JPH09107374A - Fault recovery device for monitor control station in loop line - Google Patents

Fault recovery device for monitor control station in loop line

Info

Publication number
JPH09107374A
JPH09107374A JP7264573A JP26457395A JPH09107374A JP H09107374 A JPH09107374 A JP H09107374A JP 7264573 A JP7264573 A JP 7264573A JP 26457395 A JP26457395 A JP 26457395A JP H09107374 A JPH09107374 A JP H09107374A
Authority
JP
Japan
Prior art keywords
station
supervisory control
backup
line
stations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7264573A
Other languages
Japanese (ja)
Other versions
JP3216500B2 (en
Inventor
Matsuo Tomita
松夫 冨田
Tetsuo Fujita
哲生 藤田
Koichi Kawabe
公一 河辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP26457395A priority Critical patent/JP3216500B2/en
Publication of JPH09107374A publication Critical patent/JPH09107374A/en
Application granted granted Critical
Publication of JP3216500B2 publication Critical patent/JP3216500B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Small-Scale Networks (AREA)

Abstract

PROBLEM TO BE SOLVED: To allow a fault in a master station to be supported. SOLUTION: Slave stations S22 , Sn-12 are arranged to ends of loop lines FD12 , FD22 connecting a master station M2 and the slave stations S22 , Sn-12 . Branch changeover switches SW1a, SW1b are provided to input terminals of the slave stations S22 , Sn-12 , 1st fixed contacts A of the switches SW1a, SW1b are connected to transmission lines FD12 , FD22 and a 2nd fixed contact B is connected to a transmission line FD3. Moving contacts C of the changeover switches SW1a, SW1b are connected to the input terminals of the slave stations S22 , Sn-12 , a hybrid transformer HT is provided to an incoming line FDI3 of a transmission line connecting the master station M3 and the slave station sn3 and the 1st fixed contact A and the moving contact C of the changeover switch SW2 are provided to an outgoing line FD23 . An output terminal of the transformer HT is connected to one terminal of a backup central monitor control installation BKM3 . via an incoming information transmission line FD3 and a 2nd fixed contact B of the changeover switch SW2 is connected to the other terminal of the installation BKM via an outgoing information transmission line FD4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、伝送回線がルー
プ状の遠方監視制御方式における監視制御所に障害が発
生したときに、通常の監視制御所とは異なる場所に予め
設置した監視制御所に監視業務を切り換えて遠方監視制
御ができるようにしたループ回線における監視制御所の
障害回復装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a supervisory control station installed in advance in a place different from a normal supervisory control station when a failure occurs in the supervisory control station in a remote supervisory control system in which a transmission line is looped. The present invention relates to a failure recovery device for a supervisory control station in a loop line, which enables supervisory control by switching monitoring operations.

【0002】[0002]

【従来の技術】伝送回線がループ状の遠方監視制御方式
には、現在ポーリング方式とトークンリング方式の2つ
の伝送制御方式が使用されている。ポーリング方式は親
局から順番に子局を呼んで(ポーリングして)データを
収集するもので、トークンリング方式は発言許可信号
(トークン)をループ内に巡回させ連絡信号発生局はそ
のトークン到着時発信するものである。
2. Description of the Related Art Two remote transmission control systems, a polling system and a token ring system, are currently used in a remote monitoring and control system in which a transmission line has a loop shape. The polling method collects data by calling (polling) the slave stations in order from the master station, and the token ring method allows a speech permission signal (token) to circulate in a loop and the contact signal generating station when the token arrives. It is something to send.

【0003】上記ポーリング方式とトークンリング方式
にはそれぞれ特徴がある。ここで、両方式の相違点を図
により述べるに、図13、図14は親局が3組すなわち
3組のループ回線3群の場合の回線構成と信号の流れ示
すポーリング方式とトークンリング方式の概略構成図で
ある。M1,M2,M3は親局、S11〜Sn3は子局
で、図13のポーリング方式の場合には親局M1,M
2,M3において、主系M1S,M2S,M3Sから図示
矢印方向に子局S11〜Sn3を、順番にポーリングして
状態変化のある子局は自分がポーリングされたとき、親
局に連絡する。なお、M1J,M2J,M3Jは、主系M
S,M2S,M3Sの障害時に代行する従系である。こ
のため、ポーリング方式の場合には、1群8子局であれ
ばポーリング信号がループ回線を最大8巡する時間が連
絡開始待ち時間になる。すなわち、1子局しか状態変化
がない場合は最大7回無駄なポーリングを行う。
The polling method and the token ring method each have characteristics. Here, the difference between the two methods will be described with reference to the drawings. In FIGS. 13 and 14, there are shown a line configuration and a signal flow showing a line configuration and a signal flow in the case where the master station is three sets, that is, three sets of loop lines 3 groups. It is a schematic block diagram. M1, M2, M3 is the master station, in S1 1 to Sn 3 is the slave station, the master station M1 in the case of the polling method of Fig. 13, M
2, the M3, when the main system M1 S, M2 S, M3 slave station S1 1 to Sn 3 in a direction indicated by an arrow from S, slave station with a status change poll in turn that he polled, master station Contact Note that M1 J , M2 J , and M3 J are the master M
It is a slave to act in the event of a failure of the 1 S, M2 S, M3 S . Therefore, in the case of the polling method, the communication start waiting time is a period in which the polling signal makes a maximum of eight rounds of the loop line in a group of eight slave stations. That is, when there is only a status change in one slave station, useless polling is performed up to seven times.

【0004】図14のトークンリング方式の場合にはル
ープ回線毎に親局と子局にトークンを巡回させるように
したもので、トークン信号がループ回線を巡回している
とき、状態変化のない子局はトークン信号到着時に親局
へ連絡する。従って、連絡開始待ち時間は最大でもルー
プ1巡時間で良い。
In the case of the token ring system shown in FIG. 14, a master station and a slave station are made to circulate a token for each loop line, and when the token signal circulates the loop line, a child whose state does not change. The station contacts the master station when the token signal arrives. Therefore, the communication start waiting time may be at most one loop time.

【0005】上記のことから、連絡開始待ち時間の点で
はトークンリング方式の方が良い。しかし、多数の子局
で状態変化が生じた場合は無駄なポーリングが少なくな
り差は少なくなる。回線障害時の対応には図15、図1
7および図16,図18A,Bに示すようにしている。
図15、図16は2群の子局S12とS22間で障害(図
示×印)が発生したときの回線構成をポーリング方式と
トークンリング方式についてそれぞれ示し、図17、図
18A,Bは親局M1,M3に障害が発生したときの回
線構成をポーリング方式とトークンリング方式について
それぞれ示したものである。
[0005] In view of the above, the token ring method is better in terms of the waiting time for starting communication. However, when a state change occurs in many slave stations, useless polling is reduced and the difference is reduced. Figure 1 and Figure 1 for handling line failures
7 and FIGS. 16 and 18A and B.
FIGS. 15 and 16 show the line configurations for the polling method and the token ring method, respectively, when a failure (marked with X in the figure) occurs between the two groups of slave stations S1 2 and S2 2 , and FIGS. The line configurations when a failure occurs in the master stations M1 and M3 are shown for the polling method and the token ring method, respectively.

