JPH09105859A - Scanning optical system - Google Patents

Scanning optical system

Info

Publication number
JPH09105859A
JPH09105859A JP7261650A JP26165095A JPH09105859A JP H09105859 A JPH09105859 A JP H09105859A JP 7261650 A JP7261650 A JP 7261650A JP 26165095 A JP26165095 A JP 26165095A JP H09105859 A JPH09105859 A JP H09105859A
Authority
JP
Japan
Prior art keywords
lens
axis
scanning direction
optical system
polygon mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7261650A
Other languages
Japanese (ja)
Inventor
Takatoshi Suzuki
隆敏 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON HIKYUMEN LENS KK
Original Assignee
NIPPON HIKYUMEN LENS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON HIKYUMEN LENS KK filed Critical NIPPON HIKYUMEN LENS KK
Priority to JP7261650A priority Critical patent/JPH09105859A/en
Publication of JPH09105859A publication Critical patent/JPH09105859A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Lenses (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an fθ lens which can easily be increased in resolution even when the lens consists of one element without providing a slit by specifying the constitution of an aspherical surface type used for designing. SOLUTION: In this scanning optical system which reflects beam light emitted by a light source by a rotating polygon mirror and forms an image on a photosensitive body by scanning, the fθ lens of single-element constitution which is arranged between the polygon mirror and an image formation plane and makes fθ corrections is made aspherical in the vertical scanning direction (X axis) and horizontal scanning direction (Y axis). Further, plural terms determining the respective aspherical surfaces are designed by the aspherical surface type defined with >=8 terms including odd and even terms. This aspherical surface expression is as shown by the equation, where the intersection of the fθ lens and optical axis is the origin, the optical-axis direction a Z axis, the main scanning direction an X axis, and the subscanning direction a Y axis. In the equation, Rx , Ry , K, An , and Bm are arbitrary coefficients. Consequently, optical performance needed for high resolution, specially, a very small spot diameter can easily be obtained even when the fθ lens consists of one element.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は走査光学系用のf
θレンズに関する。
FIELD OF THE INVENTION The present invention relates to f for scanning optical systems.
Regarding the θ lens.

【0002】[0002]

【従来の技術】レーザープリンタ、複写機、ファクシミ
リ等の印字ユニットに使用される走査光学系Aは、一般
に、図8に示すような構成を有する。
2. Description of the Related Art A scanning optical system A used in a printing unit such as a laser printer, a copying machine, a facsimile or the like generally has a configuration as shown in FIG.

【0003】図8において、1は半導体レーザ等を内蔵
したLDユニットで、細く絞ったビーム光2を出射す
る。3は第1光学系で、ビーム光2を副走査方向(感光
ドラムの回転方向)にのみ収束する。4はポリゴンミラ
ーで、回転することによってビーム光を主走査方向に振
り分ける。5はfθレンズからなる第2光学系で、主走
査方向(感光ドラムの軸方向)と副走査方向の収束を行
ない、感光ドラム等の感光体6上に、収束した結像によ
って静電潜像を形成する。
In FIG. 8, reference numeral 1 denotes an LD unit incorporating a semiconductor laser or the like, which emits a beam light 2 which is narrowed down. Reference numeral 3 denotes a first optical system, which focuses the beam light 2 only in the sub-scanning direction (rotational direction of the photosensitive drum). Reference numeral 4 denotes a polygon mirror which, when rotated, distributes the light beam in the main scanning direction. Reference numeral 5 denotes a second optical system including an fθ lens, which converges in the main scanning direction (axial direction of the photosensitive drum) and the sub-scanning direction, and forms an electrostatic latent image on the photosensitive body 6 such as the photosensitive drum by the converged image formation. To form.

【0004】ここで、上記第2光学系5は、上記収束作
用の他に、fθ補正(ポリゴンミラーの回転角速度と感
光ドラム上の結像の走査速度を一致させるための補正)
の機能を持つ必要がある。このため、通常は2枚乃至3
枚のレンズを組み合わせることが多い。
Here, in addition to the converging action, the second optical system 5 corrects fθ (correction for matching the rotational angular velocity of the polygon mirror with the scanning speed of the image formation on the photosensitive drum).
Must have the function of. Therefore, usually 2 to 3
Often combined with a single lens.

