-30 Nabtesco Corporation Heavy object turning apparatus
US10632628B2 (en) 2017-12-22 2020-04-28 Fanuc Corporation Robot

Similar Documents

Publication Publication Date Title
EP0885081B1 (en) Direct drive multiple axes rotary spindle head for milling machine
JP2003048135A (en) Operation head
KR20120114568A (en) 3-axes milling head for a machine tool
JPH09109082A (en) Joint structure of industrial robot
EP0997238B1 (en) Parallel link mechanism
JPS6179585A (en) Double arm type robot
JPH09216189A (en) Torch shaft convertible adapter and torch rotating device for industrial robot using it
JP3090257B2 (en) Machining center
EP0598912A1 (en) Small pass machining apparatus
JPH08243972A (en) Industrial robot having multidegree of freedom joint
JP4402504B2 (en) Turning device
CN215881268U (en) Headstock for precisely machining threaded sleeve
CN217776193U (en) Three-axis linkage inverted vertical lathe
JPS60114439A (en) Working system for rotary member assembled product
JP3907301B2 (en) Turret tool post equipment
JP3159317B2 (en) Turret type numerical control lathe
KR100417642B1 (en) Automatic Polishing Apparatus for Mold
JPH01228789A (en) Encoder attaching structure for joint portion of robot
JPS6317670Y2 (en)
JP2022101123A (en) Machine tool
JP2020133822A (en) Power transmission device, slewing gear of machine tool having power transmission device and adjusting method of power transmission device
JP2535911Y2 (en) Tip dresser
Roddeck et al. Autonomous Tool-Mover for Laser-Cutting with Industrial Robots
KR0114695Y1 (en) Power transmission mechanism
CN115971675A (en) Laser cutting robot based on spherical workpiece and working method