JPH09107136A - Magnetoresistive element and its manufacturing method - Google Patents

Magnetoresistive element and its manufacturing method

Info

Publication number
JPH09107136A
JPH09107136A JP7261842A JP26184295A JPH09107136A JP H09107136 A JPH09107136 A JP H09107136A JP 7261842 A JP7261842 A JP 7261842A JP 26184295 A JP26184295 A JP 26184295A JP H09107136 A JPH09107136 A JP H09107136A
Authority
JP
Japan
Prior art keywords
magnetic
isolation film
magnetic material
magnetoresistive element
columnar bodies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7261842A
Other languages
Japanese (ja)
Other versions
JP3262695B2 (en
Inventor
Fumito Koike
文人 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP26184295A priority Critical patent/JP3262695B2/en
Publication of JPH09107136A publication Critical patent/JPH09107136A/en
Application granted granted Critical
Publication of JP3262695B2 publication Critical patent/JP3262695B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a magnetoresistive element consisting of a non-coupled artificial lattice which is highly sensitive to an external magnetic field fluctuation and can be easily manufactured. SOLUTION: In a magnetoresistive element, a number of column-shaped bodies 4 made of Co hard magnetic material vertically project from a substrate 1, an isolating film 5 made of Cu is formed around each column-shaped body 4, and a filling layer of NiFe soft magnetic material is formed at the gap of the column-shaped body 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、磁気センサ、磁気
ヘッド、位置センサ、回転センサなどの磁気抵抗効果素
子として用いることができる非結合型の人工格子からな
る磁気抵抗体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive element composed of a non-coupling type artificial lattice which can be used as a magnetoresistive effect element such as a magnetic sensor, a magnetic head, a position sensor and a rotation sensor.

【0002】[0002]

【従来の技術】外部磁界の変動に対応して電気抵抗が変
化する素材は、磁気抵抗(MR)効果材料として知られ
ている。このMR効果材料としては、従来からNiFe
合金(パーマロイ)薄膜などが知られているが、パーマ
ロイ薄膜の磁気抵抗変化率は高々2%〜3%程度であ
る。そこで今後、このMR効果を応用して磁気ヘッドの
狭トラック化や磁気センサの高分解能化を実現するため
には、更に磁気抵抗変化率(MR比)が大きいMR効果
材料が求められている。
2. Description of the Related Art A material whose electric resistance changes in response to a change in an external magnetic field is known as a magnetoresistive (MR) effect material. This MR effect material has conventionally been NiFe.
Although alloy (permalloy) thin films are known, the magnetoresistance change rate of permalloy thin films is about 2% to 3% at most. Therefore, in the future, in order to realize a narrower track of the magnetic head and a higher resolution of the magnetic sensor by applying this MR effect, an MR effect material having a larger magnetoresistance change rate (MR ratio) is required.

【0003】近年、いわゆる巨大磁気抵抗(GMR)効
果と呼ばれる現象が、Fe/Cr系またはCo/Cu系
などの多層薄膜からなる人工格子において発見された
(M.N.Baibich他、Physical Review Letter、61(1
988)2472、D.H.Mosca他、Journal of Magnetis
m and Magnetic Materials、94(1991)L1参
照)。これらの人工格子では、FeとCrとの界面、ま
たはCoとCuとの界面における伝導電子のスピンに依
存した散乱がGMR効果に寄与しているといわれてお
り、従来のNiFe系合金の磁気抵抗効果とは発生機構
が根本的に異なるもので、それぞれの磁性膜間に反強磁
性的交換結合が働き、反平行の磁気構造が磁場によって
平行に整列させられることによって、電気抵抗が減少す
るといわれている。
In recent years, a phenomenon called the so-called giant magnetoresistive (GMR) effect has been discovered in artificial lattices composed of multi-layer thin films such as Fe / Cr or Co / Cu (MN Baibich et al., Physical Review Letter, 61 (1).
988) 2472, DH Mosca et al., Journal of Magnetis
m and Magnetic Materials, 94 (1991) L1). In these artificial lattices, it is said that the spin-dependent scattering of conduction electrons at the interface between Fe and Cr or the interface between Co and Cu contributes to the GMR effect. The effect is fundamentally different in the generation mechanism, and it is said that antiferromagnetic exchange coupling works between the magnetic films and the antiparallel magnetic structures are aligned in parallel by the magnetic field, so that the electric resistance is reduced. ing.

【0004】[0004]

【発明が解決しようとする課題】上記の多層薄膜からな
る人工格子を用いたGMR素子は、その構成から大きく
3種類に分類できるといわれる。すなわち、Co/C
u、Co/Ag、NiFe/Cuの結合型人工格子を持
つ反強磁性系、NiFe/Cu/Co/FeMnなどに
よるスピンバルブ系、およびCu/Co/Cu/NiF
eなどの非結合型である。これらのうちCo/Cu系な
どの結合型人工格子は、パーマロイ薄膜などの磁気抵抗
変化率より数倍以上の高いMR比が得られるものの、M
R効果を起こさせるのには大きな外部磁場を必要とし、
小型装置に適用するには困難があった。最近になって、
多層薄膜構造を用いたGMR素材に関する研究が進み、
これまで行われてきた多層膜人工格子の面内方向の電流
に対するMR効果よりも、膜に垂直方向の電流に対する
MR効果のほうが大きい効果が期待できることがわかっ
てきた(例えば、W.P.Pratt Jr.他、Phys.Rev.Lett.6
6(1991)3060参照)。しかし膜面に垂直な方
向には電気抵抗が非常に小さいので、MR効果による電
流変化が配線の接点抵抗などに埋まってしまい、周辺抵
抗を排除するためには大規模な超電導装置などを必要と
するので実用化は困難と思われた。
It is said that the GMR element using the artificial lattice composed of the above-mentioned multi-layered thin film can be roughly classified into three types according to its structure. That is, Co / C
u, Co / Ag, antiferromagnetic system having a combined artificial lattice of NiFe / Cu, spin valve system by NiFe / Cu / Co / FeMn, etc., and Cu / Co / Cu / NiF
It is a non-bonded type such as e. Among them, the combined artificial lattice of Co / Cu or the like can obtain an MR ratio several times higher than the magnetoresistive change rate of a permalloy thin film, but M
A large external magnetic field is required to cause the R effect,
It was difficult to apply to small devices. Recently,
Research on GMR materials using multi-layer thin film structure has progressed,
It has been found that the MR effect with respect to the current in the direction perpendicular to the film can be expected to be larger than the MR effect with respect to the current in the in-plane direction of the multilayer artificial lattice that has been performed so far (for example, WPPratt Jr. et al. Phys. Rev. Lett. 6
6 (1991) 3060). However, since the electric resistance is very small in the direction perpendicular to the film surface, the current change due to the MR effect is buried in the contact resistance of the wiring, etc., and a large-scale superconducting device or the like is required to eliminate the peripheral resistance. Therefore, it was difficult to put it into practical use.

【0005】この問題を解決するために、多層膜から微
細な柱を切り出しこの柱の両端部の抵抗変化からMR効
果を測定する試みも行われた(M.A.M.Gijs他、Phys.Re
v.Lett.70(1993)3343参照)。しかし、こ
の試料作製にはきわめて精密な加工技術が要求され、実
用化は困難と思われる。また、新庄・他(日本応用磁気
学会、第88回研究会試料「巨大磁気抵抗効果研究の最
近の進展」平成7年1月26日〜27日)は、図7に示
すように、Si基板20にリソグラフィー加工して三角
波状の表面を形成し、この上に非結合型の多層膜人工格
子21を生成させた方式の磁気抵抗体を提案している。
この磁気抵抗体によれば、膜に電流を流したとき、従来
の面内電流型磁気抵抗体の膜面に対する電流方向の角度
は0°であったのに対して、55°の角度が得られ、測
定結果は面内電流型より明かに大きいMR効果が得られ
たと報告している。
In order to solve this problem, an attempt was made to cut out a fine pillar from the multilayer film and measure the MR effect from the resistance change at both ends of the pillar (MAMGijs et al., Phys. Re.
v. Lett. 70 (1993) 3343). However, this sample preparation requires extremely precise processing technology, and it seems difficult to put it into practical use. In addition, Shinjo et al. (Japan Applied Magnetics Society, 88th Research Group sample “Recent Progress in Giant Magnetoresistance Effect Research” January 26-27, 1995) is a Si substrate as shown in FIG. A magnetoresistive element of the type in which a triangular wave-shaped surface is formed on 20 to form a triangular wave-shaped surface and a non-bonding type multi-layered film artificial lattice 21 is formed thereon is proposed.
According to this magnetoresistive element, when a current is applied to the film, the angle of the current direction with respect to the film surface of the conventional in-plane current type magnetoresistive element is 0 °, whereas the angle of 55 ° is obtained. It is reported that the measurement result clearly has a larger MR effect than the in-plane current type.

【0006】しかし、この方法は基板に三角波状の表面
を形成するなど、工作上の問題があって、製造が困難で
ある。本発明は上記の問題を解決するためになされたも
のであり、従ってその目的は、外部磁界変動に対して高
感度でしかも製造が容易な、非結合型の人工格子からな
る磁気抵抗体およびその製造方法を提供することにあ
る。
However, this method is difficult to manufacture because of problems in working such as forming a triangular wave surface on the substrate. The present invention has been made to solve the above problems, and therefore an object thereof is to provide a magnetoresistive body composed of a non-coupling type artificial lattice, which is highly sensitive to an external magnetic field fluctuation and is easy to manufacture, and a method thereof. It is to provide a manufacturing method.

【0007】[0007]

【課題を解決するための手段】上記の課題は、それぞれ
保磁力が異なる2種類の磁性材料の一方からなる多数の
柱状体が基板面に垂直に突起し、各柱状体の周囲に、非
磁性導電材料からなる隔離膜が形成され、この隔離膜が
形成された柱状体相互の間隙部に他方の磁性材料からな
る充填層が形成された磁気抵抗体を提供することによっ
て解決できる。
The above-mentioned problems are solved by the fact that a large number of columnar bodies made of one of two kinds of magnetic materials having different coercive force are projected perpendicularly to the substrate surface, and non-magnetic material is formed around each columnar body. The problem can be solved by providing a magnetoresistor in which an isolation film made of a conductive material is formed, and a filling layer made of the other magnetic material is formed in a gap between columnar bodies in which the isolation film is formed.

【0008】上記の保磁力が異なる磁性材料のうち、一
方の磁性材料は、CoまたはCo合金からなる群から選
ばれた硬磁性材料であることが好ましい。また、一方の
磁性材料は、NiFeまたはCoNiFeからなる軟磁
性材料であることが好ましい。上記の非磁性導電材料
は、Cu、Au、Agおよびこれらの少なくとも1種以
上を含む合金からなる群から選ばれたものであることが
好ましい。
Of the above magnetic materials having different coercive forces, one magnetic material is preferably a hard magnetic material selected from the group consisting of Co and Co alloys. Further, one of the magnetic materials is preferably a soft magnetic material made of NiFe or CoNiFe. The nonmagnetic conductive material is preferably selected from the group consisting of Cu, Au, Ag and alloys containing at least one of these.

【0009】本発明はまた、上記のいずれかの磁気抵抗
体を製造するに際して、基板上に、上記磁性材料のいず
れか一方からなる多数の柱状体を基板面に垂直に成長さ
せ、これらの柱状体の周囲に、非磁性導電材料からなる
隔離膜を形成し、次いで隔離膜が形成された柱状体相互
の間隙部に他方の磁性材料からなる充填層を形成する磁
気抵抗体の製造方法を提供する。
According to the present invention, in manufacturing any one of the magnetoresistive bodies described above, a large number of columnar bodies made of any one of the above magnetic materials are grown on a substrate perpendicularly to the substrate surface, and these columnar bodies are grown. Provided is a method for manufacturing a magnetoresistive body, wherein an isolation film made of a non-magnetic conductive material is formed around a body, and then a filling layer made of another magnetic material is formed in a gap between columnar bodies having the isolation film formed therein. To do.

【0010】[0010]

【発明の実施の形態】以下、本発明を一実施形態によ
り、図面を用いて説明する。図1は、本発明の一実施形
態である磁気抵抗体を示す断面図である。図1におい
て、この磁気抵抗体10は、基板1と、その上に基板面
に沿って形成された非磁性の初期層2と、この初期層2
の上面に形成されたMR層3とからなっている。このM
R層3は、それぞれ保磁力が異なる2種類の磁性材料の
一方からなる多数の柱状体4が初期層2から連続して基
板1に垂直に突起し、各柱状体4の周囲に、非磁性導電
材料からなる隔離膜5が形成され、この柱状体4どうし
の間隙部に他方の磁性材料の層(以下「充填層」とい
う)6が形成されてなっている。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below with reference to the drawings according to an embodiment. FIG. 1 is a sectional view showing a magnetoresistive element according to an embodiment of the present invention. In FIG. 1, the magnetoresistive body 10 includes a substrate 1, a nonmagnetic initial layer 2 formed on the substrate 1 along the substrate surface, and the initial layer 2.
Of the MR layer 3 formed on the upper surface of the. This M
In the R layer 3, a large number of columnar bodies 4 made of one of two kinds of magnetic materials each having different coercive force are continuously projected from the initial layer 2 perpendicularly to the substrate 1 and non-magnetic around the columnar bodies 4. An isolation film 5 made of a conductive material is formed, and a layer 6 of the other magnetic material (hereinafter referred to as “filling layer”) 6 is formed in the gap between the columnar bodies 4.

【0011】このMR層3において、それぞれ保磁力が
異なる2種類の磁性材料の一方(柱状体4)はCoPt
系の硬磁性材料からなり、他方(充填層6)はNiFe
系の軟磁性材料からなっている。また、MR層3中の隔
離膜5はCuからなり、基板1上の初期層2は、柱状体
4を形成するCoPt合金に酸素を添加したものからな
る。基板1はSi、ガラスなどの非磁性体であれば、い
ずれでもよいがこの場合はSiからなる。
In the MR layer 3, one of the two kinds of magnetic materials (columnar bodies 4) having different coercive force is CoPt.
Made of Ni-based hard magnetic material, the other (filling layer 6) is NiFe
It is made of soft magnetic material. Further, the isolation film 5 in the MR layer 3 is made of Cu, and the initial layer 2 on the substrate 1 is made of a CoPt alloy forming the columnar body 4 to which oxygen is added. The substrate 1 may be any non-magnetic material such as Si or glass, but in this case, it is made of Si.

【0012】ここで、硬磁性材料とは一般に、外部磁界
が除去されても保磁力が大きく、永久磁石的な磁性材料
であり、軟磁性材料とは高透磁率材料とも呼ばれ、外部
磁界の強さの変化に敏感に反応して磁化を変化させる磁
性材料である。
Here, the hard magnetic material is generally a permanent magnetic material having a large coercive force even when the external magnetic field is removed, and the soft magnetic material is also called a high magnetic permeability material. It is a magnetic material that changes its magnetization sensitively to changes in strength.

【0013】この磁気抵抗体10は、外部磁界がゼロの
とき、柱状体4の磁化方向と磁性膜6の磁化方向とが、
基板に垂直にかつ反平行に偏位されている。MR層3の
両端部間に電流を流した状態で、このMR層3に外部磁
界を印加し、外部磁界を垂直および/または水平な方向
に変化させると、柱状体4は硬磁性体であるから磁化の
方向が変化せず、充填層6は軟磁性体であるから、外部
磁界の変化に対応して磁化の方向を変化させ、これに伴
ってMR層3の内部電気抵抗が変化し、従って電流量が
変化するMR効果(磁気抵抗効果)を現す。これは、膜
面内に電流を流しても、CPP型(Current Perpendicu
lar to Plane 、すなわち電流が膜面内垂直に流れる型
式)の磁気抵抗効果を現す点で新規の磁気抵抗体であ
る。
In the magnetic resistor 10, when the external magnetic field is zero, the magnetization direction of the columnar body 4 and the magnetization direction of the magnetic film 6 are
It is offset vertically and anti-parallel to the substrate. When an external magnetic field is applied to the MR layer 3 while changing the external magnetic field in a vertical and / or horizontal direction with a current flowing between both ends of the MR layer 3, the columnar body 4 is a hard magnetic material. Since the direction of magnetization does not change and the filling layer 6 is a soft magnetic material, the direction of magnetization changes according to the change of the external magnetic field, and the internal electric resistance of the MR layer 3 changes accordingly. Therefore, the MR effect (magnetoresistive effect) in which the amount of current changes is exhibited. This is because the CPP type (Current Perpendicu
lar to Plane, that is, a type in which a current flows vertically in the film plane), which is a novel magnetoresistive element.

【0014】この実施形態の磁気抵抗体10は、順次図
2〜図7に示す方法で製造することができる。図2に示
すように、先ずSi基板1上に、酸素雰囲気下でCoP
tをスパッタして初期層2を製膜する。CoPtは酸素
添加によって変調され非磁性で電気抵抗の高いものとな
る。この層は、基板1とMR層3との間に介在して、製
造時または使用時の緩衝層となるものである。
The magnetoresistive element 10 of this embodiment can be sequentially manufactured by the methods shown in FIGS. As shown in FIG. 2, first, on the Si substrate 1, CoP was performed in an oxygen atmosphere.
The initial layer 2 is formed by sputtering t. CoPt is modulated by addition of oxygen and becomes non-magnetic and has high electric resistance. This layer is interposed between the substrate 1 and the MR layer 3 and serves as a buffer layer during manufacturing or use.

【0015】次に、図3に示すように、酸素添加を止
め、スパッタ条件を高アルゴン圧スパッタに切り替えて
引続きCoPtをスパッタすると、CoPt微結晶の成
長種が初期層2から連続して、ただし島状に互いに分離
して発生し、成長し、基板1に垂直に突起した多数の柱
状体4を形成する。この高アルゴン圧スパッタ中に外部
磁界を印加すると、柱状体4の磁化の方向を一定に揃
え、固定することができる。
Next, as shown in FIG. 3, when oxygen addition was stopped, the sputtering conditions were switched to high argon pressure sputtering, and CoPt was subsequently sputtered, growth seeds of CoPt microcrystals continued from the initial layer 2, but A large number of pillars 4 are formed on the substrate 1 which are generated and grown separately from each other in the shape of islands and are vertically projected on the substrate 1. By applying an external magnetic field during this high argon pressure sputtering, the magnetization direction of the columnar body 4 can be made uniform and fixed.

【0016】次に、図4に示すように、各柱状体4の周
囲に、非磁性導電材料であるCuを用いて隔離膜5を形
成する。この隔離膜5の形成には、メッキ技術を用いる
ことが好ましい。
Next, as shown in FIG. 4, an isolation film 5 is formed around each columnar body 4 using Cu, which is a nonmagnetic conductive material. It is preferable to use a plating technique for forming the isolation film 5.

【0017】次いで、図5に示すように、隔離膜5が形
成された柱状体4どうしの間隙部にNiFe系の軟磁性
材料を充填して充填層6を形成する。この充填には、メ
ッキ技術または選択的CVD技術などが使用できる。
Next, as shown in FIG. 5, a NiFe-based soft magnetic material is filled in the gap between the columnar bodies 4 on which the isolation film 5 is formed to form a filling layer 6. A plating technique or a selective CVD technique can be used for this filling.

【0018】充填層6が形成された段階では、表層に充
填層6と隔離膜5の連続した表皮層が形成されている。
この表皮層はMR効果の障害になるので除去する必要が
ある。そこで、最終過程として、図6に示すように、こ
の表皮層をドライエッチングなどの技術により除去す
る。これによって、表皮層のないMR層3が形成され、
磁気抵抗体10が製造される。上記の表皮層は、酸化す
れば非磁性化するので、表面酸化を行い除去せずに保護
層として用いてもよい。
At the stage where the filling layer 6 is formed, a continuous skin layer of the filling layer 6 and the isolation film 5 is formed on the surface layer.
This skin layer impedes the MR effect and must be removed. Therefore, as a final step, as shown in FIG. 6, this skin layer is removed by a technique such as dry etching. As a result, the MR layer 3 having no skin layer is formed,
The magnetic resistor 10 is manufactured. Since the above-mentioned skin layer becomes non-magnetic when oxidized, it may be used as a protective layer without being surface-oxidized and removed.

【0019】上記の製造方法は、従来公知の薄膜技術を
組み合わせたものであり、面内電流によってもCPP型
の磁気抵抗体が容易に製造できる利点がある。
The above manufacturing method is a combination of conventionally known thin film technologies, and has an advantage that a CPP type magnetoresistive element can be easily manufactured even by an in-plane current.

【0020】本発明の磁気抵抗体において、柱状体とし
て用いる磁性材料の一方は、硬磁性材料であることが好
ましい。硬磁性材料としては各種のものが知られてお
り、そのいずれを用いてもよいが、特に好適なものは、
CoまたはCo合金からなる群から選ばれたものであ
る。Co合金の例としては、CoPt、CoCrTa、
CoCrNbなどを挙げることができる。これらは高ア
ルゴン圧スパッタによって良好な柱状体を形成する。
In the magnetic resistor of the present invention, one of the magnetic materials used as the columnar body is preferably a hard magnetic material. Various hard magnetic materials are known, and any of them may be used.
It is selected from the group consisting of Co and Co alloys. Examples of Co alloys include CoPt, CoCrTa,
CoCrNb etc. can be mentioned. These form good columnar bodies by high argon pressure sputtering.

【0021】本発明の磁気抵抗体において、充填層とし
て用いる磁性材料は、軟磁性材料であることが好まし
い。軟磁性材料としては各種のものが知られており、そ
のいずれを用いてもよいが、特に好適なものは、NiF
eまたはCoNiFeのいずれかである。
In the magnetoresistive element of the present invention, the magnetic material used as the filling layer is preferably a soft magnetic material. Various soft magnetic materials are known, and any of them may be used, but NiF is particularly preferable.
Either e or CoNiFe.

【0022】本発明の磁気抵抗体において、隔離膜を形
成する非磁性導電材料としては、Cu、Au、Agまた
はこれらの少なくとも1種以上を含む合金のいずれかを
用いることができる。これらは非磁性であるとともに良
導電性であり、電流測定の障害にならない。また、メッ
キなどの簡単な手法により、容易に成膜することができ
る。
In the magnetoresistive element of the present invention, the nonmagnetic conductive material forming the isolation film may be Cu, Au, Ag or an alloy containing at least one of these. They are non-magnetic and have good electrical conductivity, and do not interfere with current measurement. Further, it is possible to easily form a film by a simple method such as plating.

【0023】図1に示した磁気抵抗体10において、M
R層3の有効厚みHは、10nm〜1μmの範囲内とす
ることが好ましい。厚みHが10nm未満では柱状体の
成長が不完全であり、1μmを越えると柱状体4の表面
がつながってしまうことにより、その後の隔離膜5、充
填層6の生成が困難になる。
In the magnetic resistor 10 shown in FIG. 1, M
The effective thickness H of the R layer 3 is preferably within the range of 10 nm to 1 μm. When the thickness H is less than 10 nm, the growth of the columnar body is incomplete, and when it exceeds 1 μm, the surfaces of the columnar body 4 are connected to each other, which makes it difficult to subsequently form the isolation film 5 and the filling layer 6.

【0024】また、MR層3中で基板1に垂直に形成さ
れた柱状体4の外径a、および充填層6の厚みcは、そ
れぞれ1nm〜10nmであることが好ましい。厚みa
および/または厚みcが1nm未満では柱状体4と充填
層6とに磁気的結合が生じ、10nmを越えると面内電
流が柱状体4/隔離膜5/充填層6の界面を通過する確
率が減少し好ましくない。この観点から、柱状体4およ
び充填層6の厚みaおよび厚みcは、それぞれ2nm〜
5nmとすることが特に好適である。
The outer diameter a of the columnar body 4 formed perpendicularly to the substrate 1 in the MR layer 3 and the thickness c of the filling layer 6 are preferably 1 nm to 10 nm, respectively. Thickness a
And / or if the thickness c is less than 1 nm, magnetic coupling occurs between the columnar body 4 and the filling layer 6, and if it exceeds 10 nm, the in-plane current is likely to pass through the interface of the columnar body 4 / isolation film 5 / filling layer 6. It is not preferable because it decreases. From this viewpoint, the thickness a and the thickness c of the columnar body 4 and the filling layer 6 are each 2 nm to
It is particularly preferable that the thickness is 5 nm.

【0025】柱状体4の周囲に形成された隔離膜5の厚
みbは、2nm〜10nmとすることが好ましい。厚み
bが2nm未満では軟磁気特性が劣化し、10nmを越
えると、面内電流が柱状体4/隔離膜5/充填層6の界
面を通過する確率が減少し好ましくない。この観点か
ら、隔離膜5の厚みbは、3nm〜5nmとすることが
特に好適である。
The thickness b of the isolation film 5 formed around the columnar body 4 is preferably 2 nm to 10 nm. If the thickness b is less than 2 nm, the soft magnetic properties deteriorate, and if it exceeds 10 nm, the probability that the in-plane current passes through the interface of the columnar body 4, the isolation film 5, and the filling layer 6 decreases, which is not preferable. From this viewpoint, the thickness b of the isolation film 5 is particularly preferably 3 nm to 5 nm.

【0026】上記の構成を有する本発明の磁気抵抗体1
0は、磁化方向に対する電流方向の角度が90°となる
広義のCPP型であり、しかも硬磁性層と軟磁性層との
磁化方向を反平行とすることができるので、きわめて高
いMR効果が発生し、外部磁界の微小な変動に対しても
感度のよい磁気抵抗体が得られるばかりでなく、前記M
R層3の長さを電気抵抗が所望の値になるまで長くでき
るので、超電導回路などを用いずに常温で、MR効果が
検出できる小型の磁気抵抗効果素子用の磁気抵抗体が得
られる。
The magnetoresistive element 1 of the present invention having the above structure.
0 is a CPP type in a broad sense in which the angle of the current direction with respect to the magnetization direction is 90 °, and since the magnetization directions of the hard magnetic layer and the soft magnetic layer can be made antiparallel, an extremely high MR effect occurs. However, not only is it possible to obtain a magnetoresistive body that is sensitive to minute changes in the external magnetic field, but
Since the length of the R layer 3 can be increased until the electric resistance reaches a desired value, it is possible to obtain a small magnetoresistive element for a magnetoresistive element capable of detecting the MR effect at room temperature without using a superconducting circuit or the like.

【0027】[0027]

【発明の効果】本発明の磁気抵抗体は、それぞれ保磁力
が異なる2種類の磁性材料の一方からなる多数の柱状体
が基板から垂直に突起し、これらの各柱状体の周囲に、
非磁性導電材料からなる隔離膜が形成され、この隔離膜
が形成された柱状体どうしの間隙部に他方の磁性材料の
層が形成されてなるものであるので、磁化方向に垂直な
電流に対して高いMR効果が得られ、外部磁界変動に対
して高感度でしかも適度な電気抵抗を有する磁気抵抗効
果素子が得られる。
In the magnetoresistive body of the present invention, a large number of columnar bodies made of one of two kinds of magnetic materials having different coercive forces are vertically projected from the substrate, and the periphery of each of these columnar bodies is
An isolation film made of a non-magnetic conductive material is formed, and a layer of the other magnetic material is formed in the gap between the columnar bodies on which the isolation film is formed. And a high MR effect can be obtained, and a magnetoresistive effect element having high sensitivity to an external magnetic field fluctuation and having an appropriate electric resistance can be obtained.

【0028】本発明の磁気抵抗体の製造方法は、基板上
に上記磁性材料のいずれか一方からなる多数の柱状体
を、好ましくは高アルゴンスパッタ法によって基板に対
して垂直に成長させ、これらの柱状体の周囲に、非磁性
導電材料からなる隔離膜を形成し、次いで柱状体どうし
の間隙部に他方の磁性材料の層を形成するものであるの
で、従来から用いられている微細加工技術の組合せによ
って、工業的に容易に、磁気抵抗体を生産することがで
きる。
In the method for manufacturing a magnetoresistive element of the present invention, a large number of columnar bodies made of any one of the above magnetic materials are grown on a substrate, preferably by a high argon sputtering method, and grown vertically to the substrate. Since the isolation film made of a non-magnetic conductive material is formed around the columnar body, and then the layer of the other magnetic material is formed in the gap between the columnar bodies, the conventional microfabrication technology is used. The combination makes it possible to industrially easily produce the magnetoresistive body.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の磁気抵抗体の一実施形態を示す断面
図。
FIG. 1 is a sectional view showing an embodiment of a magnetoresistive body of the present invention.

【図2】 上記の磁気抵抗体を製造する一過程を示す断
面図。
FIG. 2 is a sectional view showing a process of manufacturing the magnetoresistive body.

【図3】 上記の磁気抵抗体を製造する他の一過程を示
す断面図。
FIG. 3 is a cross-sectional view showing another process of manufacturing the magnetoresistive body.

【図4】 上記の磁気抵抗体を製造する更に他の一過程
を示す断面図。
FIG. 4 is a sectional view showing still another process of manufacturing the magnetoresistive body.

【図5】 上記の磁気抵抗体を製造する更に他の一過程
を示す断面図。
FIG. 5 is a sectional view showing still another process of manufacturing the magnetoresistive body.

【図6】 上記の磁気抵抗体を製造する更に他の一過程
を示す断面図。
FIG. 6 is a sectional view showing still another process of manufacturing the magnetoresistive body.

【図7】 従来提案されている磁気抵抗体の一例を示す
断面図。
FIG. 7 is a cross-sectional view showing an example of a conventionally proposed magnetoresistive body.

【符号の説明】[Explanation of symbols]

1……基板 3……MR層 4……柱状体 5……隔離膜 6……充填層 10……磁気抵抗体 1 ... Substrate 3 ... MR layer 4 ... Columnar body 5 ... Isolation film 6 ... Filling layer 10 ... Magnetoresistive body

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 43/12 G01R 33/06 R ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location H01L 43/12 G01R 33/06 R

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 それぞれ保磁力が異なる2種類の磁性材
料の一方からなる多数の柱状体が基板面に垂直に突起
し、各柱状体の周囲に、非磁性導電材料からなる隔離膜
が形成され、この隔離膜が形成された柱状体相互の間隙
部に他方の磁性材料からなる充填層が形成されたことを
特徴とする磁気抵抗体。
1. A large number of columnar bodies made of one of two kinds of magnetic materials each having different coercive force are projected perpendicularly to the substrate surface, and an isolation film made of a nonmagnetic conductive material is formed around each columnar body. A magnetoresistive element characterized in that a filling layer made of the other magnetic material is formed in a gap between the columnar bodies in which the isolation film is formed.
【請求項2】 保磁力が異なる磁性材料のうち、一方の
磁性材料がCoまたはCo合金からなる群から選ばれた
硬磁性材料であることを特徴とする請求項1に記載の磁
気抵抗体。
2. The magnetic resistor according to claim 1, wherein among magnetic materials having different coercive forces, one magnetic material is a hard magnetic material selected from the group consisting of Co and Co alloys.
【請求項3】 保磁力が異なる磁性材料のうち、一方の
磁性材料がNiFeまたはCoNiFeからなる軟磁性
材料であることを特徴とする請求項1に記載の磁気抵抗
体。
3. The magnetoresistive element according to claim 1, wherein one of the magnetic materials having different coercive forces is a soft magnetic material made of NiFe or CoNiFe.
【請求項4】 非磁性導電材料が、Cu、Au、Agお
よびこれらの少なくとも1種以上を含む合金からなる群
から選ばれたものである請求項1に記載の磁気抵抗体。
4. The magnetoresistive element according to claim 1, wherein the non-magnetic conductive material is selected from the group consisting of Cu, Au, Ag and an alloy containing at least one of these.
【請求項5】 それぞれ保磁力が異なる2種類の磁性材
料の一方からなる多数の柱状体が基板面に垂直に突起
し、各柱状体の周囲に、非磁性導電材料からなる隔離膜
が形成され、この隔離膜が形成された柱状体相互の間隙
部に他方の磁性材料からなる充填層が形成されてなる磁
気抵抗体を製造するに際して、 基板上に、上記磁性材料のいずれか一方からなる多数の
柱状体を基板面に垂直に成長させ、これらの柱状体の周
囲に、非磁性導電材料からなる隔離膜を形成し、次いで
隔離膜が形成された柱状体相互の間隙部に他方の磁性材
料からなる充填層を形成することを特徴とする磁気抵抗
体の製造方法。
5. A large number of pillars made of one of two kinds of magnetic materials having different coercive forces are projected perpendicularly to the substrate surface, and an isolation film made of a non-magnetic conductive material is formed around each pillar. When manufacturing a magnetoresistor in which a filling layer made of the other magnetic material is formed in the gap between the columnar bodies in which the isolation film is formed, a large number of one of the above magnetic materials is formed on the substrate. Columnar bodies are grown vertically to the substrate surface, an isolation film made of a non-magnetic conductive material is formed around these columnar bodies, and then the other magnetic material is formed in the gap between the columnar bodies where the isolation film is formed. A method of manufacturing a magnetoresistive element, which comprises forming a filling layer made of.
【請求項6】 基板上に上記磁性材料のいずれか一方か
らなる多数の柱状体を基板面に垂直に成長させる手段
が、高アルゴンスパッタ法であることを特徴とする請求
項5に記載の磁気抵抗体の製造方法。
6. The magnetic material according to claim 5, wherein the means for growing a large number of columnar bodies made of one of the magnetic materials on the substrate perpendicularly to the substrate surface is a high argon sputtering method. Resistor manufacturing method.
JP26184295A 1995-10-09 1995-10-09 Magnetoresistive body and manufacturing method thereof Expired - Fee Related JP3262695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26184295A JP3262695B2 (en) 1995-10-09 1995-10-09 Magnetoresistive body and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26184295A JP3262695B2 (en) 1995-10-09 1995-10-09 Magnetoresistive body and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH09107136A true JPH09107136A (en) 1997-04-22
JP3262695B2 JP3262695B2 (en) 2002-03-04

Family

ID=17367511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26184295A Expired - Fee Related JP3262695B2 (en) 1995-10-09 1995-10-09 Magnetoresistive body and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3262695B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0911892A2 (en) * 1997-10-23 1999-04-28 Nec Corporation Magneto-resistance effect device and method of manufacturing the same
US6893740B2 (en) 2002-04-24 2005-05-17 Alps Electric Co., Ltd. CPP type magnetoresistive sensor including pinned magnetic layer provided with hard magnetic region
JP2014027047A (en) * 2012-07-25 2014-02-06 Ricoh Co Ltd Magnetic structure and method for manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0911892A2 (en) * 1997-10-23 1999-04-28 Nec Corporation Magneto-resistance effect device and method of manufacturing the same
EP0911892A3 (en) * 1997-10-23 1999-10-13 Nec Corporation Magneto-resistance effect device and method of manufacturing the same
US6183890B1 (en) 1997-10-23 2001-02-06 Nec Corporation Magneto-resistance effect device and method of manufacturing the same
US6893740B2 (en) 2002-04-24 2005-05-17 Alps Electric Co., Ltd. CPP type magnetoresistive sensor including pinned magnetic layer provided with hard magnetic region
JP2014027047A (en) * 2012-07-25 2014-02-06 Ricoh Co Ltd Magnetic structure and method for manufacturing the same

Also Published As

Publication number Publication date
JP3262695B2 (en) 2002-03-04

Similar Documents

Publication Publication Date Title
CN1068689C (en) Multilayer magnetoresistive sensor
US5476680A (en) Method for manufacturing granular multilayer mangetoresistive sensor
US7639457B1 (en) Magnetic sensor with underlayers promoting high-coercivity, in-plane bias layers
US6775109B2 (en) Magnetoresistive sensor with magnetostatic coupling of magnetic regions
JPH11134620A (en) Ferromagnetic tunnel junction element sensor and its manufacture
GB2390168A (en) CPP magnetic sensor
JPH10303477A (en) Magnetoresistance effect element, magneto-resistance effect sensor using this, magnetoresistance detection system, and magnetic storage system
JP3231313B2 (en) Magnetic head
US8035931B2 (en) Tunneling magneto-resistive spin valve sensor with novel composite free layer
US7158354B2 (en) Dual-type magnetic detecting element in which free magnetic layer and pinned magnetic layer have suitably selected β values
US20030227724A1 (en) Synthetic free layer for CPP GMR
JP3276264B2 (en) Magnetoresistive multilayer film and method of manufacturing the same
JPH10198927A (en) Magnetoresistance effect film and its production
KR100321956B1 (en) Magnetoresistance effect film and method for making the same
US6683762B2 (en) CPP GMR device with inverse GMR material
US7602590B2 (en) Tunneling magneto-resistive spin valve sensor with novel composite free layer
JP3262695B2 (en) Magnetoresistive body and manufacturing method thereof
JP3575672B2 (en) Magnetoresistance effect film and magnetoresistance effect element
JP3243092B2 (en) Thin film magnetic head
JPH1131312A (en) Double spin valve sensor
JPH08321016A (en) Magnetoresistive film
US20050047025A1 (en) CPP read head for high density and shield noise suppression
JPH08111315A (en) Magnetoresistive effect multilayer film
JPH08111010A (en) Multilayered magneto-resistance effect film and magnetic head
Pan Thin films for high-density magnetic recording

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071221

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091221

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091221

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091221

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees