JPH09103654A - Method for separating organic chlorine compound from aqueous solution containing the same - Google Patents

Method for separating organic chlorine compound from aqueous solution containing the same

Info

Publication number
JPH09103654A
JPH09103654A JP29172695A JP29172695A JPH09103654A JP H09103654 A JPH09103654 A JP H09103654A JP 29172695 A JP29172695 A JP 29172695A JP 29172695 A JP29172695 A JP 29172695A JP H09103654 A JPH09103654 A JP H09103654A
Authority
JP
Japan
Prior art keywords
membrane
organic chlorine
aqueous solution
chlorine compound
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29172695A
Other languages
Japanese (ja)
Inventor
Yoshihisa Fujii
義久 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP29172695A priority Critical patent/JPH09103654A/en
Publication of JPH09103654A publication Critical patent/JPH09103654A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a separation method which can obtain the maximum separation capacity and organic chlorine compound permeation velocity when an organic chlorine compound is separated from an aqueous solution containing the compound by a pervaporation method using a membrane material which has a high permeation velocity of the organic chlorine compound vapor which is lower than that of water. SOLUTION: In a method in which a dilute aqueous solution of an organic chlorine compound is separated with the use of a separation membrane by a pervaporation method, the compound is separated from the aqueous solution by a process in which the partial pressure of water vapor which passed through the membrane on the separation side of the membrane is set up to be 40-90% of water vapor pressure at operation temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機塩素化合物の
それを含む水溶液からの分離方法に関する。更に詳しく
は、希薄濃度の有機塩素化合物を含む水溶液を分離膜を
用いてパーベーパレーション法によって分離する方法に
関する。
TECHNICAL FIELD The present invention relates to a method for separating an organic chlorine compound from an aqueous solution containing it. More specifically, it relates to a method of separating an aqueous solution containing a dilute concentration of an organic chlorine compound by a pervaporation method using a separation membrane.

【0002】[0002]

【従来の技術】希薄な濃度の異種液体を含む混合溶液か
ら希薄成分を分離除去するパーベーパレーション法にお
いては、一般に溶媒よりも希薄成分の透過速度の方が大
きい分離膜を選択して分離操作が行われている。この場
合に、分離係数および透過速度を向上させるためには、
膜の透過側の圧力をできるだけ減圧することが好ましい
ことが知られている。
2. Description of the Related Art In a pervaporation method for separating and removing a dilute component from a mixed solution containing a dilute liquid having a dilute concentration, generally, a separation membrane having a higher permeation rate of the dilute component than that of a solvent is selected and separated. Is being done. In this case, in order to improve the separation coefficient and the transmission rate,
It is known that it is preferable to reduce the pressure on the permeate side of the membrane as much as possible.

【0003】希薄な揮発性有機溶剤を含む水溶液から有
機溶剤を除く場合には、通常疎水性の分離膜が用いられ
ており、疎水性で透過性の良い膜材料としては、ポリジ
メチルシロキサンやポリ[1-(トリメチルシリル)-1-プロ
ピン] (PMSP) が一般に知られている。特に、PM
SPは、多くの種類の低分子化合物に関して、その透過
速度が現在知られている各種の高分子材料の中では最も
大きいという特徴を有している。
When removing an organic solvent from an aqueous solution containing a dilute volatile organic solvent, a hydrophobic separation membrane is usually used, and as a hydrophobic and highly permeable membrane material, polydimethylsiloxane or poly [1- (Trimethylsilyl) -1-propyne] (PMSP) is generally known. In particular, PM
SP has a characteristic that the permeation rate of many kinds of low molecular weight compounds is the highest among various kinds of polymer materials currently known.

【0004】ところで、揮発性有機溶剤の中でも、有機
塩素化合物はオゾン層の破壊や発ガン性などの危険があ
り、飲料水や工業廃水中に含まれる基準濃度が厳しく規
制されており、有機塩素化合物のそれを含む水溶液から
の効率的な除去方法の開発が望まれている。しかるに、
クロロメタン等の一部の分子量の小さい分子を除き、一
般には有機塩素化合物は分子の大きさが大きいため、殆
んどの高分子膜において、その透過速度が水よりも小さ
いという問題がみられる。また、有機塩素化合物は、元
来水よりも蒸気圧が高く、水に溶解し難いため、有機塩
素化合物を含む水溶液から自然に蒸発する混合蒸気(平
衡状態)の濃度(重量分率)は、元の有機塩素化合物水溶
液の濃度(重量分率)よりも大きく、例えば1,1,1-トリク
ロロエタン(TCE)水溶液の場合には、25℃の平衡状態
で、混合蒸気濃度が水溶液濃度の約1万倍、即ち混合蒸
気自身の濃縮度が約1万程度になっている。
Among volatile organic solvents, organic chlorine compounds pose a risk of ozone layer destruction and carcinogenicity, and the standard concentration contained in drinking water and industrial waste water is strictly regulated. It is desired to develop an efficient method for removing a compound from an aqueous solution containing it. However,
Except for some molecules having a small molecular weight such as chloromethane, the molecular size of an organic chlorine compound is generally large, and therefore, there is a problem that the permeation rate thereof is smaller than that of water in most polymer membranes. Further, since the organic chlorine compound has a higher vapor pressure than water by nature and is difficult to dissolve in water, the concentration (weight fraction) of the mixed vapor (equilibrium state) that naturally evaporates from the aqueous solution containing the organic chlorine compound is: It is higher than the concentration (weight fraction) of the original organic chlorine compound aqueous solution. For example, in the case of 1,1,1-trichloroethane (TCE) aqueous solution, the mixed vapor concentration is about 1% of the aqueous solution concentration at an equilibrium state of 25 ° C. 10,000 times, that is, the enrichment of the mixed vapor itself is about 10,000.

【0005】従って、これをTCEの透過速度が水の透
過速度よりも大きい膜を用いて分離する場合には、パー
ベーパレーションの分離係数(透過溶液と供給溶液の有
機塩素化合物の重量分率の比)は1万以上になる筈であ
る。PMSP膜においても、TCE蒸気の透過速度の大
きさは他の膜材料と比べてトップクラスであるが、TC
E蒸気の透過速度は水の透過速度よりも小さいので、通
常のパーベーパレーションを行うと見掛けの分離係数は
混合蒸気の濃縮度よりも著しく小さなものとなってしま
うという問題がみられる。
Therefore, when this is separated using a membrane having a permeation rate of TCE higher than that of water, the separation coefficient of pervaporation (the weight fraction of the organic chlorine compound in the permeate solution and the feed solution) is determined. The ratio should be more than 10,000. Even in the PMSP membrane, the TCE vapor permeation rate is top class compared to other membrane materials.
Since the permeation rate of the E vapor is lower than the permeation rate of water, there is a problem that the apparent separation coefficient becomes significantly smaller than the enrichment of the mixed vapor when the normal pervaporation is performed.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、有機
塩素化合物のそれを含む水溶液からの分離を、有機塩素
化合物蒸気の透過速度は速いが水のそれよりは遅い膜材
料を用いてパーベーパレーション法で分離するに際し、
最大限の分離性と有機塩素化合物透過速度を得ることの
できる分離方法を提供することにある。
It is an object of the present invention to separate organic chlorine compounds from aqueous solutions containing them by using a membrane material that has a high permeation rate of the organic chlorine compound vapor but is slower than that of water. When separating by the vaporization method,
An object of the present invention is to provide a separation method capable of obtaining the maximum separability and the permeation rate of organic chlorine compounds.

【0007】[0007]

【課題を解決するための手段】かかる本発明の目的は、
希薄濃度の有機塩素化合物を含む水溶液を分離膜を用い
てパーベーパレーション法により分離する方法におい
て、膜の分離側の透過水蒸気の分圧を操作温度の水蒸気
圧の40〜98%に設定して操作し、有機塩素化合物のそれ
を含む水溶液から分離することによって達成される。
SUMMARY OF THE INVENTION The object of the present invention is as follows.
In the method of separating an aqueous solution containing a dilute concentration of an organic chlorine compound by a pervaporation method using a separation membrane, the partial pressure of permeated water vapor on the separation side of the membrane is set to 40 to 98% of the steam pressure at the operating temperature. It is accomplished by operating and separating from an aqueous solution containing the organochlorine compound.

【0008】[0008]

【発明の実施の形態】上記性質の膜で、有機塩素化合物
を含有する水溶液をパーベーパレーション法によって膜
分離する際、排気能力をバルブ等によって調整し、膜の
透過側の減圧度を大きくしていくと、水の透過速度の方
が有機塩素化合物の透過速度よりも速くなるため、膜の
透過側の水蒸気の圧力が膜の供給側の水蒸気の圧力(操
作温度における水の飽和蒸気圧に相当する)により近付
くことになる。
BEST MODE FOR CARRYING OUT THE INVENTION In a membrane having the above properties, when an aqueous solution containing an organic chlorine compound is subjected to membrane separation by a pervaporation method, the exhaust capacity is adjusted by a valve or the like to increase the degree of pressure reduction on the permeate side of the membrane. As the water permeation rate becomes faster than that of the organic chlorine compound, the pressure of water vapor on the permeation side of the membrane becomes equal to the pressure of water vapor on the feed side of the membrane (the saturated vapor pressure of water at the operating temperature. (Equivalent) will be closer.

【0009】このとき、膜の透過側での有機塩素化合物
の蒸気圧力は、透過速度が水よりも遅いためそれ程上昇
はしない。このため、膜の供給側と透過側の水の蒸気圧
差は小さくなるものの、有機塩素化合物の蒸気圧差はあ
まり小さくならないため、相対的に有機塩素化合物の透
過の割合が大きくなる。しかしながら、あまり膜の透過
側の圧力を大きくする(排気能力を小さくする)と、有機
塩素化合物自身の供給側と透過側の圧力差も小さくなっ
てしまう。
At this time, the vapor pressure of the organic chlorine compound on the permeate side of the membrane does not rise so much because the permeation rate is slower than that of water. For this reason, although the vapor pressure difference between water on the supply side and the permeation side of the membrane is small, the vapor pressure difference of the organic chlorine compound is not so small that the permeation rate of the organic chlorine compound is relatively large. However, if the pressure on the permeate side of the membrane is increased too much (the exhaust capacity is reduced), the pressure difference between the supply side and the permeate side of the organochlorine compound itself also decreases.

【0010】こうした観点からみて、分離性が向上しな
おかつ有機塩素化合物の透過速度が十分に確保される膜
透過側圧力の範囲を求めて検討を重ねた結果、有機塩素
化合物を含有する水溶液についてパーベーパレーション
法を適用する場合には、膜の透過側の透過水蒸気圧の分
圧を操作温度での飽和水蒸気圧の40〜98%、好ましくは6
5〜95%に設定すると効果的であることが見出された。こ
のような膜の透過側の透過水蒸気圧の分圧の設定は、前
述の如く排気能力をバルブ等によって調整し、膜の透過
側の減圧度を大きくしていくことによって行われる。操
作温度としては、約5〜70℃、好ましくは約15〜45℃の
範囲が選択される。これより低温では透過量が著しく小
さくなり、一方これより高い温度では分離率が低下する
ようになる。
From this point of view, as a result of repeated investigations for the range of the pressure on the membrane permeation side where the separability is improved and the permeation rate of the organochlorine compound is sufficiently secured, as a result, the aqueous solution containing the organochlorine compound was found to be When applying the vaporization method, the partial pressure of the permeate vapor pressure on the permeate side of the membrane is 40-98% of the saturated vapor pressure at the operating temperature, preferably 6
It has been found that a setting of 5 to 95% is effective. The partial pressure of the permeation water vapor pressure on the permeation side of the membrane is set by adjusting the exhaust capacity by a valve or the like as described above and increasing the degree of pressure reduction on the permeation side of the membrane. The operating temperature is selected in the range of about 5 to 70 ° C, preferably about 15 to 45 ° C. At lower temperatures, the amount of permeation will be significantly smaller, while at higher temperatures, the separation rate will decrease.

【0011】このような操作を行う場合、パーベーパレ
ーションの操作温度において、水蒸気の透過速度が有機
塩素化合物蒸気の透過速度よりも大きい分離膜が用いら
れることが好ましく、一般にはPMSP膜が用いられ
る。
When carrying out such an operation, it is preferable to use a separation membrane having a permeation rate of water vapor higher than that of the vapor of an organic chlorine compound at the operating temperature of pervaporation, and generally a PMSP membrane is used. .

【0012】[0012]

【発明の効果】希薄濃度の有機塩素化合物を含む水溶液
を分離膜を用いてパーベーパレーション法により分離す
る方法において、膜の分離側の透過水蒸気の分圧を操作
温度の水蒸気圧の40〜98%に設定して操作することによ
り、分離係数を高めしかも有機塩素化合物の透過速度も
高められた分離方法が確立される。
EFFECT OF THE INVENTION In a method of separating an aqueous solution containing a dilute concentration of an organic chlorine compound by a pervaporation method using a separation membrane, the partial pressure of permeated water vapor on the separation side of the membrane is set to 40 to 98 times the steam pressure at the operating temperature. By setting and operating at%, a separation method with a high separation coefficient and a high permeation rate of organic chlorine compounds is established.

【0013】[0013]

【実施例】次に、実施例について本発明を説明する。Next, the present invention will be described by way of examples.

【0014】実施例1〜3、比較例1〜2 濃度8.5ppmの1,1,1-トリクロロエタン(TCE)水溶液
を、膜厚6μmのPMSP膜を用いて、操作温度25℃、膜
の透過側圧力 130,1300,2100,3000または3170Paの条
件下で、パーベーパレーションを行った。このときの分
離係数α(TCE/H2O)およびTCEの透過流束(単位:
kg/m2・hr)を測定した。 得られた結果は、次の表に示される。
Examples 1 to 3 and Comparative Examples 1 to 2 An aqueous 1,1,1-trichloroethane (TCE) solution having a concentration of 8.5 ppm was used, using a PMSP membrane having a thickness of 6 μm, at an operating temperature of 25 ° C. and a permeation side of the membrane. Pervaporation was carried out under the conditions of pressure 130, 1300, 2100, 3000 or 3170Pa. Separation coefficient α (TCE / H 2 O) and permeation flux of TCE (unit:
kg / m 2 · hr) was measured. The results obtained are shown in the following table.

【0015】 表 透過側圧力(Pa) 同分圧(%) 分離係数 TCE透過流束 比較例1 130 4.1 350 7×10-4 実施例1 1300 41.0 700 9×10-4 〃 2 2100 66.3 2000 10×10-4 〃 3 3000 94.6 6000 7×10-4 比較例2 3170 100.0 (殆んどTCEは透過せず)[0015] Table Example permeate side pressure (Pa) the partial pressure (%) separation factor TCE flux Comparative Example 1 130 4.1 350 7 × 10 -4 Example 1 1300 41.0 700 9 × 10 -4 〃 2 2100 66.3 2000 10 × 10 -4 〃 3 3000 94.6 6000 7 × 10 -4 Comparative example 2 3170 100.0 (most of TCE is not transmitted)

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年3月29日[Submission date] March 29, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0008】[0008]

【発明の実施の形態】上記性質の膜で、有機塩素化合物
を含有する水溶液をパーベーパレーション法によって膜
分離する際、排気能力をバルブ等によって調整し、膜の
透過側の減圧度を小さくしていくと、水の透過速度の方
が有機塩素化合物の透過速度よりも速くなるため、膜の
透過側の水蒸気の圧力が膜の供給側の水蒸気の圧力(操
作温度における水の飽和蒸気圧に相当する)により近付
くことになる。
BEST MODE FOR CARRYING OUT THE INVENTION In a membrane having the above properties, when an aqueous solution containing an organic chlorine compound is subjected to membrane separation by a pervaporation method, the evacuation capacity is adjusted by a valve or the like to reduce the degree of pressure reduction on the permeate side of the membrane. As the water permeation rate becomes faster than that of the organochlorine compound, the pressure of the water vapor on the permeate side of the membrane becomes equal to the pressure of the water vapor on the feed side of the membrane (the saturated vapor pressure of water at the operating temperature). (Equivalent) will be closer.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0010】 こうした観点からみて、分離性が向上し
なおかつ有機塩素化合物の透過速度が十分に確保される
膜透過側圧力の範囲を求めて検討を重ねた結果、有機塩
素化合物を含有する水溶液についてパーベーパレーショ
ン法を適用する場合には、膜の透過側の透過水蒸気圧の
分圧を操作温度での飽和水蒸気圧の40〜98%、好ま
しくは65〜95%に設定すると効果的であることが見
出された。このような膜の透過側の透過水蒸気圧の分圧
の設定は、前述の如く排気能力をバルブ等によって調整
し、膜の透過側の減圧度を小さくしていくことによって
行われる。操作温度としては、約5〜70℃、好ましく
は約15〜45℃の範囲が選択される。これより低温で
は透過量が著しく小さくなり、一方これより高い温度で
は分離率が低下するようになる。
From this point of view, as a result of repeated investigations for the range of the pressure on the membrane permeation side where the separability is improved and the permeation rate of the organochlorine compound is sufficiently secured, as a result, the aqueous solution containing the organochlorine compound was found to be When applying the vaporization method, it may be effective to set the partial pressure of the permeation vapor pressure on the permeation side of the membrane to 40 to 98%, preferably 65 to 95% of the saturated vapor pressure at the operating temperature. Was found. The partial pressure of the permeation water vapor pressure on the permeation side of the membrane is set by adjusting the exhaust capacity by a valve or the like as described above and decreasing the degree of pressure reduction on the permeation side of the membrane. The operating temperature is selected in the range of about 5 to 70 ° C, preferably about 15 to 45 ° C. At lower temperatures, the amount of permeation will be significantly smaller, while at higher temperatures, the separation rate will decrease.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 希薄濃度の有機塩素化合物を含む水溶液
を分離膜を用いてパーベーパレーション法により分離す
る方法において、膜の分離側の透過水蒸気の分圧を操作
温度の水蒸気圧の40〜98%に設定して操作することを特
徴とする有機塩素化合物のそれを含む水溶液からの分離
方法。
1. In a method of separating an aqueous solution containing a dilute concentration of an organic chlorine compound by a pervaporation method using a separation membrane, the partial pressure of permeated water vapor on the separation side of the membrane is 40 to 98 times the steam pressure at the operating temperature. A method for separating an organic chlorine compound from an aqueous solution containing it, which is characterized in that the operation is performed by setting it to%.
【請求項2】 パーベーパレーションの操作温度におい
て、水蒸気の透過速度が有機塩素化合物蒸気の透過速度
よりも大きい分離膜が用いられる請求項1記載の分離方
法。
2. The separation method according to claim 1, wherein a separation membrane having a permeation rate of water vapor which is higher than a permeation rate of organic chlorine compound vapor at an operating temperature of pervaporation is used.
JP29172695A 1995-10-13 1995-10-13 Method for separating organic chlorine compound from aqueous solution containing the same Pending JPH09103654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29172695A JPH09103654A (en) 1995-10-13 1995-10-13 Method for separating organic chlorine compound from aqueous solution containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29172695A JPH09103654A (en) 1995-10-13 1995-10-13 Method for separating organic chlorine compound from aqueous solution containing the same

Publications (1)

Publication Number Publication Date
JPH09103654A true JPH09103654A (en) 1997-04-22

Family

ID=17772607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29172695A Pending JPH09103654A (en) 1995-10-13 1995-10-13 Method for separating organic chlorine compound from aqueous solution containing the same

Country Status (1)

Country Link
JP (1) JPH09103654A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009090929A1 (en) * 2008-01-18 2009-07-23 Mitsubishi Heavy Industries, Ltd. Dehydrator
WO2023176565A1 (en) * 2022-03-17 2023-09-21 日東電工株式会社 Membrane separation system and method for operating membrane separation device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009090929A1 (en) * 2008-01-18 2009-07-23 Mitsubishi Heavy Industries, Ltd. Dehydrator
JP2009165994A (en) * 2008-01-18 2009-07-30 Mitsubishi Heavy Ind Ltd Dehydrating apparatus
US8496806B2 (en) 2008-01-18 2013-07-30 Mitsubishi Heavy Industries, Ltd. Dehydrator
WO2023176565A1 (en) * 2022-03-17 2023-09-21 日東電工株式会社 Membrane separation system and method for operating membrane separation device

Similar Documents

Publication Publication Date Title
Krajewski et al. Application of fluoroalkylsilanes (FAS) grafted ceramic membranes in membrane distillation process of NaCl solutions
Gallego-Lizon et al. Dehydration of water/t-butanol mixtures by pervaporation: comparative study of commercially available polymeric, microporous silica and zeolite membranes
Sarti et al. Extraction of organic components from aqueous streams by vacuum membrane distillation
EP0880401B1 (en) Method of treating polyamide membranes to increase flux
JPS63116705A (en) Per-vaporation method and film used for said method
AU662233B2 (en) Removal of organic volatiles from polymer solutions and dispersions
JPH069645B2 (en) Separation method of mixed solution
JPS6075306A (en) Liquid separation membrane
Wu et al. Modification of polyacrylonitrile membranes via plasma treatment followed by polydimethylsiloxane coating for recovery of ethyl acetate from aqueous solution through vacuum membrane distillation
US5284589A (en) Process for the treatment of effluent
Boi et al. Pollutants removal from wastewaters through membrane distillation
Salt et al. Pervaporation separation of ethylacetate–water mixtures through a crosslinked poly (vinylalcohol) membrane
Kittur et al. Pervaporation separation of water–acetic acid mixtures through NaY zeolite‐incorporated sodium alginate membranes
JPH09103654A (en) Method for separating organic chlorine compound from aqueous solution containing the same
JPH022820A (en) Separation of mixed solution
Kittur et al. Preparation of zeolite‐incorporated poly (dimethyl siloxane) membranes for the pervaporation separation of isopropyl alcohol/water mixtures
JPS61281138A (en) Composite membrane selectively transmitting water from ethanol/water mixture and its production
JPH0761412B2 (en) Ultrapure water production system
JPH11156167A (en) Membrane separation method and apparatus therefor
JPS60202705A (en) Separation of azeotropic mixture
Sun et al. Membranes of block copolymer-poly (divinylbenzene) blends for the pervaporation of alcohol/water mixtures
JPH06277402A (en) Separation of azeotrophic mixture and apparatus therefor
JPS61167405A (en) Separation of liquid mixture
Shaban Pervaporation separation of water from organic mixtures
Joyce et al. Separation of pyridine/water solutions using pervaporation