JPH09104333A - Braking device for electric vehicle - Google Patents

Braking device for electric vehicle

Info

Publication number
JPH09104333A
JPH09104333A JP7262694A JP26269495A JPH09104333A JP H09104333 A JPH09104333 A JP H09104333A JP 7262694 A JP7262694 A JP 7262694A JP 26269495 A JP26269495 A JP 26269495A JP H09104333 A JPH09104333 A JP H09104333A
Authority
JP
Japan
Prior art keywords
braking force
regenerative
motor
wheel
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7262694A
Other languages
Japanese (ja)
Inventor
Masaaki Yamaoka
正明 山岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP7262694A priority Critical patent/JPH09104333A/en
Publication of JPH09104333A publication Critical patent/JPH09104333A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/60Regenerative braking
    • B60T2270/608Electronic brake distribution (EBV/EBD) features related thereto

Abstract

PROBLEM TO BE SOLVED: To generate a high regenerating braking force without a valve to cut off an oil pressure according to regeneration and as drive wheel lock is prevented from occurring. SOLUTION: In a case of a rear wheel-drive automobile, a regenerative braking force is controlled in such a manner that a braking force line in a regeneration and oil pressure total does not run across a rear lock prohibition region on a braking force distribution diagram between front and rear wheels. In a case of a front wheel-drive automobile, a regenerative braking force is controlled in such a manner that a braking force line in a regeneration and oil pressure total is prevented from extending across a front lock prohibition region on a braking force distribution diagram between front and rear wheels.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、流体圧制動(例え
ば油圧制動)及び回生制動を併用する電気車両に関し、
特にこの電気車両にて使用される制動装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric vehicle that uses both fluid pressure braking (for example, hydraulic braking) and regenerative braking,
In particular, it relates to a braking device used in this electric vehicle.

【0002】[0002]

【従来の技術】電気自動車等、モータにて推進される電
気車両においては、油圧制動等非圧縮性流体を利用した
流体圧制動と共に、車両走行用モータにて制動エネルギ
を回収する回生制動を実行可能である。回生制動は、制
動エネルギをモータ駆動用の電池等に回収でき従って車
両のエネルギ効率の改善に資する点で流体圧制動に比べ
優れている。特開平5−161211号公報等に記載さ
れている従来技術では、回生制動を流体圧制動よりも優
先的に使用するため、バルブを用いて油圧伝達を遮断し
これに代え回生制動力を作用させる、といった手法が用
いられている。
2. Description of the Related Art In an electric vehicle such as an electric vehicle propelled by a motor, fluid pressure braking utilizing an incompressible fluid such as hydraulic braking, and regenerative braking for recovering braking energy by a vehicle running motor are performed. It is possible. Regenerative braking is superior to fluid pressure braking in that braking energy can be collected in a battery for driving a motor, etc., and thus contributes to improvement of vehicle energy efficiency. In the prior art disclosed in Japanese Patent Application Laid-Open No. 5-161211, etc., regenerative braking is preferentially used over fluid pressure braking. Therefore, a valve is used to interrupt hydraulic pressure transmission and instead apply regenerative braking force. , Is used.

【0003】[0003]

【発明が解決しようとする課題】バルブを用いる手法に
は、バルブやこれに付随するセンサ等の部材が必要であ
りそのためのコストが発生するという問題がある。これ
を避けるためには、例えば図6に示されるようにブレー
キペダルの踏始めと同時に所定の回生制動力を作用さ
せ、前輪側の油圧(図中“フロント油圧”)も後輪側の
油圧(図中“リア油圧”)も遮断しない、といった回生
制御を行えばよい(特開平5−161213号公報も参
照のこと)。しかし、図6の方法には、車両安定性を確
保する必要上、回生制動力をさほど大きくすることがで
きず従って車両のエネルギ効率をさほど改善できないと
いう問題がある。
The method using a valve has a problem that a valve and a member such as a sensor attached to the valve are required and a cost for the method is generated. In order to avoid this, for example, as shown in FIG. 6, a predetermined regenerative braking force is applied at the same time when the brake pedal is depressed, and the hydraulic pressure on the front wheel side (“front hydraulic pressure” in the figure) and the hydraulic pressure on the rear wheel side ( Regeneration control may be performed such that the "rear hydraulic pressure" in the figure is not shut off (see also Japanese Patent Laid-Open No. 5-161213). However, the method of FIG. 6 has a problem that the regenerative braking force cannot be increased so much and the energy efficiency of the vehicle cannot be improved so much in order to ensure vehicle stability.

【0004】例えば、図6の方法を例えば後輪駆動車に
適用したとする。この場合、図7に示されるように、回
生・油圧合計の制動力線が前後輪間制動力配分線図上リ
ア側(より一般には駆動輪側)に偏る。この合計制動力
線がリア側に大きく偏るとリアロックが発生しやすくな
り、車両安定性が損なわれる。従って、図6の方法を実
施する際には、リアロックが発生しないよう、具体的に
は法令で定められているリアロック禁止領域を合計制動
力線がよぎらないよう、図6上で油圧制動力に上乗せす
る回生制動力を設定しなければならない。図6の方法を
前輪駆動車に適用した場合にも、同様にフロントロック
禁止領域を考慮した設定が必要である。このような設定
の下では、図7中の破線からみて左下にある通常使用
域、すなわち比較的低い減速度で足りる領域にて油圧制
動力に対する回生制動力の割合が低くなってしまい、十
分にエネルギを回収できない。
For example, assume that the method of FIG. 6 is applied to a rear-wheel drive vehicle, for example. In this case, as shown in FIG. 7, the braking force line of the total regenerative / hydraulic pressure is biased to the rear side (more generally to the driving wheel side) in the front-rear wheel braking force distribution diagram. If this total braking force line is largely biased toward the rear side, rear lock is likely to occur and vehicle stability is impaired. Therefore, when the method of FIG. 6 is carried out, the hydraulic pressure in FIG. 6 should be adjusted so that the rear lock does not occur, specifically, the total braking force line does not cross the rear lock prohibited area defined by law. The regenerative braking force to be added to the braking force must be set. Even when the method of FIG. 6 is applied to a front-wheel drive vehicle, it is necessary to similarly set the front lock prohibited area. Under such a setting, the ratio of the regenerative braking force to the hydraulic braking force becomes low in the normal use region at the lower left of the broken line in FIG. 7, that is, in the region where a relatively low deceleration is sufficient, which is sufficient. Cannot recover energy.

【0005】本発明は、このような問題点を解決するこ
とを課題としてなされたものであり、回生制動力の制御
方法の改善により、回生に応じて油圧等の流体圧を遮断
するバルブを使用することなしにかつ駆動輪をロックさ
せることなしに十分なエネルギ回収を実行できる電気車
両を実現することを目的とする。
The present invention has been made to solve the above problems, and a valve for shutting off fluid pressure such as hydraulic pressure according to regeneration is used by improving a control method of regenerative braking force. It is an object of the present invention to realize an electric vehicle that can perform sufficient energy recovery without doing so and without locking the drive wheels.

【0006】[0006]

【課題を解決するための手段】このような目的を達成す
るために、本発明の第1の構成に係る電気車両の制動装
置は、要求制動力に応じた流体圧制動力を少なくとも駆
動輪に作用させる手段と、車両走行用モータにて駆動輪
に回生制動力を作用させる手段と、前後輪間制動力配分
線図上、流体圧制動力と回生制動力の合計を示す合計制
動力線が駆動輪ロック限界又はその近傍に位置するよ
う、回生制動力を制御する手段と、を備えることを特徴
とする。このように、本構成においては、駆動輪がロッ
クしない範囲内で最大限大きくなるよう回生制動力が制
御される。従って、制動エネルギを十分に回収できる。
また、流体圧制動力を遮断する必要がなく、従って回生
に応じて流体圧を遮断するバルブやこれに付随する部材
を廃止できる。
In order to achieve such an object, the braking device for an electric vehicle according to the first aspect of the present invention applies a fluid pressure braking force corresponding to a required braking force to at least the driving wheels. And a means for applying a regenerative braking force to the drive wheels by the vehicle drive motor, and a total braking force line indicating the sum of the fluid pressure braking force and the regenerative braking force on the front and rear wheel braking force distribution diagram. Means for controlling the regenerative braking force so as to be located at or near the lock limit. In this way, in this configuration, the regenerative braking force is controlled so as to be maximized within the range where the drive wheels are not locked. Therefore, the braking energy can be sufficiently recovered.
Further, it is not necessary to cut off the fluid pressure braking force, and therefore, the valve for cutting off the fluid pressure according to regeneration and the member associated therewith can be eliminated.

【0007】[0007]

【発明の実施の形態】以下、本発明の好適な実施形態に
関し図面に基づき説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings.

【0008】図1には、本発明の一実施形態に係る電気
自動車の構成が示されている。図中、太線は電力配線
を、破線は電気信号配線を、実線は油圧配管を、それぞ
れ示している。この図の電気自動車は後輪駆動車であ
り、また、三相交流モータを車両走行用のモータ11と
して使用している。モータ11には、インバータ12を
介し電池13から駆動電力が供給されている。インバー
タ12は、モータECU(電子制御ユニット)14の制
御の下に、電池13の出力を直流から三相交流に変換す
る。モータECU14は、力行時にはアクセル開度に基
づき力行トルク指令値を決定し、また制動時には回生E
CU16から回生トルク指令値Tregを入力する。モ
ータECU14は、電池ECU15により検出される電
池13の充電状態(SOC)等を参照しながらかつこれ
らのトルク指令値に基づきインバータ12による電力変
換動作を制御することにより、トルク指令値に応じたト
ルクをモータ11から出力させる。モータECU14
は、また、SOC等の情報を回生ECU16に供給す
る。
FIG. 1 shows the configuration of an electric vehicle according to an embodiment of the present invention. In the figure, thick lines indicate electric power wiring, broken lines indicate electric signal wiring, and solid lines indicate hydraulic piping. The electric vehicle shown in this figure is a rear-wheel drive vehicle, and uses a three-phase AC motor as the vehicle driving motor 11. Driving power is supplied to the motor 11 from the battery 13 via the inverter 12. The inverter 12 converts the output of the battery 13 from DC to three-phase AC under the control of the motor ECU (electronic control unit) 14. The motor ECU 14 determines the power running torque command value based on the accelerator opening during power running, and regenerates E during braking.
The regenerative torque command value Treg is input from the CU 16. The motor ECU 14 refers to the state of charge (SOC) of the battery 13 detected by the battery ECU 15 and controls the power conversion operation by the inverter 12 based on these torque command values, so that the torque according to the torque command value is controlled. Is output from the motor 11. Motor ECU 14
Also supplies information such as SOC to the regenerative ECU 16.

【0009】車両操縦者がブレーキペダル1を踏み込む
と、これに応じマスタシリンダ2にて油圧Pmcが発生
し始める。回生ECU16は、油圧Pmcが発生し始め
たことが油圧センサ3にて検出されると、以後、後述の
手順を実行することにより回生トルク指令値Tregを
決定し、これをモータECU14に出力する。また、マ
スタシリンダ2は、回生に応じて油圧を遮断するための
バルブを介することなしに、フロント及びリアホイール
シリンダ6及び4とつながっている。従って、ABS
(アンチロックブレーキシステム)が動作している場合
を除けば、油圧Pmcが発生するとこの油圧Pmcは遮
断されることなく油圧制動力としてフロント及びリアブ
レーキディスク7及び5に作用する。なお、図中符号8
で示されているのは、油圧制動力に理想配分乃至それに
近い前後輪配分を与えるためマスタシリンダ1のリア側
油圧室とリアホイールシリンダ4との間に配設されたP
(プロポーショニング)バルブ8である。
When the vehicle operator depresses the brake pedal 1, hydraulic pressure Pmc starts to be generated in the master cylinder 2 in response to this. When the hydraulic pressure sensor 3 detects that the hydraulic pressure Pmc has begun to be generated, the regenerative ECU 16 thereafter determines the regenerative torque command value Treg by executing the procedure described below, and outputs this to the motor ECU 14. Further, the master cylinder 2 is connected to the front and rear wheel cylinders 6 and 4 without passing through a valve for shutting off hydraulic pressure according to regeneration. Therefore, ABS
Except when the (antilock brake system) is operating, when the hydraulic pressure Pmc is generated, the hydraulic pressure Pmc acts on the front and rear brake discs 7 and 5 as a hydraulic braking force without being interrupted. In the figure, reference numeral 8
P is provided between the rear hydraulic chamber of the master cylinder 1 and the rear wheel cylinder 4 in order to give ideal distribution to the hydraulic braking force or front and rear wheel distribution close thereto.
(Proportioning) Valve 8.

【0010】図2には、回生ECU16の動作の流れの
一例が示されている。この図に示されるように、回生E
CU16は、所定の初期化処理を実行した後(100)
ステップ101以降の動作を開始する。その際、回生E
CU16はまずブレーキペダル1が踏まれているか否か
を、油圧Pmcが所定の微小値を上回ったか否かの判定
により、あるいは図示しないがブレーキペダル1に付設
されているブレーキスイッチの状態に基づき、検出する
(101)。ブレーキペダル1が踏まれている場合に
は、回生ECU16は、前輪又は後輪がスリップしてい
るか否かを判定する(102)。この判定は、各車輪の
速度(車輪速)及び車両の速度(車速)を検出し、両者
の差をしきい値判定することにより、実行することがで
きる。
FIG. 2 shows an example of the operation flow of the regenerative ECU 16. As shown in this figure, regenerative E
The CU 16 executes a predetermined initialization process (100).
The operation after step 101 is started. At that time, reincarnation E
The CU 16 first determines whether or not the brake pedal 1 is depressed, by determining whether or not the hydraulic pressure Pmc exceeds a predetermined minute value, or based on the state of a brake switch (not shown) attached to the brake pedal 1, It is detected (101). When the brake pedal 1 is stepped on, the regenerative ECU 16 determines whether the front wheels or the rear wheels are slipping (102). This determination can be performed by detecting the speed of each wheel (wheel speed) and the speed of the vehicle (vehicle speed), and determining the difference between the two by a threshold value.

【0011】いずれの車輪もスリップしていないと見な
せる場合には、回生ECU16は、電池13のSOCに
基づき充電上限パワー、すなわちモータ11から電池1
3に回生できる最大の電力Pbattを求める(10
3)。一般に、モータ11の出力はその回転数とトルク
の積で表すことができるから、充電上限パワーPbat
tが定まると図3中の曲線“電池制約上限”が定まる。
また、図3中の曲線“モータ定格”はモータ11の回生
時の最大出力トルク(最大回生トルク)のモータ回転数
wmに対する特性を示している。この特性は、モータ1
1の定格電力Pmotにより制限されるため最大回生ト
ルクがモータ回転数wmに反比例する高回転領域と、最
大回生トルクがほぼ一定の低回転領域とを含んでいる。
そこで、回生ECU16は、定格電力Pmotによる最
大回生トルクの制限と、電池13の充電上限パワーPb
attによる回生電力の制限とをいずれも回生トルク指
令値Tregの決定に反映できるよう、次の式
When it can be considered that none of the wheels has slipped, the regenerative ECU 16 determines the charging upper limit power, that is, the motor 11 to the battery 1 based on the SOC of the battery 13.
Calculate the maximum power Pbatt that can be regenerated to 3 (10
3). In general, the output of the motor 11 can be represented by the product of the number of rotations and the torque, so that the charging upper limit power Pbat
When t is determined, the curve “battery constraint upper limit” in FIG. 3 is determined.
The curve "motor rating" in FIG. 3 shows the characteristic of the maximum output torque (maximum regenerative torque) of the motor 11 during regeneration with respect to the motor rotational speed wm. This characteristic is the motor 1
Since the maximum regenerative torque is limited by the rated power Pmot of 1, the maximum regenerative torque includes a high rotation region in which the maximum regenerative torque is inversely proportional to the motor rotation speed wm, and a low rotation region in which the maximum regenerative torque is substantially constant.
Therefore, the regenerative ECU 16 limits the maximum regenerative torque by the rated power Pmot, and the charging upper limit power Pb of the battery 13.
In order to reflect both the limitation of the regenerative electric power by att in the determination of the regenerative torque command value Treg, the following equation

【数1】Pmax=Min(Pmot,Pbatt) に従いパワー制約値Pmaxを求め、さらにこれを次の
## EQU1 ## The power constraint value Pmax is obtained according to Pmax = Min (Pmot, Pbatt), and this is further calculated by the following equation.

【数2】Tmax=Pmax/wm に従い回生トルク上限値Tmaxに換算する(10
4)。但し、これらの式中、Min(・)は最小値関数
である。回転数wmは、図示しないがモータ11に付設
したセンサにより検出できあるいはインバータ12に流
れる電流から推定できる。
## EQU2 ## Conversion to the regenerative torque upper limit value Tmax according to Tmax = Pmax / wm (10
4). However, in these expressions, Min (·) is a minimum value function. Although not shown, the rotation speed wm can be detected by a sensor attached to the motor 11 or can be estimated from the current flowing through the inverter 12.

【0012】回生ECU16は、次に、図4に示される
マップPmcMAPを油圧Pmcにて参照することによ
り回生トルク指令値
Next, the regenerative ECU 16 refers to the map PmcMAP shown in FIG. 4 with the hydraulic pressure Pmc to determine the regenerative torque command value.

【数3】Treg=PmcMAP(Pmc) を求め、これを次の式## EQU00003 ## Treg = PmcMAP (Pmc) is obtained and is calculated by the following equation.

【数4】Treg=Min(Treg,Tmax) に従い上限制限した上で(105)、モータECU14
に出力する(107)。図4に示されるマップは油圧P
mcを回生トルク指令値Tregと対応付けるマップで
あり、その内容は、Pバルブ8により決定される油圧制
動力に回生制動力を上乗せした合計制動力配分線が前後
輪間制動力配分線図上でリアロック禁止領域をよぎらな
いすれすれのところに位置するよう(図5参照)、設定
されている。回生ECU16は、また、ステップ105
実行後ステップ107に先立ち回生トルク指令値Tre
gをローパスフィルタリングし、その立上がりをなまし
ている(106)。
## EQU4 ## The upper limit is set according to Treg = Min (Treg, Tmax) (105), and the motor ECU 14
(107). The map shown in FIG. 4 shows the hydraulic pressure P.
mc is a map that associates mc with the regenerative torque command value Treg, and the content thereof is the total braking force distribution line obtained by adding the regenerative braking force to the hydraulic braking force determined by the P valve 8 on the front and rear wheel braking force distribution diagram. It is set so that it is located at a position where it does not cross the rear lock prohibited area (see FIG. 5). The regenerative ECU 16 also executes step 105.
After execution, prior to step 107, regenerative torque command value Tre
g is low-pass filtered to smooth out its rise (106).

【0013】上述の動作は、車両操縦者により図示しな
いキースイッチがオフされるまで繰り返される(10
8)。また、前述のステップ109にていずれかの車輪
がスリップしている又はスリップしそうであると判定さ
れたときには、回生ECU16はABSバルブ9及び/
又は10を用いて所定パターンにてホイールシリンダ4
及び6の油圧を変動させる(109)。前述のステップ
101にてブレーキペダル1が踏まれていないと判定さ
れたときには、回生ECU16は回生トルク指令値Tr
egを0とする(110)。ステップ109又は110
実行後はステップ106が実行される。ステップ108
にてキースイッチオフが検出されると、所定の終了処理
を経て(111)図2の手順が終了する。
The above operation is repeated until the key switch (not shown) is turned off by the vehicle operator (10).
8). When it is determined in step 109 that one of the wheels is slipping or is about to slip, the regenerative ECU 16 causes the ABS ECU 9 and / or
Alternatively, the wheel cylinder 4 may be formed in a predetermined pattern using 10 or 10.
The hydraulic pressures of 6 and 6 are changed (109). When it is determined in step 101 that the brake pedal 1 is not depressed, the regenerative ECU 16 determines that the regenerative torque command value Tr
Eg is set to 0 (110). Step 109 or 110
After execution, step 106 is executed. Step 108
When it is detected that the key switch is off, the process of (111) in FIG. 2 ends after a predetermined end process.

【0014】このように、本実施形態においては、回生
に応じて油圧等の流体圧を遮断するバルブを使用してい
ないため、バルブやこれに付随するセンサ等の部材が不
要になり、より安価で簡素な構成を有するシステムを実
現できる。回生ECU16の動作手順も簡素なものでよ
い。さらに、図4のマップを利用して回生トルク指令値
Tregを決定しているため、リアロックしない範囲
で、すなわち車両安定性を損なわないで、最大限の回生
制動力を得ることができ、従って制動力が低い領域(図
5中破線の左下側に位置する通常使用域)でも良好に制
動エネルギを回収できる。また、回生トルク指令値Tr
egをローパスフィルタリングしているため、制動初期
(ブレーキペダル1を踏始めたとき)に急に回生トルク
が発生することがなく、ブレーキペダル踏力対制動力の
線形性が比較的良好である。これは、ブレーキフィーリ
ングの改善につながる。さらに、モータ定格Pmotや
充電上限パワーPbattに基づき決定した回生トルク
上限値Tmaxにより回生トルク指令値Tregの上限
を制限しているため、モータ11の定格や電池13のS
OCによる回生制限と、制動エネルギの最大限回収と
を、両立できる。
As described above, in the present embodiment, since the valve for shutting off the fluid pressure such as the hydraulic pressure according to the regeneration is not used, the valve and the members such as the sensor attached thereto are not required, and the cost is lower. A system having a simple structure can be realized. The operation procedure of the regenerative ECU 16 may be simple. Further, since the regenerative torque command value Treg is determined using the map of FIG. 4, the maximum regenerative braking force can be obtained within the range where the rear lock is not performed, that is, without impairing the vehicle stability. The braking energy can be satisfactorily recovered even in a region where the braking force is low (normal use region located on the lower left side of the broken line in FIG. 5). In addition, the regenerative torque command value Tr
Since eg is low-pass filtered, regenerative torque does not suddenly occur at the initial stage of braking (when the brake pedal 1 is started to be depressed), and the linearity of the brake pedal depression force and the braking force is relatively good. This leads to improved brake feeling. Furthermore, since the upper limit of the regenerative torque command value Treg is limited by the regenerative torque upper limit value Tmax determined based on the motor rating Pmot and the charging upper limit power Pbatt, the rating of the motor 11 and the S of the battery 13 are limited.
It is possible to achieve both regeneration limitation by OC and maximum recovery of braking energy.

【0015】なお、以上の説明は電気自動車を例として
行ったが、本発明は流体圧制動と回生制動を併用する各
種の電気車両に適用できる。また、後輪駆動車に限ら
ず、前輪駆動車や四輪駆動車にも適用できる。
In the above description, an electric vehicle is taken as an example, but the present invention can be applied to various electric vehicles that use both fluid pressure braking and regenerative braking. Further, the invention is not limited to the rear-wheel drive vehicle, but can be applied to the front-wheel drive vehicle and the four-wheel drive vehicle.

【0016】さらに、上述の実施形態では、法令で定め
られているリアロック禁止領域の境界線をリアロック限
界として扱っていたが、実際に後輪がロックする制動力
配分と、リアロック禁止領域の境界線とは、必ずしも一
致しない。この点を考慮し、上述の実施形態では、確実
にスリップを防止すべくABSを併用している。しか
し、ステップ102において車輪がスリップしているか
否か(又はその傾向があるか否か)を判定しているので
あるから、これを利用してABSの動作頻度を著しく低
減し又はABSを廃止することが可能である。すなわ
ち、ステップ102にて車輪スリップが検出されたとき
の制動力配分に基づき図4のマップの内容を更新し、又
は予め路面の摩擦係数毎にすなわち合計複数個の図4の
マップを準備しておきステップ102にて車輪スリップ
が検出されたときの制動力配分に基づきいずれかのマッ
プを選択する、といった手順をステップ109に付加す
ればよい。このように、路面の摩擦係数に応じてマップ
を更新乃至選択することで、摩擦係数に適応した回生制
動力制御が可能になり、制動エネルギをより多く回収可
能になる。ABSを廃止した場合には、装置構成が簡素
になる。
Further, in the above-described embodiment, the boundary line of the rear lock prohibited area defined by law is treated as the rear lock limit. However, the braking force distribution for actually locking the rear wheels and the rear lock prohibited area are treated. Does not necessarily coincide with the boundary line of. Considering this point, in the above-described embodiment, ABS is used together to surely prevent slip. However, since it is determined in step 102 whether or not the wheels are slipping (or whether or not there is a tendency), this is used to significantly reduce the operating frequency of the ABS or abolish the ABS. It is possible. That is, the contents of the map of FIG. 4 are updated based on the braking force distribution when the wheel slip is detected in step 102, or a plurality of maps of FIG. 4 are prepared in advance for each friction coefficient of the road surface. It is only necessary to add to step 109 a procedure of selecting one of the maps based on the braking force distribution when the wheel slip is detected in step 102. In this way, by updating or selecting the map according to the friction coefficient of the road surface, regenerative braking force control adapted to the friction coefficient becomes possible, and more braking energy can be recovered. When ABS is abolished, the device configuration becomes simple.

【0017】[0017]

【発明の効果】以上説明したように、本発明の第1の構
成によれば、前後輪間制動力配分線図上で合計制動力線
が駆動輪ロック限界又はその近傍に位置するよう回生制
動力を制御するようにしたため、駆動輪がロックするこ
とを防ぎながら制動エネルギを十分多く回収することが
できる。また、流体圧制動力を遮断する必要がなく、従
って回生に応じて流体圧を遮断するバルブやこれに付随
する部材を廃止でき、コスト低減を実現できる。
As described above, according to the first configuration of the present invention, the regenerative control is performed so that the total braking force line is located at or near the drive wheel lock limit on the front-rear wheel braking force distribution diagram. Since the power is controlled, it is possible to recover a large amount of braking energy while preventing the driving wheels from locking. Further, it is not necessary to cut off the fluid pressure braking force, and therefore the valve for cutting off the fluid pressure according to the regeneration and the member associated therewith can be eliminated, and the cost can be reduced.

【0018】[0018]

【補遺】なお、本発明は次のような発明として把握する
こともできる。
[Addendum] The present invention can be understood as the following inventions.

【0019】(1)本発明の第2の構成に係る制動制御
装置は、要求制動力に応じた流体圧制動力を少なくとも
駆動輪に作用させる手段と、車両走行用モータにて駆動
輪に回生制動力を作用させる手段と、を備える電気車両
に搭載され、前後輪間制動力配分線図上、上記合計制動
力線が駆動輪ロック限界又はその近傍に位置するよう、
回生制動力を制御する手段を有することを特徴とする。
本構成によれば、第1の構成と同様の作用効果が得られ
る。
(1) In the braking control device according to the second aspect of the present invention, a means for causing at least the drive wheels to exert a fluid pressure braking force corresponding to the required braking force, and a vehicle running motor to regenerate the drive wheels. Means for applying power, and mounted on an electric vehicle comprising: a front and rear wheel braking force distribution diagram, so that the total braking force line is located at or near the drive wheel lock limit,
It is characterized by having a means for controlling the regenerative braking force.
According to this configuration, the same operational effect as the first configuration can be obtained.

【0020】(2)本発明の第3の構成に係る制動方法
は、要求制動力に応じた流体圧制動力を少なくとも駆動
輪に作用させるステップと、前後輪間制動力配分線図
上、上記合計制動力線が駆動輪ロック限界又はその近傍
に位置するよう、車両走行用モータにて駆動輪に回生制
動力を作用させるステップと、を有し、電気車両にて実
行されることを特徴とする。本構成によれば、第1の構
成と同様の作用効果が得られる。
(2) In the braking method according to the third aspect of the present invention, the step of applying a fluid pressure braking force corresponding to the required braking force to at least the driving wheels, and the above-mentioned total on the braking force distribution diagram between the front and rear wheels. A step of applying a regenerative braking force to the drive wheels by the vehicle traveling motor so that the braking force line is located at or near the drive wheel lock limit, and is executed by the electric vehicle. . According to this configuration, the same operational effect as the first configuration can be obtained.

【0021】(3)本発明の第4の構成は、第1乃至第
3の構成において、走行路の摩擦係数に応じて変化する
駆動輪ロック限界を検出することを特徴とする。本構成
によれば、さらに、走行路の摩擦係数に適応した回生制
動力制御が可能になり、制動エネルギをより多く回収可
能になる。
(3) A fourth structure of the present invention is characterized in that, in the first to third structures, a drive wheel lock limit which changes according to a friction coefficient of a traveling road is detected. According to this configuration, the regenerative braking force control adapted to the friction coefficient of the traveling road can be further performed, and more braking energy can be recovered.

【0022】(4)本発明の第5の構成は、第1乃至第
4の構成において、回生制動力を作用させる際その立上
がりをなます(例えばローパスフィルタリングを施す)
ことを特徴とする。本構成によれば、制動力要求が発生
したときに回生制動力が直ちに作用するのではなく徐々
に回生制動力が作用するから、例えば減速度が低い領域
でのブレーキフィーリングが良好になる。
(4) In the fifth configuration of the present invention, in the first to fourth configurations, when the regenerative braking force is applied, it rises (for example, low-pass filtering is performed).
It is characterized by the following. According to this configuration, when the braking force request is generated, the regenerative braking force does not act immediately, but the regenerative braking force gradually acts, so that, for example, the brake feeling becomes good in a region where the deceleration is low.

【0023】(5)本発明の第6の構成は、第1乃至第
5の構成において、車両走行用モータから出力可能な最
大のトルク及び/又はモータ駆動用電池が受入れ可能な
最大の回生電力に従い回生制動力の上限値を設定し、設
定した上限値を下回る範囲内でできるだけ合計制動力線
が駆動輪ロック限界に近付くよう、車両走行用モータに
て駆動輪に回生制動力を作用させることを特徴とする。
本構成によれば、車両走行用モータの定格やモータ駆動
用電池の充電状態に応じて回生制動力の上限が制限され
ている状況でも、制動エネルギを最大限回収できる。
(5) The sixth structure of the present invention is the first to fifth structures, wherein the maximum torque that can be output from the vehicle driving motor and / or the maximum regenerative power that can be received by the motor driving battery. Set the upper limit of the regenerative braking force in accordance with the above, and apply the regenerative braking force to the drive wheels with the vehicle drive motor so that the total braking force line approaches the drive wheel lock limit as much as possible within the range below the set upper limit. Is characterized by.
According to this configuration, even when the upper limit of the regenerative braking force is limited according to the rating of the vehicle traveling motor and the charging state of the motor driving battery, the braking energy can be maximized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施形態に係る電気自動車のシス
テム構成を示すブロック図である。
FIG. 1 is a block diagram showing a system configuration of an electric vehicle according to an embodiment of the present invention.

【図2】 この実施形態における回生ECUの動作の流
れを示すフローチャートである。
FIG. 2 is a flowchart showing a flow of operations of a regenerative ECU in this embodiment.

【図3】 この実施形態における回生トルク上限値の決
定方法を示す回転数対回生トルク特性図である。
FIG. 3 is a rotational speed vs. regenerative torque characteristic diagram showing a method for determining a regenerative torque upper limit value in this embodiment.

【図4】 この実施形態における回生トルク指令値の決
定方法を示すマップ図である。
FIG. 4 is a map diagram showing a method of determining a regenerative torque command value in this embodiment.

【図5】 この実施形態における前後輪間の制動力配分
を示す線図である。
FIG. 5 is a diagram showing a braking force distribution between front and rear wheels in this embodiment.

【図6】 回生一定時における踏力対制動力特性を示す
図である。
FIG. 6 is a diagram showing a pedaling force-braking force characteristic at the time of constant regeneration.

【図7】 回生一定時における前後輪間の制動力配分を
示す線図である。
FIG. 7 is a diagram showing a braking force distribution between front and rear wheels when regeneration is constant.

【符号の説明】[Explanation of symbols]

1 ブレーキペダル、2 マスタシリンダ、3 油圧セ
ンサ、4,6 ホイールシリンダ、5,7 ブレーキデ
ィスク、8 P(プロポーショニングバルブ)バルブ、
9,10 ABS(アンチロックブレーキシステム)バ
ルブ、11 モータ、12 インバータ、13 電池、
14〜16 ECU(電子制御ユニット)、Pbatt
充電上限パワー、Tmax 回生トルク上限値、Tr
eg 回生トルク指令値。
1 brake pedal, 2 master cylinder, 3 oil pressure sensor, 4,6 wheel cylinder, 5,7 brake disc, 8 P (proportioning valve) valve,
9,10 ABS (anti-lock brake system) valve, 11 motor, 12 inverter, 13 battery,
14-16 ECU (electronic control unit), Pbatt
Charge upper limit power, Tmax regenerative torque upper limit value, Tr
egg Regenerative torque command value.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 要求制動力に応じた流体圧制動力を少な
くとも駆動輪に作用させる手段と、 車両走行用モータにて駆動輪に回生制動力を作用させる
手段と、 前後輪間制動力配分線図上、流体圧制動力と回生制動力
の合計を示す合計制動力線が駆動輪ロック限界又はその
近傍に位置するよう、回生制動力を制御する手段と、 を備えることを特徴とする電気車両の制動装置。
1. A means for exerting a fluid pressure braking force on at least a driving wheel according to a required braking force, a means for exerting a regenerative braking force on a driving wheel by a vehicle traveling motor, and a braking force distribution diagram between front and rear wheels. And a means for controlling the regenerative braking force so that the total braking force line indicating the sum of the fluid pressure braking force and the regenerative braking force is located at or near the drive wheel lock limit, and the braking of the electric vehicle is characterized by: apparatus.
JP7262694A 1995-10-11 1995-10-11 Braking device for electric vehicle Pending JPH09104333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7262694A JPH09104333A (en) 1995-10-11 1995-10-11 Braking device for electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7262694A JPH09104333A (en) 1995-10-11 1995-10-11 Braking device for electric vehicle

Publications (1)

Publication Number Publication Date
JPH09104333A true JPH09104333A (en) 1997-04-22

Family

ID=17379302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7262694A Pending JPH09104333A (en) 1995-10-11 1995-10-11 Braking device for electric vehicle

Country Status (1)

Country Link
JP (1) JPH09104333A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000043696A (en) * 1998-07-27 2000-02-15 Toyota Motor Corp Braking torque distribution control device for vehicle
JP2000166004A (en) * 1998-11-25 2000-06-16 Toyota Motor Corp Regenerative brake controller for vehicle
JP2001145205A (en) * 1999-11-16 2001-05-25 Nissan Motor Co Ltd Braking device of vehicle
WO2003078200A1 (en) * 2002-03-20 2003-09-25 Nissan Diesel Motor Co., Ltd. Braking system of hybrid vehicle
JP2004099028A (en) * 2002-09-06 2004-04-02 Ford Motor Co Combined friction and regenerative braking system and method for vehicle
JP2005178709A (en) * 2003-12-24 2005-07-07 Nissan Motor Co Ltd Brake device of vehicle
JP2006199270A (en) * 2004-12-22 2006-08-03 Advics:Kk Brake control device for vehicle
CN1298562C (en) * 2005-01-19 2007-02-07 清华大学 Series connection type brake system of hybrid power vehicle
WO2008090785A1 (en) * 2007-01-24 2008-07-31 Hitachi, Ltd. Braking controller
CN102887138A (en) * 2011-07-19 2013-01-23 日立汽车系统株式会社 Control apparatus for vehicle

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000043696A (en) * 1998-07-27 2000-02-15 Toyota Motor Corp Braking torque distribution control device for vehicle
JP2000166004A (en) * 1998-11-25 2000-06-16 Toyota Motor Corp Regenerative brake controller for vehicle
JP2001145205A (en) * 1999-11-16 2001-05-25 Nissan Motor Co Ltd Braking device of vehicle
CN1308161C (en) * 2002-03-20 2007-04-04 日产柴油机车工业株式会社 Braking system of hybrid vehicle
WO2003078200A1 (en) * 2002-03-20 2003-09-25 Nissan Diesel Motor Co., Ltd. Braking system of hybrid vehicle
US7275795B2 (en) 2002-03-20 2007-10-02 Nissan Diesel Motor Co., Ltd. Braking system of hybrid vehicle
JP2004099028A (en) * 2002-09-06 2004-04-02 Ford Motor Co Combined friction and regenerative braking system and method for vehicle
JP4675036B2 (en) * 2002-09-06 2011-04-20 フォード モーター カンパニー Friction regeneration combined braking system and method for vehicle
JP2005178709A (en) * 2003-12-24 2005-07-07 Nissan Motor Co Ltd Brake device of vehicle
JP2006199270A (en) * 2004-12-22 2006-08-03 Advics:Kk Brake control device for vehicle
CN1298562C (en) * 2005-01-19 2007-02-07 清华大学 Series connection type brake system of hybrid power vehicle
WO2008090785A1 (en) * 2007-01-24 2008-07-31 Hitachi, Ltd. Braking controller
JP2008179259A (en) * 2007-01-24 2008-08-07 Hitachi Ltd Braking control unit
US8388071B2 (en) 2007-01-24 2013-03-05 Hitachi, Ltd. Braking controller
CN102887138A (en) * 2011-07-19 2013-01-23 日立汽车系统株式会社 Control apparatus for vehicle
JP2013023004A (en) * 2011-07-19 2013-02-04 Hitachi Automotive Systems Ltd Vehicle controller

Similar Documents

Publication Publication Date Title
JP3811372B2 (en) Braking force control device for vehicle
US6709075B1 (en) System and method for braking an electric drive vehicle on a low Mu surface
JP3763231B2 (en) Braking device
JP5506632B2 (en) Brake device for vehicle
JPH09104333A (en) Braking device for electric vehicle
JP3063368B2 (en) Electric vehicle braking control device
JP3735903B2 (en) Anti-skid control device for electric vehicle
JPH05270387A (en) Brake control device for electric automobile
JP2672819B2 (en) Vehicle braking force control device utilizing motor braking force
JP3370983B2 (en) Drive control device for electric vehicle
JP3347096B2 (en) Driving force control system for electric vehicles
JPH0375361B2 (en)
JP2572856B2 (en) Vehicle turning behavior control device
JP3781101B2 (en) Braking force control device for vehicle
JP2021132453A (en) Braking control device of vehicle
JPH08149606A (en) Electric automobile braking device
JPH0450066A (en) Control method for anti-skid brake
JP3239606B2 (en) Anti-skid controller for four-wheel drive vehicles
KR100267332B1 (en) Braking Control Method on Rough Roads
JP3031016B2 (en) Electric vehicle braking control device
JPH10229608A (en) Braking device of electric vehicle
JP2000344087A (en) Wheel speed abnormality detecting device
JP4138054B2 (en) Vehicle stop determination device
JPH07250402A (en) Brake controller for electric automobile
JPS61155049A (en) Braking liquid pressure control device for brake unit of automobile

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20080919

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 12

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 13

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20090919

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20090919

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20110919

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 16

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 17

Free format text: PAYMENT UNTIL: 20130919

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 17

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term