【0005】これに対し、部品点数を少なくし小型・軽
量化を図るため、1枚構成のfθレンズも考えられてい
る(特開平5−323223号公報)。このfθレンズ
は、
On the other hand, in order to reduce the number of parts and reduce the size and weight, a single-lens fθ lens is also considered (Japanese Patent Laid-Open No. 5-323223). This fθ lens is

【数2】 (Equation 2)

【0006】というトーリック面を表す式を用いて設計
されている。また、この公報の発明は、fθレンズの直
前に、主走査方向に延びるスリット状の絞りを設け、副
走査方向のF値がスポットの位置によらず一定になるよ
うにしている。
It is designed by using the equation expressing the toric surface. Further, in the invention of this publication, a slit-shaped diaphragm extending in the main scanning direction is provided immediately before the fθ lens so that the F value in the sub-scanning direction is constant regardless of the position of the spot.

【0007】この非球面レンズによる1枚構成のfθレ
ンズを用いた場合、その走査光学系の光学性能は、同公
報によれば感光体上のスポット径が120μm以上とな
っている。
According to the publication, the spot diameter on the photoconductor is 120 μm or more in the optical performance of the scanning optical system when an fθ lens having a single aspherical lens structure is used.

【0008】[0008]

【発明が解決しようとする課題】上記従来の設計式を用
いたfθレンズにおいて、非球面式は主走査方向のみに
対応する。副走査方向は単純形状のトーリック面とし、
上記スリット状の絞りとの組み合わせによりF値の一定
化を図っている。しかし、この従来構成では、高解像度
化に必要な性能、特にスポット径の微小化が困難な問題
があった。
In the fθ lens using the above-mentioned conventional design formula, the aspherical formula corresponds only to the main scanning direction. The sub-scanning direction is a simple toric surface,
The F value is made constant by combining with the slit-shaped diaphragm. However, this conventional configuration has a problem that it is difficult to reduce the performance required for higher resolution, particularly, to reduce the spot diameter.

【0009】そこで、この発明は、設計に用いる非球面
式に工夫をすることにより、スリットを設けることな
く、1枚構成であっても高解像度化が容易に可能となる
fθレンズを提供することを目的とする。
Therefore, the present invention provides an f.theta. Lens in which a high resolution can be easily achieved without a slit even by devising the aspherical surface type used in the design. With the goal.

【0010】[0010]

【課題を解決するための手段】本発明は、光源から発し
たビーム光を、回転するポリゴンミラーで反射して感光
体上に走査・結像させる走査光学系において、
SUMMARY OF THE INVENTION The present invention is a scanning optical system in which a light beam emitted from a light source is reflected by a rotating polygon mirror to scan and form an image on a photoconductor.

【0011】ポリゴンミラーと結像面の間に配置され
て、fθ補正を行う1枚構成のfθレンズを、主走査方
向(X軸)と副走査方向(Y軸)の夫々を非球面とし、
さらに各非球面を決定する複数項を奇数項と偶数項を含
む8以上の項から定義した非球面式によって設計したこ
とを特徴とする。
A single-element fθ lens arranged between the polygon mirror and the image forming surface for performing fθ correction has aspherical surfaces in the main scanning direction (X axis) and the sub scanning direction (Y axis).
Further, it is characterized in that a plurality of terms for determining each aspherical surface are designed by an aspherical surface formula defined by eight or more terms including an odd term and an even term.

【0012】この非球面式は、具体的には、次のように
なる。
This aspherical expression is specifically as follows.

【0013】fθレンズと光軸の交点を原点とし、光軸
方向をZ軸、主走査方向をX軸、副走査方向をY軸とし
たとき(図3に、X、Y、Zの各座標軸とレンズ形状の
関係を示す。)、
When the intersection of the fθ lens and the optical axis is the origin, the optical axis direction is the Z axis, the main scanning direction is the X axis, and the sub-scanning direction is the Y axis (in FIG. 3, the X, Y, and Z coordinate axes are shown). Shows the relationship between the lens shape and).

【数3】 但し、Rx、Ry、K、An、Bmは任意係数を表す。(Equation 3) However, R x, R y, K , A n, B m represents an arbitrary coefficient.

【0014】上記走査光学系において、図1に示すよう
に、光源から出たビーム光が、fθレンズの光軸に対し
主走査方向に角度をもってポリゴンミラーに入射する場
合は、ポリゴンミラーから感光体を見たfθレンズの走
査方向の左右の形状を、上記非球面式を個別に適用し異
なる係数を持つものとして別々に設計し、左右非対称と
することができる。
In the above scanning optical system, as shown in FIG. 1, when the light beam emitted from the light source is incident on the polygon mirror at an angle in the main scanning direction with respect to the optical axis of the fθ lens, the photosensitive member is passed through the polygon mirror. The left and right shapes of the fθ lens seen in the scanning direction can be made asymmetric by designing the aspherical expressions individually and having different coefficients.

【0015】[0015]

【作用】上記非球面式は、主走査方向と副走査方向を同
時に非球面にできること、及びレンズ形状にうねりを生
じさせ、その複合により所望形状を作り出す係数項の数
からもわかるように、設計の自由度が高く、一枚構成の
fθレンズであっても、高解像度化に必要な光学性能、
特にスポット径の微小化が容易に達成できる。
The above-mentioned aspherical expression is designed so that the main scanning direction and the sub-scanning direction can be made aspherical surfaces at the same time, and that waviness is generated in the lens shape, and the number of coefficient terms that produce a desired shape by the combination thereof is designed. With a high degree of freedom, even with a single-element fθ lens, the optical performance required for high resolution,
In particular, miniaturization of the spot diameter can be easily achieved.

【0016】また、ポリゴンミラーへのビーム光の入射
が、fθレンズの光軸と交差する方向から行われる場合
は、fθレンズを左右非対称とし別々に非球面式を立て
ることにより、ポリゴンミラーの反射位置が反射角度に
よって変化することによる結像点のずれの除去を適切に
行なうことができる。
When the beam light is incident on the polygon mirror from the direction intersecting the optical axis of the fθ lens, the fθ lens is left-right asymmetrical and aspherical expressions are separately set to reflect the polygon mirror. It is possible to appropriately remove the shift of the image formation point due to the change of the position depending on the reflection angle.

【0017】[0017]

【実施例】図1に、本発明の一実施例である走査光学系
の全体構成を示す。この実施例には、本発明の非球面式
を用いて設計したfθレンズが組み込まれている。
FIG. 1 shows the overall construction of a scanning optical system which is an embodiment of the present invention. In this embodiment, an fθ lens designed by using the aspherical expression of the present invention is incorporated.

【0018】図1において、7は光源を内蔵し細く絞っ
たビーム光を作り出すLDユニットである。8は第1光
学系で、ビーム光の収束を、主として副走査方向(感光
ドラムの回転方向)に対して行ない、これに比べると小
さな収束率で主走査方向にも行なう。9は光偏光器であ
るポリゴンミラー、10はfθレンズからなる第2光学
系、11は印字ドラム等の感光体を示す。図1を設計例
の諸値が適用される部分を明らかにする等のため書き換
えて図2に示す。
In FIG. 1, reference numeral 7 denotes an LD unit which incorporates a light source and produces a light beam that is narrowed down. Reference numeral 8 denotes a first optical system which converges the beam light mainly in the sub-scanning direction (rotational direction of the photosensitive drum), and also in the main scanning direction with a smaller convergence rate. Reference numeral 9 denotes a polygon mirror as an optical polarizer, 10 denotes a second optical system including an fθ lens, and 11 denotes a photoconductor such as a printing drum. FIG. 2 is rewritten to clarify the part to which various values of the design example are applied and to show FIG.

【0019】図2に示すように、LDユニット7は、半
導体レーザ12、レーザー光を平行光に近づける(完全
に平行光化する場合を含む)コリメータレンズ13、絞
り14から構成される。また、第1光学系8は、ビーム
光を主走査方向及び副走査方向(感光ドラムの回転方
向)に収束するトロイダルレンズから構成される。
As shown in FIG. 2, the LD unit 7 is composed of a semiconductor laser 12, a collimator lens 13 that brings the laser light close to parallel light (including a case where the light is completely parallel light), and a diaphragm 14. The first optical system 8 includes a toroidal lens that converges the light beam in the main scanning direction and the sub scanning direction (the rotation direction of the photosensitive drum).

【0020】ポリゴンミラー9は、反射面を多角形状に
形成したもので、回転することにより、入射したビーム
光を主走査方向(感光ドラムの軸方向)に振分けるよう
に偏向する。
The polygon mirror 9 has a reflecting surface formed in a polygonal shape, and when it is rotated, it deflects the incident beam light so as to distribute it to the main scanning direction (axial direction of the photosensitive drum).

【0021】第2光学系10は、前記本発明の非球面式
を用いて設計したfθレンズで、主走査方向及び副走
査方向の双方の収束を行なうと同時に、fθ補正を行っ
て、収束したビーム光を感光体11上に走査・結像させ
る。
The second optical system 10 is an f.theta. Lens designed by using the aspherical expression of the present invention. It converges in both the main scanning direction and the sub scanning direction and, at the same time, performs f.theta. Correction and convergence. The light beam is scanned and imaged on the photoconductor 11.

【0022】次に、上記構成の各部分の具体的設計例を
2つ挙げ、その光学的性能を、各々説明する。
Next, two specific design examples of each part of the above-mentioned structure will be given, and their optical performances will be described respectively.

【0023】[設計例1]トロイダルレンズからなる第
1光学系8と、fθレンズからなる第2光学系10は、
夫々1枚構成のものであり、光学系全体でfθ特性のf
は160mm、感光体6上の走査幅Lは±110mmで
ある。
[Design Example 1] The first optical system 8 formed of a toroidal lens and the second optical system 10 formed of an fθ lens are
Each of them is composed of one sheet, and the f of the fθ characteristic is f
Is 160 mm, and the scanning width L on the photoconductor 6 is ± 110 mm.

【0024】LDユニット7は、半導体レーザー12に
波長780nm(各光学系の屈折率は1.51863と
なる)のものを使用し、これをf=8mmのコリメータ
レンズ13を使用して収束した後、主走査方向が3.6
mmで副走査方向が2.2mmの楕円形状の絞り14を
用いて、トランケート比(LD波形)を主走査方向で
0.44、副走査方向で0.844としている。
The LD unit 7 uses a semiconductor laser 12 having a wavelength of 780 nm (refractive index of each optical system is 1.51863), which is converged by using a collimator lens 13 of f = 8 mm. , Main scanning direction is 3.6
The truncate ratio (LD waveform) is 0.44 in the main scanning direction and 0.844 in the sub scanning direction by using an elliptical diaphragm 14 having a size of mm and a sub scanning direction of 2.2 mm.

【0025】ポリゴンミラー9は、内接円の直径がφ3
4.6で、外周の反射面を6面体としたものである。
The polygon mirror 9 has an inscribed circle with a diameter of φ3.
At 4.6, the outer peripheral reflecting surface is a hexahedron.

【0026】第1光学系8であるトロイダルレンズは、
図2において、入射面R1と出射面R2を、トロイダル形
状としたもので、その形状は、次の曲率半径R、及び非
球面係数Anで定義される。
The toroidal lens which is the first optical system 8 is
In FIG. 2, the entrance surface R 1 and the exit surface R 2 have a toroidal shape, and the shape is defined by the following radius of curvature R and aspherical surface coefficient A n .

【0027】 R1(TR) X方向 R =−78.41536 Y方向 1/R=0.1578977522210E−01 R2(TR) X方向 R =−59.59976 Y方向 1/R=−0.1613764358233E−01 A4=0.6883591488656E−03 A6=−0.1995713227015E−03 A8=−0.1211908173700E−03 A10=0.1078233022719E−03 K=0R 1 (TR) X direction R = −78.41536 Y direction 1 / R = 0.15778977522210E-01 R 2 (TR) X direction R = −59.559976 Y direction 1 / R = −0.1613664358233E -01 A 4 = 0.6883591488656E-03 A 6 = -0.1995713227015E-03 A 8 = -0.1211908173700E-03 A 10 = 0.1078233022719E-03 K = 0

【0028】上記数値の内で、X方向とあるのは、図2
において、副走査方向を意味し、第2光学系10に対し
ては、同図内の表記通りとなるが、第1光学系8で見た
場合は、紙面と平行な光軸と直交する方向となる。
Of the above numerical values, the X direction is shown in FIG.
Means the sub-scanning direction, and is the same as the notation in the figure for the second optical system 10, but when viewed from the first optical system 8, the direction orthogonal to the optical axis parallel to the paper surface. Becomes

【0029】また、出射面R2のY方向の形状は、上記
数値を、次式に適用して得られるものである。
The shape of the exit surface R 2 in the Y direction is obtained by applying the above numerical values to the following equation.

【数4】 (Equation 4)

【0030】第2光学系10であるfθレンズは、ポリ
ゴンミラー9から感光体11に向かって左右の部分を、
本発明の前記非球面式によって別々に設計し(次の
[表1][表2]に、非球面式の各係数を示す)、左右
非対称としている。これは、LDユニット7が側方に配
置され、ポリゴンミラー9における反射点が移動するこ
とによる感光体11上の結像点の位置ずれを吸収補正す
るためである。
The fθ lens, which is the second optical system 10, has the right and left portions from the polygon mirror 9 toward the photosensitive member 11,
Designed separately according to the aspherical formula of the present invention (each coefficient of the aspherical formula is shown in the following [Table 1] and [Table 2]), it is left-right asymmetric. This is because the LD unit 7 is arranged laterally and the positional deviation of the image forming point on the photoconductor 11 due to the movement of the reflection point on the polygon mirror 9 is absorbed and corrected.

【0031】次の表で、R1は入射側、R2は出射側を示
し、ポリゴンミラー9から感光体11を見て、マイナス
側は左側、プラス側は右側を意味する(X,Y,Z軸と
fθレンズの各面との対応関係は図2,図3を参照)。
In the following table, R 1 indicates the entrance side and R 2 indicates the exit side. When the photoreceptor 11 is viewed from the polygon mirror 9, the minus side means the left side and the plus side means the right side (X, Y, (See FIGS. 2 and 3 for the correspondence relationship between the Z axis and each surface of the fθ lens).

【表1】 [Table 1]

【表2】 [Table 2]

【0032】上記設計例1の走査光学系で、得られる光
学性能は、次に示すようになる。
The optical performance obtained by the scanning optical system of the design example 1 is as follows.

【0033】感光体上に結像するスポット径は、図4に
示すように、主走査方向で60μmと一定値を保ち、副
走査方向で60〜70μmとなり、そのバラツキは±5
μm以下となる。
As shown in FIG. 4, the spot diameter of the image formed on the photosensitive member remains constant at 60 μm in the main scanning direction and becomes 60 to 70 μm in the sub scanning direction, and the variation thereof is ± 5.
μm or less.

【0034】ここで、スポット径は最大エネルギーの部
分を100%としたとき、1/e2≒13.5%までエネ
ルギー照射量が低下するまでの範囲を取ったものであ
る。
Here, the spot diameter is a range in which the amount of energy irradiation is reduced to 1 / e 2 ≈13.5% when the maximum energy portion is 100%.

【0035】このように、スポット径が先に説明した先
行技術の120μmよりも、かなり小さくできることに
より、例えば600dpiという高解像度の印字が可能
になる。
As described above, since the spot diameter can be made considerably smaller than 120 μm of the prior art described above, high resolution printing of, for example, 600 dpi becomes possible.

【0036】また、走査幅L=−110.04mm〜+
110.03mmにおけるリニアリティは、図5に示す
ように、0.129mm以内となり、一枚構成のfθレ
ンズで高い精度が得られることがわかる。
Further, the scanning width L = −110.04 mm to +
As shown in FIG. 5, the linearity at 110.03 mm is within 0.129 mm, and it can be seen that high accuracy can be obtained with the single-lens fθ lens.

【0037】[設計例2]これは、設計例1において、
ポリゴンミラー9を、内接円の直径がφ12mmの4面
体のものに変更し、第2光学系10の配置を、これに対
応させたものである。他の要素は設計例1と共通する。
[Design Example 2] This is the same as the design example 1 except that
The polygon mirror 9 is changed to a tetrahedron whose inscribed circle has a diameter of φ12 mm, and the arrangement of the second optical system 10 is adapted to this. Other elements are common to the first design example.

【0038】設計例2の走査光学系の光学性能は、次に
示すようになる。感光体上に結像するスポット径は、図
6に示すように、主走査方向で60〜65μm、副走査
方向で60〜70μmとなり、そのバラツキは±5μm
以下となる。また、走査幅L=−108.31mm〜+
107.77mmにおけるリニアリティは、図7に示す
ように、0.31mm以内となっている。
The optical performance of the scanning optical system of design example 2 is as follows. As shown in FIG. 6, the spot diameter of the image formed on the photoconductor is 60 to 65 μm in the main scanning direction and 60 to 70 μm in the sub scanning direction, and the variation is ± 5 μm.
It is as follows. Further, the scanning width L = −108.31 mm to +
The linearity at 107.77 mm is within 0.31 mm as shown in FIG.

【0039】したがって、設計例2も設計例1と同様
に、スポット径が、先に説明した先行技術の120μm
よりも、小さくできることから、例えば600dpiと
いった高解像度の印字が可能になる。
Therefore, similarly to the design example 1, the design example 2 has a spot diameter of 120 μm of the prior art described above.
Since it can be made smaller than the above, high-resolution printing of, for example, 600 dpi is possible.

【0040】[0040]

【発明の効果】本発明は、走査光学系に、設計の自由度
が高い非球面式を用いて設計したfθレンズを組込むの
で、一枚構成のfθレンズで、高解像度化に必要なスポ
ット径の微小化及びリニアリティの向上が可能になる。
According to the present invention, since the fθ lens designed by using the aspherical expression having a high degree of design freedom is incorporated in the scanning optical system, the spot diameter required for high resolution can be obtained with a single fθ lens. And the linearity can be improved.

【0041】また、左右非対称の形状とすることによ
り、側方に配置した光源からポリゴンミラーにビーム光
を照射したときの反射点の移動による結像位置のずれを
なくすことができる。
Further, by making the shape asymmetrical to the left and right, it is possible to eliminate the displacement of the image forming position due to the movement of the reflection point when the beam light is irradiated from the light source arranged laterally to the polygon mirror.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の走査光学系の構成例を示す図FIG. 1 is a diagram showing a configuration example of a scanning optical system of the present invention.

【図2】各部の寸法等を明らかにするために図1を書き
直した図
FIG. 2 is a diagram in which FIG. 1 is rewritten to clarify the dimensions and the like of each part.

【図3】本発明で用いる非球面式の座標軸とレンズ形状
の関係を示す図
FIG. 3 is a diagram showing a relationship between an aspherical coordinate axis used in the present invention and a lens shape.

【図4】本発明の設計例1で得られたスポット径を、主
走査方向と副走査方向について示した図
FIG. 4 is a diagram showing a spot diameter obtained in design example 1 of the present invention in a main scanning direction and a sub scanning direction.

【図5】本発明の設計例1で実測されたリニアリティ特
性図
FIG. 5 is a linearity characteristic diagram actually measured in design example 1 of the present invention.

【図6】本発明の設計例2で得られたスポット径を、主
走査方向と副走査方向について示した図
FIG. 6 is a diagram showing a spot diameter obtained in a design example 2 of the present invention in a main scanning direction and a sub scanning direction.

【図7】本発明の設計例2で実測されたリニアリティ特
性図
FIG. 7 is a linearity characteristic diagram actually measured in design example 2 of the present invention.

【図8】走査光学系の一般的構成を示す図FIG. 8 is a diagram showing a general configuration of a scanning optical system.

【符号の説明】[Explanation of symbols]

7 LDユニット 8 第1光学系 9 ポリゴンミラー 10 第2光学系(fθレンズ) 11 感光体 7 LD Unit 8 First Optical System 9 Polygon Mirror 10 Second Optical System (fθ Lens) 11 Photosensitive Member

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H04N 1/113 H04N 1/04 104A ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location H04N 1/113 H04N 1/04 104A

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 光源から発したビーム光を、回転するポ
リゴンミラーで反射して感光体上に走査・結像させる走
査光学系において、 ポリゴンミラーと感光体の間に配置されて、ビームの収
束とfθ補正を行うfθレンズを、 fθレンズと光軸の交点を原点とし、光軸方向をZ軸、
主走査方向をX軸、副走査方向をY軸としたとき、 【数1】 但し、Rx、Ry、K、An、Bmは任意係数を表す。で表
される非球面式により1枚構成で設計したことを特徴と
する走査光学系。
1. A scanning optical system in which a light beam emitted from a light source is reflected by a rotating polygon mirror to scan / image on a photoconductor, and the beam is converged by being arranged between the polygon mirror and the photoconductor. And the fθ lens that performs fθ correction, with the intersection of the fθ lens and the optical axis as the origin, the optical axis direction as the Z axis,
When the main scanning direction is the X axis and the sub scanning direction is the Y axis, However, R x, R y, K , A n, B m represents an arbitrary coefficient. A scanning optical system characterized in that it is designed with a single element according to the aspherical expression.
【請求項2】光源から出たビーム光が、fθレンズの光
軸に対し主走査方向に角度をもってポリゴンミラーに入
射する場合において、 ポリゴンミラーから感光体を見たfθレンズの走査方向
の左右の形状を、上記非球面式を個別に適用し異なる係
数を持つものとして別々に設計し、左右非対称としたこ
とを特徴とする請求項1記載の走査光学系。
2. When the light beam emitted from the light source is incident on the polygon mirror at an angle in the main scanning direction with respect to the optical axis of the fθ lens, the left and right sides of the fθ lens in the scanning direction viewed from the polygon mirror are seen. 2. The scanning optical system according to claim 1, wherein the shapes are separately designed by applying the aspherical expressions individually and having different coefficients to make them bilaterally asymmetric.
JP7261650A 1995-10-09 1995-10-09 Scanning optical system Pending JPH09105859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7261650A JPH09105859A (en) 1995-10-09 1995-10-09 Scanning optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7261650A JPH09105859A (en) 1995-10-09 1995-10-09 Scanning optical system

Publications (1)

Publication Number Publication Date
JPH09105859A true JPH09105859A (en) 1997-04-22

Family

ID=17364860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7261650A Pending JPH09105859A (en) 1995-10-09 1995-10-09 Scanning optical system

Country Status (1)

Country Link
JP (1) JPH09105859A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004086115A1 (en) * 1997-07-30 2004-10-07 Takatoshi Suzuki Scanning optical system
JP2010271722A (en) * 1995-02-28 2010-12-02 Canon Inc Multi-beam scanning optical device and laser beam printer having the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010271722A (en) * 1995-02-28 2010-12-02 Canon Inc Multi-beam scanning optical device and laser beam printer having the same
WO2004086115A1 (en) * 1997-07-30 2004-10-07 Takatoshi Suzuki Scanning optical system

Similar Documents

Publication Publication Date Title
JP3453737B2 (en) Scanning imaging optical system / optical scanning device and image forming apparatus
JP3869704B2 (en) Scanning optical system
JP2003066356A (en) Scanning optical device and image forming device using the same
JP4227334B2 (en) Scanning optical system
JP2001108925A (en) Scanning optical system, optical scanner and image forming device
JP4027761B2 (en) Scanning optical system
JP4439141B2 (en) Scanning optical system
JP3620767B2 (en) Reflective scanning optical system
JP2007140418A (en) Light scanning device and scanning optical system
JPH08248340A (en) Laser beam scanner
JP2000267031A (en) Optical scanner
JP4293780B2 (en) Scanning optical system
JPH1152265A (en) Scanning optical system
JP2002333590A (en) Scanning optical system
JP4171213B2 (en) Scanning optical system
JP2004070190A (en) Tandem type laser scanning device
JPH07174998A (en) Scanning lens and optical scanner
JPH07111509B2 (en) Optical scanning device
JPH09105859A (en) Scanning optical system
KR100445128B1 (en) laser scanning apparatus
JP3784591B2 (en) Scanning imaging optical system, optical scanning device, and image forming apparatus
JP2007086508A (en) Optical scanner and image forming apparatus
JP4451519B2 (en) Scanning optical system, optical scanning device, and image forming apparatus
JP4201315B2 (en) Scanning optical system, optical scanning device, and image forming apparatus
JPH10282409A (en) Scanning optical system

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050325