【0006】図14、図16、図18A,Bに示すよう
に、ここでは便宜上“トークンリング方式”と称してい
るが、一般のトークンリング方式とは2点の共通点と1
点の相異点がある。
As shown in FIGS. 14, 16, 18A, and 18B, the term "token ring method" is used here for convenience, but the common token ring method has two common points and 1 point.
There are differences in points.

【0007】第1の共通点は前述の発言許可信号(トー
クン)を巡回させること、第2の共通点は回線障害に隣
接する局(親局、子局双方)が回線構成を変化させ、障
害部を除去する(図14→図16の子局S12,S22
図18A,BのS11,Sn3)。これをループバックと
呼ぶ。
The first common point is to circulate the above-mentioned speech permission signal (token), and the second common point is that the stations adjacent to the line failure (both the master station and the slave station) change the line configuration and the failure occurs. Parts are removed (slave stations S1 2 , S2 2 in FIG. 14 → FIG. 16,
18A and 18B, S1 1 , Sn 3 ). This is called loopback.

【0008】相異点は子局の所属移動である。図14→
図16において、子局S12は親局M2→親局M1へ、
図14→図18A,Bにおいて、子局S11〜Sn1とS
3〜Sn3が全て親局M2に所属移動している。
[0008] The difference is the belonging movement of the slave station. Figure 14 →
In FIG. 16, the slave station S1 2 moves from the master station M2 to the master station M1,
14 to 18A and 18B, the slave stations S1 1 to Sn 1 and S
All 1 3 to Sn 3 belong to the master station M2 and are moving.

【0009】両方式における回線障害時の連絡中断時間
においては、ポーリング方式では回線構成の変更は不要
であり、連絡中断は発生しない。しかし、トークンリン
グ方式では回線構成の変更が必要であり、この変更期間
中に連絡中断が発生する。この結果、回線障害時の連絡
中断時間の点ではポーリング方式の方が良い。しかし、
回線障害の発生頻度は少ない。
In the communication interruption time in the case of a line failure in both systems, no change in the line configuration is required in the polling method, and the communication interruption does not occur. However, the line configuration needs to be changed in the token ring system, and communication is interrupted during this change period. As a result, the polling method is better in terms of the communication interruption time in the event of a line failure. But,
The frequency of line failures is low.

【0010】ところが、地震等で“親局側の集中監視制
御設備”が破壊された場合の対策として、“バックアッ
プ用集中監視制御設備”の設置が求められるようになっ
て来た。このとき、当然“親局側の集中監視制御設備”
と“バックアップ用集中監視制御設備”とは充分な間隔
を設ける必要がある。そのためには、子局側との情報連
絡を“親局側の集中監視制御設備”のみでなく、“バッ
クアップ用集中監視制御設備”とも可能にしなければな
らない。すなわち、子局と“バックアップ用集中監視制
御設備”間の伝送路を確保しなければならない。
However, as a countermeasure against the destruction of the "central monitoring and control equipment on the master station side" due to an earthquake or the like, it has become necessary to install "backup central monitoring and control equipment". At this time, of course, "centralized monitoring and control equipment on the master station side"
It is necessary to provide a sufficient space between the "centralized monitoring and control equipment for backup". For that purpose, it is necessary to enable communication of information with the slave station not only with the "centralized supervisory control equipment on the master station side" but also with the "centralized supervisory control equipment for backup". That is, the transmission line between the slave station and the "centralized supervisory control equipment for backup" must be secured.

【0011】[0011]

【発明が解決しようとする課題】バックアップ用伝送路
は通常方式としては、現用親局と子局間と同じになる。
すなわち、図13、図14の場合それぞれ対向6回線、
3回線になる。しかし、バックアップ用伝送路は平常時
は使用しないために、極力伝送路の数は少ない方が良
い。バックアップ用伝送路を少なくする方法としては、
トークンリング方式の場合には図18Aを応用して図1
8Bに示すようにバックアップ用集中監視制御設備BK
Mと接続する伝送路FD(子局から設備BKMに向かう
情報を上り回線、逆の場合は下り回線と称して回線はそ
れぞれ2対で構成される。)は2対で済む。しかし、ト
ークンリング方式を用いた遠方監視制御方式はバックア
ップ用伝送路を少なく構成できるが、このトークンリン
グ方式の場合でも次のような問題点がある。
The backup transmission path is normally the same as that between the working master station and the slave station.
That is, in the case of FIG. 13 and FIG.
There are 3 lines. However, since the backup transmission line is not normally used, the number of transmission lines should be as small as possible. As a method to reduce the backup transmission line,
In the case of the token ring system, FIG.
Central monitoring and control equipment BK for backup as shown in 8B
The transmission line FD connected to M (information is transmitted from the slave station to the equipment BKM is called an up line, and in the opposite case, the line is made up of two lines, and each line is composed of two pairs). However, although the remote monitoring and control method using the token ring method can be configured with a small number of backup transmission lines, the token ring method also has the following problems.

【0012】(1)例えば、図19のようにバックアッ
プ用の伝送路を地理的条件から子局Sn3から引き出さ
なければならない場合がある。その場合、地震等で親局
M1〜M3に障害が発生すると、バックアップ用集中監
視制御設備BKMが動作した際に前述のループバック動
作、すなわち障害隣接局(S22,S23)はループバッ
クアップ用集中監視制御設備BKM管轄となる子局は親
局M2の図示Sn-12,Sn2のみとなり、親局M2の子
局S12,S22は、ループ回線構成ができなくなってし
まう問題がある。
(1) For example, as shown in FIG. 19, there is a case where a backup transmission line needs to be drawn from the slave station Sn 3 based on geographical conditions. In that case, if a failure occurs in the master stations M1 to M3 due to an earthquake or the like, the above loopback operation is performed when the backup centralized monitoring and control equipment BKM operates, that is, the failed adjacent stations (S2 2 , S2 3 ) are for loop backup. The centralized monitoring and control equipment BKM has only the slave stations under the control of the master station M2, Sn-1 2 and Sn 2 in the figure, and there is a problem that the slave stations S1 2 and S2 2 of the master station M2 cannot configure a loop line. .

【0013】(2)また、親局側の集中監視制御設備の
うちホストコンピュータの設置室が破壊されてダウン
し、親局側の集中監視制御設備の伝送制御部の設置室は
破壊されず動作可能状態にあると、親局の監視制御状態
は消滅し伝送機能のみが残る。すると、隣接子局は回線
正常と判断して子局のループバックが行われなくなり、
回線構成は図18A,Bにはならず、図14のままとな
る。このため、ダウンした集中監視制御設備側管轄の子
局は制御できなくなってしまう問題がある。
(2) In addition, the installation room of the host computer in the centralized supervisory control equipment on the master station side is destroyed and goes down, and the installation room of the transmission controller of the centralized supervisory control equipment on the master station side is not destroyed and operates. In the enabled state, the supervisory control state of the master station disappears and only the transmission function remains. Then, the adjacent slave station determines that the line is normal and the loopback of the slave station is not performed,
The line configuration is not as shown in FIGS. 18A and 18B but remains as shown in FIG. Therefore, there is a problem that the downed slave station under the jurisdiction of the centralized supervisory control facility cannot be controlled.

【0014】(3)平常時はバックアップ用集中監視制
御設備およびバックアップ用伝送路は動作しない。した
がって、バックアップ用集中監視制御設備に、障害が発
生した場合に放置され、必要な時に動作する保証が失わ
れる問題がある。
(3) The backup centralized supervisory control facility and the backup transmission line do not operate during normal times. Therefore, there is a problem in that the backup centralized monitoring and control facility is left unattended in the event of a failure and loses the guarantee that it will operate when necessary.

【0015】この発明は上記の事情に鑑みてなされたも
ので、バックアップ用伝送路数を低減するとともに、親
局に障害が発生したときにはバックアップ用集中監視制
御設備により確実に子局のループバック構成を行って親
局の障害をサポートできるようにしたループ回線におけ
る監視制御所の障害回復装置を提供することを課題とす
る。
The present invention has been made in view of the above circumstances, and reduces the number of backup transmission lines and ensures that when a failure occurs in the master station, the backup centralized supervisory control facility ensures the loopback configuration of the slave station. It is an object of the present invention to provide a failure recovery device for a supervisory control station in a loop line that is capable of supporting the failure of the master station by performing the above.

【0016】[0016]

【課題を解決するための手段】この発明の第1発明は、
複数の親局と多数の子局間が親局毎のループ回線で結合
され、ループ回線や親局等の障害で各ループ回線に対す
る子局の所属を変えることにより通信機能を回復させる
遠方監視制御システムにおいて、前記親局と子局とが接
続される上り回線にハイブリット結合器を介挿し、下り
回線には切り替えスイッチを設け、前記複数の親局とは
異なる地域に配設された遠方監視制御システムの親局を
バックアップ用集中監視制御設備とし、このバックアッ
プ用集中監視制御設備に前記ハイブリット結合器の出力
から送出される監視制御情報を常時供給し、前記バック
アップ用集中監視制御設備を親局とする以外の全部の親
局に障害が発生したとき、前記切り替えスイッチを操作
してバックアップ用集中監視制御設備の下り回線を子局
に接続するとともに、前記1つの親局からのループ回線
の上り回線と下り回線が分岐してそれぞれ別々の子局に
接続される上り回線あるいは下り回線の少なくとも一方
に分岐切り替えスイッチを設け、前記複数の親局が全部
障害になったときに、前記分岐切り替えスイッチを操作
してバックアップ用集中監視制御設備からの監視制御情
報が多数の子局全部に伝送されるようにしたことを特徴
とするものである。
The first invention of the present invention is as follows:
A remote monitoring control system in which multiple master stations and multiple slave stations are connected by a loop line for each master station, and communication functions are restored by changing the belonging of slave stations to each loop line due to a failure of the loop line or master station. In the remote monitoring control system, a hybrid coupler is inserted in an upstream line connecting the master station and the slave station, and a changeover switch is provided in the downlink line, and the remote monitoring control system is arranged in an area different from the plurality of master stations. Is used as a backup centralized supervisory control facility, the supervisory control information sent from the output of the hybrid coupler is constantly supplied to the backup centralized supervisory control facility, and the backup centralized supervisory control facility is used as a master station. When a failure occurs in all the master stations other than the above, the changeover switch is operated to connect the downlink line of the backup centralized supervisory control equipment to the slave stations. , A branch changeover switch is provided on at least one of the up line and the down line of the loop line from the one master station, which branch and branch circuits are respectively connected to different slave stations. When all the obstacles occur, the branch changeover switch is operated so that the supervisory control information from the backup centralized supervisory control equipment is transmitted to all the slave stations.

【0017】第2発明は、前記切り替えスイッチは遠隔
制御により操作するようにしたことを特徴とするもので
ある。
A second aspect of the present invention is characterized in that the changeover switch is operated by remote control.

【0018】第3発明は、前記親局と子局とが接続され
る上り回線に設けられるハイブリット結合器、下り回線
に設けられる切り替えスイッチおよびバックアップ用集
中監視制御設備を少なくとも2組設け、それぞれ各組を
別々の親局のバックアップ用集中監視制御設備としたこ
とを特徴とするものである。
In a third aspect of the invention, at least two sets of a hybrid coupler provided in an upstream line connecting the master station and the slave station, a changeover switch provided in the downlink line, and a centralized supervisory control facility for backup are provided, each of which is provided. It is characterized in that the group is a centralized supervisory control facility for backup of different master stations.

【0019】第4発明は、多数の子局の1つにバックア
ップ用集中監視制御設備を接続して、常時1つの親局の
監視制御情報を供給するようにするとともに、親局に障
害が発生したときにも、その親局の伝送制御部が動作し
ているときには、その伝送制御部から子局に向けて送出
されるキャリアを停止させるか、ループ回線の下り回線
にスイッチを介挿してキャリアを子局に供給させないよ
うにしたことを特徴とするものである。
According to a fourth aspect of the invention, a backup centralized supervisory control facility is connected to one of a large number of slave stations so that the supervisory control information of one master station is always supplied and a fault occurs in the master station. Also, when the transmission control unit of the master station is operating, the carrier sent from the transmission control unit to the slave station is stopped or the carrier is inserted by inserting a switch in the downlink of the loop line. The feature is that it is not supplied to the slave station.

【0020】第5発明は、複数の親局と多数の子局間が
ループ回線で結合されたポーリング方式における監視制
御システム群を複数群設け、各群毎に前記親局と子局と
が接続される上り回線にハイブリット結合器を介挿し、
下り回線には切り替えスイッチを設け、前記各群の複数
の親局とは異なる地域にそれぞれ配設された遠方監視制
御システムの親局をバックアップ用集中監視制御設備と
し、このバックアップ用集中監視制御設備に前記ハイブ
リット結合器の出力から送出される監視制御情報を常時
供給し、前記バックアップ用集中監視制御設備を親局と
する以外の全部の親局に障害が発生したとき、前記切り
替えスイッチを操作してバックアップ用集中監視制御設
備の下り回線を子局に接続し、各親局に障害が発生した
ときに各群毎にバックアップ用集中監視制御設備で回復
を行うようにしたことを特徴とするものである。
According to a fifth aspect of the present invention, a plurality of monitoring control system groups in a polling system in which a plurality of master stations and a plurality of slave stations are connected by a loop line are provided, and the master station and slave stations are connected to each group. Insert a hybrid coupler in the upstream line,
A switch is provided on the downlink, and the master station of the remote monitoring and control system, which is installed in each area different from the plurality of master stations of each group, is used as the backup centralized monitoring control equipment. Is constantly supplied with the monitoring control information sent from the output of the hybrid coupler, and when the failure occurs in all the master stations other than the backup centralized supervisory control equipment as the master station, the changeover switch is operated. By connecting the downlink of the centralized supervisory control equipment for backup to the slave stations, the centralized supervisory control equipment for backup recovers each group when a failure occurs in each master station. Is.

【0021】第6発明は、バックアップ用集中監視制御
設備を1つだけ監視制御システム群の1つに設け、各監
視制御システム群のループ回線間には切替部を設けて、
各親局障害が発生したときに、切替部を遠隔制御にて操
作し、各群の子局が全て接続されるようにして、1つの
バックアップ用集中監視制御設備で障害回復を行うよう
にした特徴とするものである。
According to a sixth aspect of the present invention, only one centralized supervisory control facility for backup is provided in one of the supervisory control system groups, and a switching unit is provided between the loop lines of each supervisory control system group.
When a failure occurs in each master station, the switching unit is operated by remote control so that all slave stations in each group are connected, and failure recovery is performed with one centralized supervisory control facility for backup. It is a feature.

【0022】第7発明は、バックアップ用集中監視制御
設備を少なくとも2つ監視制御システム群の1つに設け
たことを特徴とするものである。
A seventh aspect of the present invention is characterized in that at least two centralized supervisory control facilities for backup are provided in one of the supervisory control system groups.

【0023】第8発明は、複数の親局を1つのグループ
とする複数の監視制御所を各々遠方に配設させて、それ
ら監視制御所を障害発生時に1つのバックアップ用集中
監視制御設備で、バックアップするようにしたことを特
徴とするものである。
According to an eighth aspect of the present invention, a plurality of supervisory control stations having a plurality of master stations as one group are respectively arranged at distant locations, and these supervisory control stations are provided as one backup central supervisory control facility when a failure occurs. It is characterized by having been backed up.

【0024】[0024]

【発明の実施の形態】以下この発明の実施の形態を図面
に基づいて説明する。図1はこの発明の実施の第1形態
を示す概略構成図で、この第1形態はトークンリング方
式における伝送路が3回線あり、親局M2へ3分岐部が
あるときのものである。図1において、親局M2と子局
S22、Sn-12とを結ぶループ回線(以下伝送路と称
す)FD12,FD22の端部は通常、子局S22、Sn-
12が設置されている近傍に配設される。そこで子局S2
2、Sn-12の入力端に分岐切り替えスイッチSW1
a、SW1bを設け、そのスイッチSW1a,SW1b
の第1固定接点Aは伝送路FD12、FD22の端部に接
続され、第2固定接点Bは伝送路FD5に接続される。
分岐切り替えスイッチSW1a、SW1bの可動接点C
は子局S22、Sn-12の入力端に接続される。親局M3
と子局Sn3とを結ぶ伝送路の上り回線FD13にハイブ
リットトランス(ハイブリット結合器)HTを、下り回
線FD23に切り替えスイッチSW2の第1固定接点A
と可動接点Cを設ける。ハイブリットトランスHTの出
力端は上り情報用伝送路FD3を介してバックアップ用
集中監視制御設備BKMSの一端に接続され、切り替え
スイッチSW2の第2固定接点Bは下り情報用伝送路F
D4を介して前記設備BKMの他端に接続される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic configuration diagram showing a first embodiment of the present invention, and the first embodiment is when there are three transmission lines in the token ring system and three branch parts to the master station M2. In FIG. 1, the ends of the loop lines (hereinafter referred to as transmission lines) FD1 2 and FD2 2 that connect the master station M2 and the slave stations S2 2 and Sn-1 2 are usually slave stations S2 2 and Sn-.
It is arranged in the vicinity where 1 2 is installed. So the slave station S2
2 , branch switch SW1 at the input of Sn-1 2
a and SW1b are provided and their switches SW1a and SW1b are provided.
The first fixed contact A is connected to the ends of the transmission lines FD1 2 and FD2 2 , and the second fixed contact B is connected to the transmission line FD5.
Movable contact C of branch selector switches SW1a and SW1b
Is connected to the input terminals of the slave stations S2 2 and Sn-1 2 . Master station M3
To the upstream line FD1 3 of the transmission line connecting the slave station and the slave station Sn 3 with a hybrid transformer (hybrid coupler) HT and the downstream line FD2 3 to the first fixed contact A of the switch SW2.
And a movable contact C are provided. The output end of the hybrid transformer HT is connected to one end of the backup centralized supervisory control facility BKM S via the upstream information transmission line FD3, and the second fixed contact B of the changeover switch SW2 is connected to the downstream information transmission line F.
It is connected to the other end of the facility BKM via D4.

【0025】なお、子局Sn3経由で3群の上り回線の
信号が常用親局M3とバックアップ用集中監視制御設備
BKMSの両方に入りバックアップ用集中監視制御設備
BKMSと上り回線が常時監視可能であると、バックア
ップ集中監視制御設備BKMSからの下り回線のみは常
時監視は不可能となるが、適宜防災訓練時等のときに検
証できるので問題はない。
It should be noted that, through the slave station Sn 3 , the signals of the three groups of uplinks enter both the regular master station M3 and the backup centralized supervisory control equipment BKM S , and the backup centralized supervisory control equipment BKM S and the uplink are constantly monitored. If possible, only the downlink from the backup centralized supervisory control facility BKM S cannot be constantly monitored, but there is no problem because it can be verified at the time of disaster drills as appropriate.

【0026】上記のように伝送路が3分岐されている箇
所に分岐切り替えスイッチSW1a、SW1bを設ける
ことにより、親局M2に障害が発生した場合でも、分岐
切り替えスイッチSW1a、SW1bの可動接点Cを第
2固定接点B側に切り換えると、子局S22とSn−12
は伝送路FD5で接続されるようになりループ構成が可
能になる。
By providing the branch changeover switches SW1a and SW1b at the locations where the transmission path is branched into three as described above, even if a failure occurs in the master station M2, the movable contacts C of the branch changeover switches SW1a and SW1b are kept. By switching to the second fixed contact point B, the slave station S2 2 and Sn-1 2
Are connected by the transmission path FD5, and a loop configuration becomes possible.

【0027】図2はこの発明の実施の第2形態を示す概
略構成図で、この第2形態は上記第1形態の親局M1の
伝送路FD11、FD21にハイブリットトランスHTと
切り替えスイッチSW3を設け、かつバックアップ用集
中監視制御設備BKMJを設けたものである。この図2
のように構成すれば、バックアップ用集中監視制御設備
と全子局間の1カ所に回線障害が発生しても両端からそ
れぞれ監視制御が可能となる。
FIG. 2 is a schematic configuration diagram showing a second embodiment of the present invention. In the second embodiment, the hybrid transformer HT and the changeover switch SW3 are provided on the transmission lines FD1 1 and FD2 1 of the master station M1 of the first embodiment. And the centralized monitoring and control equipment BKM J for backup. This figure 2
With this configuration, even if a line failure occurs at one place between the backup centralized supervisory control facility and all slave stations, supervisory control can be performed from both ends.

【0028】図3A〜Cは上記のように構成した3分岐
した伝送路を持つシステムにおいて、親局M1〜M3が
地震等で全てダウン(障害発生)したときに、バックア
ップ用集中監視制御設備BKMにより全ての子局が障害
から回復する過程を示す動作説明図で、図3Aは親局M
1〜M3が全てダウンしたときの各親局M1〜M3に属
する各子局S11〜Sn3を示す。図3Bは各親局M1〜
M3のダウンにより親局M1,M2の隣接子局が端末局
に変化して各子局を接続した状態(親局M3はバックア
ップ用集中監視制御設備BKMが代行している)で、分
岐部の子局間は接続されない。そこで、図3Cのように
前記したように分岐切り替えスイッチSW1a、SW1
bを切り替えることにより分岐部間の子局は電気的に接
続状態になるから、前述の子局の所属移動が行われ、バ
ックアップ用集中監視制御設備BKMからの監視制御情
報により各子局は障害から回復される。
FIGS. 3A to 3C show a backup centralized monitoring control facility BKM when the master stations M1 to M3 all go down (failure occurs) due to an earthquake or the like in the system having the three-branched transmission path configured as described above. 3A is an operation explanatory diagram showing a process in which all slave stations recover from the failure by FIG.
1~M3 indicates the slave station S1 1 to Sn 3 belonging to each master station M1~M3 when the down all. FIG. 3B shows each master station M1.
When M3 goes down, the adjacent slave stations of the master stations M1 and M2 are changed to terminal stations and each slave station is connected (the master central station M3 is operated by the backup centralized supervisory control equipment BKM on behalf of the branch station). The slave stations are not connected. Therefore, as described above, as shown in FIG. 3C, the branch changeover switches SW1a and SW1.
By switching b, the slave stations between the branch sections are electrically connected, so that the slave stations are moved to the above-mentioned location, and each slave station is recovered from the failure by the supervisory control information from the backup central supervisory control equipment BKM. To be done.

【0029】なお、上記分岐切り替えスイッチSW1
a、SW1bは手動にて行う場合について述べて来た
が、遠隔制御によりリモート制御回線切換ポジションを
使用して親局M2に障害が発生したときに切り替えるよ
うに構成しても良い。
The branch selector switch SW1
Although a and SW1b have been described as being manually performed, the remote control line switching position may be used by remote control to switch when a failure occurs in the master station M2.

【0030】図4はこの発明の実施の第3形態を示す概
略構成図で、この第3形態は親局のホストコンピュータ
を始め全ての監視制御装置がダウンした場合でも親局M
1〜M3の伝送制御部が正常であると(ホストコンピュ
ータと伝送制御部が別室に設置されている場合)、親局
M1隣接の子局S11は伝送路を正常とし、その子局ル
ープバック構成にならない。この対策は図5に示すよう
に、各親局M1〜M3は全てのホスト側設備がダウンし
たことを条件にモデムのキャリアを停止させると、回線
断すなわち回線障害と同じになり、これにより親局M1
隣接の子局S11はループバック構成になる。すると、
子局の所属移動が行われ、全子局がバックアップ用集中
監視制御設備BKMに入る。なお、伝送路FDにスイッ
チSW1を介挿して監視制御装置がダウンしたときに、
スイッチSW1を開放すれば回線断となり、子局S11
はループバックが行われ、上記と同じ効果になる。上記
のようにモデムのキャリアを停止させるか、スイッチS
W1を開放させれば、バックアップ用集中監視制御設備
BKMで全子局をループ回線内に含めた構成を可能とす
る。この第3形態の場合もバックアップ用集中監視制御
設備BKMの構成は第1形態と同様である。
FIG. 4 is a schematic configuration diagram showing a third embodiment of the present invention. In the third embodiment, even if all the monitoring control devices including the host computer of the master station are down, the master station M
When the transmission control units 1 to M3 are normal (when the host computer and the transmission control unit are installed in separate rooms), the slave station S1 1 adjacent to the master station M1 sets the transmission path to normal and the slave station loopback configuration do not become. As a countermeasure against this, as shown in FIG. 5, when the master stations M1 to M3 stop the carrier of the modem on the condition that all the equipments on the host side are down, it becomes the same as the line disconnection, that is, the line failure. Station M1
The adjacent slave station S1 1 has a loopback configuration. Then
The slave stations are reassigned and all slave stations enter the backup centralized supervisory control equipment BKM. When the monitoring control device goes down by inserting the switch SW1 in the transmission line FD,
If the switch SW1 is opened, the line is disconnected and the slave station S1 1
Is looped back and has the same effect as above. Stop the carrier of the modem as above or switch S
If W1 is opened, the centralized supervisory control facility for backup BKM can be configured to include all slave stations in the loop line. Also in the case of the third mode, the configuration of the backup centralized supervisory control equipment BKM is the same as that of the first mode.

【0031】図6はこの発明の実施の第4形態を示す概
略構成図で、この第4形態はバックアップ用集中監視制
御設備BKMを1つにして、この1つの設備BKMで監
視制御装置MS1〜MS4のバックアップを行うように
したものである。各監視制御そうちMS1〜MS4の設
置間隔が充分遠く、地震などでの2カ所の同時障害発生
率が少ない場合有効となる。この場合、監視制御装置M
S1〜MS4中のいずれかを選定した条件で該当するデ
ータエリアを選定する手段を必要とする。
FIG. 6 is a schematic block diagram showing a fourth embodiment of the present invention. In the fourth embodiment, one backup central supervisory control equipment BKM is provided, and the supervisory control devices MS1 to MS1 are provided by this one equipment BKM. The backup of the MS 4 is performed. It is effective when the installation intervals of the respective monitoring controls MS1 to MS4 are sufficiently long and the simultaneous failure occurrence rate at two locations such as an earthquake is small. In this case, the monitoring control device M
A means for selecting a corresponding data area under the condition that any one of S1 to MS4 is selected is required.

【0032】図7はこの発明の実施の第5形態を示す概
略構成図で、この第5形態はポーリング方式の1群から
3群にそれぞれバックアップ用集中監視制御設備(以下
バックアップ)BKMを設けたもので、M1S〜M3S
主系、M1J〜M3Jは従系からなる親局、S11〜Sn3
は子局、SLは予備回線,HTはハイブリットトラン
ス、SWは切り替えスイッチで、それぞれのバックアッ
プBKMは予備回線SLに接続される。
FIG. 7 is a schematic configuration diagram showing a fifth embodiment of the present invention. In the fifth embodiment, a centralized monitoring control facility for backup (hereinafter referred to as backup) BKM is provided in each of groups 1 to 3 of the polling system. M1 S to M3 S are master stations, M1 J to M3 J are master stations consisting of slave systems, and S1 1 to Sn 3
Is a slave station, SL is a backup line, HT is a hybrid transformer, SW is a changeover switch, and each backup BKM is connected to the backup line SL.

【0033】上記のように構成された第5形態におい
て、地震等で親局M1S〜M3Sがダウンした(図示×
印)ときには、図8に示すように運用すれば、予備回線
SLは常用回線の半分で済むことになる。
In the fifth mode configured as described above, the master stations M1 S to M3 S went down due to an earthquake or the like (shown by ×)
At this time, if the operation is performed as shown in FIG. 8, the protection line SL will be half of the regular line.

【0034】図9はこの発明の実施の第6形態を示す概
略構成図で、この第6形態はポーリング方式の1群と2
群、2群と3群間の隣接部分の常用回線に切替部1と切
替部2を設けることにより、バックアップBKMを1つ
にし、かつ予備回線SLを例えば1群にだけ設ければ、
地震等で親局がダウンしたときには、図10に示すよう
に切替部1、2を切り替えて1群と2群、2群と3群間
を接続して運用すれば、予備回線SLは常用回線の1/
6になる。
FIG. 9 is a schematic block diagram showing a sixth embodiment of the present invention. This sixth embodiment is a group 1 and a group 2 of the polling method.
By providing the switching unit 1 and the switching unit 2 in the service lines in the adjacent portions between the groups 2, 2 and 3, by providing only one backup BKM and providing the backup line SL in only one group,
When the master station goes down due to an earthquake or the like, if the switching units 1 and 2 are switched as shown in FIG. 10 to connect the first group and the second group and the second group and the third group to operate, the standby line SL is the regular line. 1 / of
Becomes 6.

【0035】なお、切替方式はトークンリング方式と同
様に第1方式は切替部1の制御ポジションを図10に示
すように子局Sn1に、切替部2の制御ポジションを図
10に示すように子局Sn2にそれぞれ設置し、バック
アップBKMから切替部1→切替部2の順に遠隔制御で
切り替える。第2方式は切替部1と2にそれぞれ切り替
えスイッチを設置し、設置場所でそのスイッチを切り替
える。このポーリング方式では図9の3群のアドレスは
重複しないように割り付けておくとともに、バックアッ
プBKMは3群分の子局をポーリング対象とする。
The switching method is the same as the token ring method. In the first method, the control position of the switching unit 1 is set to the slave station Sn 1 as shown in FIG. 10, and the control position of the switching unit 2 is set to the switching position 2 as shown in FIG. It is installed in each slave station Sn 2 and switches from the backup BKM in the order of the switching unit 1 → the switching unit 2 by remote control. In the second method, a changeover switch is installed in each of the changeover units 1 and 2, and the switch is changed over at the installation place. In this polling method, the addresses of the third group in FIG. 9 are allocated so that they do not overlap, and the backup BKM targets the slave stations of the third group as polling targets.

【0036】図11はトークンリング方式における図2
と同様にバックアップ用集中監視制御設備と子局間の1
カ所の回線障害が発生しても全子局の監視制御を可能に
したこの発明の実施の第7形態を示す概略構成図で、こ
の第7形態ではバックアップBKMSとBKMJの2つを
設けて予備回線SLで接続するとともに、各群間を切替
部1と切替部2で切り替え接続するようにしたものであ
る。バックアップBKMSとBKMJ運用の場合は、前記
図9と同様に図12に示すように切替部1、2を切替接
続する。図13と対比すれば、明確のように図12は3
群分を含んだループ回線になっている。
FIG. 11 is a block diagram of the token ring system shown in FIG.
1) between centralized monitoring control equipment for backup and slave stations
FIG. 7 is a schematic configuration diagram showing a seventh embodiment of the present invention that enables monitoring control of all slave stations even if a line failure occurs at one place. In this seventh embodiment, two backup BKM S and BKM J are provided. The backup line SL is used for connection, and the switching units 1 and 2 are used to switch and connect between the groups. In the case of the backup BKM S and BKM J operations, the switching units 1 and 2 are switched and connected as shown in FIG. 12 as in the case of FIG. Compared with FIG. 13, it is clear that FIG.
It is a loop line that includes groups.

【0037】なお、上述したポーリング方式の場合にお
いても、図6に示すようにバックアップBKMを1つに
して各群を遠方に設置した構成にしても良い。
Even in the case of the above-mentioned polling method, as shown in FIG. 6, one backup BKM may be provided and each group may be installed at a distance.

【0038】[0038]

【発明の効果】以上述べたように、この発明によれば、
トークンリング方式を用いることにより、集中監視制御
設備が地震等の非常時にダウンした際も、最低数の伝送
路でバックアップ用集中監視制御設備と接続できてしか
も監視制御を継続できるとともに、バックアップ用集中
監視制御設備の正常性を常時監視できる利点がある。ま
た、ポーリング方式を用いても伝送路を大幅に増加させ
ないで非常時に監視制御を継続できる利点がある。
As described above, according to the present invention,
By using the token ring method, even if the centralized monitoring control equipment goes down in an emergency such as an earthquake, it can be connected to the centralized monitoring control equipment for backup with the minimum number of transmission lines and the monitoring control can be continued, and the centralized backup equipment can be used. There is an advantage that the normality of the supervisory control equipment can be constantly monitored. Further, even if the polling method is used, there is an advantage that the monitoring control can be continued in an emergency without significantly increasing the number of transmission lines.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施の第1形態を示す概略構成図。FIG. 1 is a schematic configuration diagram showing a first embodiment of the present invention.

【図2】この発明の実施の第2形態を示す概略構成図。FIG. 2 is a schematic configuration diagram showing a second embodiment of the present invention.

【図3】図2A〜Cは第1形態の動作説明図。3A to 3C are operation explanatory views of the first embodiment.

【図4】この発明の実施の第3形態を説明するための概
略構成図。
FIG. 4 is a schematic configuration diagram for explaining a third embodiment of the present invention.

【図5】第3形態を示す概略構成図。FIG. 5 is a schematic configuration diagram showing a third embodiment.

【図6】この発明の実施の第4形態を示す概略構成図。FIG. 6 is a schematic configuration diagram showing a fourth embodiment of the present invention.

【図7】この発明の実施の第5形態を示す概略構成図。FIG. 7 is a schematic configuration diagram showing a fifth embodiment of the present invention.

【図8】第5形態の動作説明図。FIG. 8 is an operation explanatory view of the fifth mode.

【図9】この発明の実施の第6形態を示す概略構成図。FIG. 9 is a schematic configuration diagram showing a sixth embodiment of the present invention.

【図10】第6形態の動作説明図。FIG. 10 is an operation explanatory view of the sixth mode.

【図11】この発明の実施の第7形態を示す概略構成
図。
FIG. 11 is a schematic configuration diagram showing a seventh embodiment of the present invention.

【図12】第7形態の動作説明図。FIG. 12 is an operation explanatory view of the seventh mode.

【図13】ポーリング方式における3群構成の概略構成
図。
FIG. 13 is a schematic configuration diagram of a three-group configuration in a polling method.

【図14】トークンリング方式における3群構成の概略
構成図。
FIG. 14 is a schematic configuration diagram of a three-group configuration in the token ring system.

【図15】ポーリング方式における回線障害対応の概略
構成図。
FIG. 15 is a schematic configuration diagram of line failure handling in the polling method.

【図16】トークンリング方式における回線障害対応の
概略構成図。
FIG. 16 is a schematic configuration diagram of line failure handling in the token ring system.

【図17】ポーリング方式における回線障害対応の概略
構成図。
FIG. 17 is a schematic configuration diagram of line failure handling in the polling method.

【図18】図18A,Bはトークンリング方式における
回線障害対応の概略構成図。
FIG. 18A and FIG. 18B are schematic configuration diagrams of line failure handling in the token ring system.

【図19】トークンリング方式における回線障害対応の
概略構成図。
FIG. 19 is a schematic configuration diagram of line failure handling in the token ring system.

【符号の説明】[Explanation of symbols]

M1〜M3…親局 S11〜Sn3…子局 SW1、SW2、SW3…切り替えスイッチ SW1a,SW1b、分岐切り替えスイッチ BKMS,BKMJ…バックアップ用集中監視制御設備 FD11,FD12〜FD13,FD23、FD1〜FD5
…伝送路
M1 to M3 ... Master station S1 1 to Sn 3 ... Slave station SW1, SW2, SW3 ... Changeover switch SW1a, SW1b, Branch changeover switch BKM S , BKM J ... Centralized monitoring control equipment for backup FD1 1 , FD1 2 to FD1 3 , FD2 3 , FD1 to FD5
… Transmission path

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 複数の親局と多数の子局間が親局毎のル
ープ回線で結合され、ループ回線や親局等の障害で各ル
ープ回線に対する子局の所属を変えることにより通信機
能を回復させる遠方監視制御システムにおいて、 前記親局と子局とが接続される上り回線にハイブリット
結合器を介挿し、下り回線には切り替えスイッチを設
け、前記複数の親局とは異なる地域に配設された遠方監
視制御システムの親局をバックアップ用集中監視制御設
備とし、このバックアップ用集中監視制御設備に前記ハ
イブリット結合器の出力から送出される監視制御情報を
常時供給し、前記バックアップ用集中監視制御設備を親
局とする以外の全部の親局に障害が発生したとき、前記
切り替えスイッチを操作してバックアップ用集中監視制
御設備の下り回線を子局に接続するとともに、前記1つ
の親局からのループ回線の上り回線と下り回線が分岐し
てそれぞれ別々の子局に接続される上り回線あるいは下
り回線の少なくとも一方に分岐切り替えスイッチを設
け、前記複数の親局が全部障害になったときに、前記分
岐切り替えスイッチを操作してバックアップ用集中監視
制御設備からの監視制御情報が多数の子局全部に伝送さ
れるようにしたことを特徴とするループ回線における監
視制御所の障害回復装置。
1. A communication function is restored by changing the affiliation of a slave station to each loop line due to a failure of the loop line or the master station, etc. In the distant monitoring control system, a hybrid coupler is inserted in an upstream line connecting the master station and the slave station, and a changeover switch is provided in the downlink line, and the hybrid switch is arranged in an area different from the plurality of master stations. The master station of the remote monitoring control system is used as a backup centralized supervisory control equipment, and the backup centralized supervisory control equipment is constantly supplied with the supervisory control information sent from the output of the hybrid coupler, and the backup central supervisory control equipment is supplied. When a failure occurs in all master stations other than the master station, operate the changeover switch to connect the backup centralized supervisory control equipment downlink to the slave station. In addition, a branch changeover switch is provided in at least one of an up line and a down line connected to different slave stations by branching the up line and the down line of the loop line from the one master station. In a loop line characterized in that, when all the master stations are in trouble, the branch changeover switch is operated so that the supervisory control information from the backup centralized supervisory control equipment is transmitted to all the slave stations. Failure recovery device for monitoring and control station.
【請求項2】 前記分岐切り替えスイッチは遠隔制御に
より操作するようにしたことを特徴とする請求項1記載
のループ回線における監視制御所の障害回復装置。
2. The fault recovery device for a supervisory control center in a loop line according to claim 1, wherein the branch changeover switch is operated by remote control.
【請求項3】 前記親局と子局とが接続される上り回線
に設けられるハイブリット結合器、下り回線に設けられ
る切り替えスイッチおよびバックアップ用集中監視制御
設備を少なくとも2組設け、それぞれ各組を別々の親局
のバックアップ用集中監視制御設備としたことを特徴と
する請求項1記載のループ回線における監視制御所の障
害回復装置。
3. At least two sets of a hybrid coupler provided in the upstream line connecting the master station and the slave station, a changeover switch provided in the downlink line, and a centralized supervisory control facility for backup are provided, and each set is separately provided. 2. The fault recovery apparatus for a supervisory control station in a loop line according to claim 1, wherein the supervisory centralized supervisory control equipment is a backup central supervisory control facility.
【請求項4】 複数の親局と多数の子局間が親局毎のル
ープ回線で結合され、ループ回線や親局等の障害で各ル
ープ回線に対する子局の所属を変えることにより通信機
能を回復させる遠方監視制御システムにおいて、 前記多数の子局の1つにバックアップ用集中監視制御設
備を接続して、常時1つの親局の監視制御情報を供給す
るようにするとともに、親局に障害が発生したときに
も、その親局の伝送制御部が動作しているときには、そ
の伝送制御部から子局に向けて送出されるキャリアを停
止させるか、ループ回線の下り回線にスイッチを介挿し
てキャリアを子局に供給させないようにしたことを特徴
とするループ回線における監視制御所の障害回復装置。
4. A communication function is restored by changing the affiliation of the slave station to each loop line due to a failure of the loop line or the master station, etc. In the distant monitoring control system, a centralized monitoring control facility for backup is connected to one of the plurality of slave stations so as to constantly supply the monitoring control information of one master station, and a failure occurs in the master station. Also, when the transmission control unit of the master station is operating, the carrier sent from the transmission control unit to the slave station is stopped or the carrier is inserted by inserting a switch in the downlink of the loop line. A failure recovery device for a supervisory control station in a loop line, which is characterized in that it is not supplied to a slave station.
【請求項5】 複数の親局と多数の子局間がループ回線
で結合されたポーリング方式における監視制御システム
群を複数群設け、各群毎に前記親局と子局とが接続され
る上り回線にハイブリット結合器を介挿し、下り回線に
は切り替えスイッチを設け、前記各群の複数の親局とは
異なる地域にそれぞれ配設された遠方監視制御システム
の親局をバックアップ用集中監視制御設備とし、このバ
ックアップ用集中監視制御設備に前記ハイブリット結合
器の出力から送出される監視制御情報を常時供給し、前
記バックアップ用集中監視制御設備を親局とする以外の
全部の親局に障害が発生したとき、前記切り替えスイッ
チを操作してバックアップ用集中監視制御設備の下り回
線を子局に接続し、各親局に障害が発生したときに各群
毎にバックアップ用集中監視制御設備で回復を行うよう
にしたことを特徴とするループ回線における監視制御所
の障害回復装置。
5. An upstream line in which a plurality of monitoring control system groups in a polling system in which a plurality of master stations and a plurality of slave stations are connected by a loop line are provided, and the master station and the slave stations are connected to each group A hybrid coupler is inserted in the base station, a changeover switch is provided in the downlink, and the master station of the remote monitoring control system arranged in a region different from the plurality of master stations of each group is used as a backup centralized monitoring control facility. , The backup centralized supervisory control equipment is constantly supplied with the supervisory control information sent from the output of the hybrid coupler, and a failure has occurred in all master stations other than the backup centralized supervisory control equipment. At this time, operate the changeover switch to connect the downlink of the centralized monitoring and control facility for backup to the slave station, and to backup each group when a failure occurs in each master station. A failure recovery device for a supervisory control station in a loop line, characterized in that recovery is performed by a centralized supervisory control facility.
【請求項6】 前記バックアップ用集中監視制御設備を
1つだけ監視制御システム群の1つに設け、各監視制御
システム群のループ回線間には切替部を設けて、各親局
に障害が発生したときに、切替部を遠隔制御にて操作
し、各群の子局が全て接続されるようにして、1つのバ
ックアップ用集中監視制御設備で障害回復を行うように
したことを特徴とする請求項5記載のループ回線におけ
る監視制御所の障害回復装置。
6. A centralized supervisory control facility for backup is provided in one of the supervisory control system groups, and a switching unit is provided between the loop lines of each supervisory control system group to cause a failure in each master station. At this time, the switching unit is operated by remote control so that all slave stations of each group are connected, and failure recovery is performed by one centralized supervisory control facility for backup. Item 5. A failure recovery device for a supervisory control station in a loop line according to Item 5.
【請求項7】 前記バックアップ用集中監視制御設備を
少なくとも2つ監視制御システム群の1つに設けたこと
を特徴とする請求項5および6記載のループ回線におけ
る監視制御所の障害回復装置。
7. A failure recovery device for a supervisory control center in a loop line according to claim 5, wherein at least two centralized supervisory control facilities for backup are provided in one of the supervisory control system groups.
【請求項8】 複数の親局と多数の子局間が親局毎のル
ープ回線で結合され、ループ回線や親局等の障害で各ル
ープ回線に対する子局の所属を変えることにより通信機
能を回復させる遠方監視制御システムにおいて、 複数の親局を1つのグループとする複数の監視制御所を
各々遠方に配設させて、それら監視制御所を障害発生時
に1つのバックアップ用集中監視制御設備で、バックア
ップするようにしたことを特徴とするループ回線におけ
る監視制御所の障害回復装置。
8. A communication function is restored by changing the affiliation of a slave station to each loop line due to a failure of the loop line or master station, etc. In the remote monitoring and control system, a plurality of monitoring control stations, each having a plurality of parent stations as one group, are arranged at a remote location, and the monitoring control stations are backed up by one centralized monitoring and control facility for backup when a failure occurs. A failure recovery device for a supervisory control station in a loop line, which is characterized in that
JP26457395A 1995-10-13 1995-10-13 Fault recovery equipment for supervisory control stations in loop circuits Expired - Fee Related JP3216500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26457395A JP3216500B2 (en) 1995-10-13 1995-10-13 Fault recovery equipment for supervisory control stations in loop circuits

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26457395A JP3216500B2 (en) 1995-10-13 1995-10-13 Fault recovery equipment for supervisory control stations in loop circuits

Publications (2)

Publication Number Publication Date
JPH09107374A true JPH09107374A (en) 1997-04-22
JP3216500B2 JP3216500B2 (en) 2001-10-09

Family

ID=17405173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26457395A Expired - Fee Related JP3216500B2 (en) 1995-10-13 1995-10-13 Fault recovery equipment for supervisory control stations in loop circuits

Country Status (1)

Country Link
JP (1) JP3216500B2 (en)

Also Published As

Publication number Publication date
JP3216500B2 (en) 2001-10-09

Similar Documents

Publication Publication Date Title
US7613108B2 (en) Redundant supervisory control system, and redundancy switching method of the same
US4575842A (en) Survivable local area network
JP3216500B2 (en) Fault recovery equipment for supervisory control stations in loop circuits
JP4885772B2 (en) Regional disaster prevention radio system
JP6973181B2 (en) Communication system and method
JPH08251216A (en) Data transmitter
JP2844862B2 (en) Equipment switching method for remote monitoring and control system
JPH07336296A (en) Optical transmission system
JP3808186B2 (en) Control station line switching method in case of disaster
JP2003087280A (en) Ring type optical communication system
JP2007028012A (en) Mobile radio communication system
JP3190493B2 (en) Transmission system equipment
JPS58182359A (en) Self-control system switching system of electronic exchange
KR0120720B1 (en) Duplicated common bus repeat circuit of lan and method thereof
JPH10248181A (en) Distributed supervisory control system
JPS63269637A (en) System for automatically switching duplexed branch line
JPH10327215A (en) Monitor and control system
JPH0746581A (en) Camera monitoring system
JPH07336362A (en) Supervisory and controlling device
JPH05235975A (en) Optical ring lan system
JPH0468647A (en) Virtual duplicate device in exchange maintenance system
JPH0490231A (en) Tree-shaped information network
JPH11203583A (en) Large-scale emergency/burglar security/equipment monitor system
JPS61292438A (en) Loopback control system
JPH01198139A (en) System for monitoring and controlling loop type transmission equipment

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070803

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080803

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080803

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090803

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees