JPH0910254A - Manufacture of hearing aid shell and manufacturing device therefor - Google Patents

Manufacture of hearing aid shell and manufacturing device therefor

Info

Publication number
JPH0910254A
JPH0910254A JP16486495A JP16486495A JPH0910254A JP H0910254 A JPH0910254 A JP H0910254A JP 16486495 A JP16486495 A JP 16486495A JP 16486495 A JP16486495 A JP 16486495A JP H0910254 A JPH0910254 A JP H0910254A
Authority
JP
Japan
Prior art keywords
ear
hearing aid
measured
manufacturing
measuring instrument
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16486495A
Other languages
Japanese (ja)
Inventor
Takeshi Nomura
剛 野村
Daisuke Ogawara
大輔 大河原
Kohei Hamamura
公平 濱村
Seiji Hamano
誠司 濱野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16486495A priority Critical patent/JPH0910254A/en
Publication of JPH0910254A publication Critical patent/JPH0910254A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE: To provide the manufacture of a hearing aid shell capable of safely, more quickly and easily forming an ear-shape shell. CONSTITUTION: An ear shape is measured by directly inserting the measuring head 16 of a measuring device 6 to an ear hole which is an object to be measured in a measuring place, the data or the results of processing the data are transferred through a communication channel 10 to a manufacturing place 9 away from the measuring place 8 and a numerically controlled machine tool 11 installed in the manufacturing place 9 is operated based on the received data.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は人体の外耳道形状をもと
に作られるオーダーメイド補聴器の製造方法と補聴器製
造装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a custom-made hearing aid and a hearing aid manufacturing apparatus which are made based on the shape of the external auditory meatus of the human body.

【0002】[0002]

【従来の技術】従来では図6に示すようにして耳型シェ
ルが作成されている。図6の(a),(b)に示すよう
に、補聴器を利用しようとする被測定対象の耳穴1にス
ポンジ2を詰め、その後、図6の(c)に示すように空
気が入らないように充填剤3を注意深く注入器4で耳穴
1に入れて固化するまで待つ。固化したら、図6の
(d)に示すように充填剤が固化して形成された耳型5
を耳穴1から取り出す。
2. Description of the Related Art Conventionally, an ear shell is manufactured as shown in FIG. As shown in FIGS. 6 (a) and 6 (b), the ear canal 1 of the object to be measured which is to be used with the hearing aid is filled with the sponge 2 and then air is prevented from entering as shown in FIG. 6 (c). Carefully put the filler 3 into the ear canal 1 with the injector 4 and wait until it solidifies. Once solidified, the ear mold 5 formed by solidifying the filler as shown in FIG.
From the ear canal 1.

【0003】耳穴1から取り出された耳型5を三次元ス
キャナーで測定して、耳型の三次元形状を採取してい
る。
The ear mold 5 taken out from the ear canal 1 is measured by a three-dimensional scanner to obtain a three-dimensional shape of the ear mold.

【0004】[0004]

【発明が解決しようとする課題】このような従来の補聴
器シェルの製造方法では、充填剤3の注入に熟練を要
し、気泡が入ったり、また充填圧力が強すぎて、スポン
ジ2が耳穴1の奥くに入ったりすることがあり、顧客の
不評をかっているのが現状である。
In the conventional method for manufacturing a hearing aid shell as described above, it takes skill to inject the filler 3, and bubbles are included or the filling pressure is too strong, so that the sponge 2 is inserted into the ear hole 1. There are times when it goes deep inside, and the current situation is that it is receiving unpopularity from customers.

【0005】本発明は安全で、しかもより迅速に、かつ
容易に耳型シェルを作ることができる補聴器シェルの製
造方法を提供することを目的とする。
It is an object of the present invention to provide a method of manufacturing a hearing aid shell which is safe, yet quick and easy to make.

【0006】[0006]

【課題を解決するための手段】請求項1の補聴器シェル
の製造方法によると、被測定対象の耳穴に計測器を挿入
して耳型を計測し、このデータまたはデータを処理した
結果に基づいて数値制御工作機を運転して補聴器耳型シ
ェルを形成することを特徴とする。
According to the method of manufacturing a hearing aid shell of claim 1, a measuring instrument is inserted into the ear hole of the object to be measured, the ear pattern is measured, and based on this data or the result of processing the data. It is characterized by operating a numerically controlled machine tool to form a hearing aid ear shell.

【0007】請求項2記載の補聴器シェルの製造方法
は、測定場所で被測定対象の耳穴に計測器を挿入して耳
型を計測し、このデータまたはデータを処理した結果を
通信回線を介して前記の測定場所から離れた製造場所に
転送し、製造場所に設置された数値制御工作機を受信し
たデータに基づいて運転して補聴器耳型シェルを形成す
ることを特徴とする。
According to a second aspect of the present invention, in the method for manufacturing a hearing aid shell, a measuring instrument is inserted into the ear hole of the object to be measured at the measuring location to measure the ear shape, and this data or the result of processing the data is transmitted via the communication line. The hearing aid ear shell is formed by transferring to a manufacturing location remote from the measurement location and operating a numerically controlled machine tool installed at the manufacturing location based on the received data.

【0008】請求項3記載の補聴器シェルの製造方法
は、請求項1,請求項2において、計測器が回転しなが
ら被測定対象の耳穴を移動して耳型を計測することを特
徴とする。
A hearing aid shell manufacturing method according to a third aspect of the present invention is characterized in that, in the first and second aspects, the ear mold of the object to be measured is moved by rotating the measuring instrument while rotating the measuring instrument.

【0009】請求項4記載の補聴器シェルの製造方法
は、請求項1,請求項2,請求項3において、計測器が
複数組の三角測量光切断法によって被測定対象の耳穴の
耳型を計測することを特徴とする。
According to a fourth aspect of the present invention, in the method for manufacturing a hearing aid shell according to the first, second and third aspects, the measuring instrument measures the ear pattern of the ear hole to be measured by a plurality of sets of triangulation optical cutting methods. It is characterized by doing.

【0010】請求項5記載の補聴器シェルの製造装置
は、被測定対象の耳穴に挿入可能な計測ヘッドを有する
耳型計測器と、耳型計測器から出力された三次元数値デ
ータを補聴器製造に必要な数値データに変換するコンピ
ュータと、コンピュータで変換された数値データで運転
が制御される数値制御工作機とを設けたことを特徴とす
る。
The hearing aid shell manufacturing apparatus according to claim 5 is an ear type measuring instrument having a measuring head that can be inserted into an ear hole to be measured, and three-dimensional numerical data output from the ear type measuring instrument for manufacturing a hearing aid. A computer for converting necessary numerical data and a numerically controlled machine tool whose operation is controlled by the numerical data converted by the computer are provided.

【0011】請求項6記載の補聴器シェルの製造装置
は、請求項5において、耳型計測器の計測ヘッドは光ま
たは超音波またはX線を被測定対象の耳穴に照射して耳
型を非接触に測定することを特徴とする。
According to a sixth aspect of the present invention, in the hearing aid shell manufacturing apparatus according to the fifth aspect, the measuring head of the ear-type measuring instrument irradiates the ear canal of the object to be measured with light, ultrasonic waves, or X-rays so that the ear-type does not contact. It is characterized by measuring.

【0012】請求項7記載の補聴器シェルの製造装置
は、請求項5において、耳型計測器の計測ヘッドは核磁
気共鳴スキャナであることを特徴とする。
The hearing aid shell manufacturing apparatus according to claim 7 is characterized in that, in claim 5, the measuring head of the ear-type measuring instrument is a nuclear magnetic resonance scanner.

【0013】[0013]

【作用】請求項1の構成によると、被測定対象の耳穴に
計測器を直接に挿入して耳型を計測し、このデータまた
はデータを処理した結果に基づいて数値制御工作機を運
転して補聴器シェルを作るので、充填剤による型取りが
不要である。
According to the structure of claim 1, the measuring instrument is directly inserted into the ear hole of the object to be measured to measure the ear mold, and the numerical control machine tool is operated based on this data or the result of processing the data. Since the hearing aid shell is made, there is no need for molding with filler.

【0014】請求項2の構成によると、測定場所で被測
定対象の耳穴に計測器を直接に挿入して耳型を計測し、
このデータまたはデータを処理した結果を前記の測定場
所から離れた製造場所に通信回線を介して転送し、製造
場所に設置された数値制御工作機を受信したデータに基
づいて運転する。
According to the structure of claim 2, the measuring instrument is directly inserted into the ear hole of the object to be measured at the measuring location to measure the ear mold,
The data or the result of processing the data is transferred to the manufacturing place away from the measuring place through the communication line, and the numerically controlled machine tool installed at the manufacturing place is operated based on the received data.

【0015】請求項3の構成によると、計測器は回転し
ながら被測定対象の耳穴を移動して耳型を計測するの
で、複雑な形状を正確に測定できる。請求項4の構成に
よると、計測器が複数組の三角測量光切断法によって被
測定対象の耳穴の耳型を計測する。
According to the third aspect of the invention, the measuring instrument moves the ear hole of the object to be measured while rotating to measure the ear mold, so that a complicated shape can be accurately measured. According to the structure of claim 4, the measuring instrument measures the ear shape of the ear hole of the object to be measured by a plurality of sets of triangulation optical cutting methods.

【0016】請求項5の構成によると、耳型計測器と、
コンピュータと、数値制御工作機とで補聴器シェルの製
造方法を実現する。請求項6の構成によると、耳型計測
器の計測ヘッドは光または超音波またはX線を被測定対
象の耳穴に照射して耳型を非接触に測定する。
According to the structure of claim 5, an ear type measuring instrument,
A method of manufacturing a hearing aid shell is realized by a computer and a numerical control machine tool. According to the structure of claim 6, the measuring head of the ear-type measuring instrument irradiates light, ultrasonic waves, or X-rays to the ear hole of the measurement target to measure the ear type in a non-contact manner.

【0017】請求項7の構成によると、耳型計測器の計
測ヘッドは核磁気共鳴スキャナである。
According to the structure of claim 7, the measuring head of the ear-type measuring instrument is a nuclear magnetic resonance scanner.

【0018】[0018]

【実施例】以下、本発明の補聴器シェルの製造方法の具
体的な実施例を図1〜図5に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A concrete embodiment of a method for manufacturing a hearing aid shell according to the present invention will be described below with reference to FIGS.

【0019】本発明の補聴器シェルの製造方法を実施す
る補聴器シェルの製造装置は、図1に示すように、耳穴
1に挿入し耳型を直接に計測する計測器6と、それらが
出されたデータを読み取って必要な演算処理を実行する
コンピュータ7とが測定対象者が居る測定場所8に配設
されており、測定場所8から離れた製造場所9にはコン
ピュータ7とは通信回線10で接続された数値制御工作
機11を配設して構成されている。
As shown in FIG. 1, a hearing aid shell manufacturing apparatus for carrying out the method for manufacturing a hearing aid shell according to the present invention, as shown in FIG. A computer 7 that reads data and executes necessary arithmetic processing is provided at a measurement location 8 where a measurement target person is located, and a manufacturing location 9 remote from the measurement location 8 is connected to the computer 7 through a communication line 10. The numerically controlled machine tool 11 is arranged.

【0020】数値制御工作機11はコンピュータ7から
受信したデータに基づいて、補聴器シェルを自動造形す
る。なお、数値制御工作機11は、従来のフライス盤、
旋盤、光硬化樹脂を使った造形機、粉末樹脂を使った造
形機、または溶融樹脂をノズルの先端から出す造形機な
どの既知のもので、コンピュータ9から受信した数値デ
ータに基づいて補聴器シェルを作成する。
The numerically controlled machine tool 11 automatically forms the hearing aid shell based on the data received from the computer 7. The numerical control machine tool 11 is a conventional milling machine,
A known machine such as a lathe, a molding machine using photo-curing resin, a molding machine using powdered resin, or a molding machine that ejects molten resin from the tip of a nozzle, is used to open the hearing aid shell based on the numerical data received from the computer 9. create.

【0021】計測器6は、図2と図3の(a)に示すよ
うに測定対象者の頭部に当接して計測器6を固定する固
定板12を有するケーシング13と、曲面で形成される
先端部分を除く外周にはケーシング13に螺合する雄ね
じ14が形成され、先端部分には3組の光切断ユニット
15a,15b,15cが埋め込まれた計測ヘッド16
とを主要部として構成されている。ケーシング13の内
部には、モータ17と、このモータ17の出力軸と前記
雄ねじ14の間に介装されてケーシング13に対して計
測ヘッド16を回転させる減速機18と、計測ヘッド1
6の耳方向への移動と回転を検知する位置/回転センサ
ー19とを内蔵している。
As shown in FIGS. 2 and 3 (a), the measuring instrument 6 is formed of a curved surface and a casing 13 having a fixing plate 12 for fixing the measuring instrument 6 by contacting the head of the person to be measured. A measuring head 16 in which an external thread 14 that is screwed into the casing 13 is formed on the outer periphery excluding the front end portion, and three sets of optical cutting units 15a, 15b, 15c are embedded in the front end portion.
It is composed mainly of and. Inside the casing 13, a motor 17, a reducer 18 which is interposed between the output shaft of the motor 17 and the male screw 14 and rotates the measuring head 16 with respect to the casing 13, and the measuring head 1
A position / rotation sensor 19 for detecting movement and rotation of 6 in the ear direction is built in.

【0022】3組の三角測量法を使う光切断ユニット1
5a,15b,15cは、前方、上下、下方の3つの方
向を扇状の平面光を照射する発光素子20a,20b,
20cと、これを2方向から同一角度で見る2次元受光
素子21a1 ,21a2 ,21b1 ,21b2 ,21c
1 ,21c2 からなる。
Optical cutting unit 1 using three sets of triangulation methods
Reference numerals 5a, 15b, and 15c denote light emitting elements 20a, 20b, which irradiate fan-shaped plane light in three directions of front, upper, lower, and lower.
20c and two-dimensional light receiving element 21a 1 seen at the same angle it from two directions, 21a 2, 21b 1, 21b 2, 21c
It consists of 1 , 21c 2 .

【0023】測定は、図3の(a)に示すように計測器
6の固定板12を頭部側にあてがってスイッチ22をオ
ンすると、制御装置23の指令によりモータ17が回転
し、減速機18を介して計測ヘッド16が回転し、計測
ヘッド16が図3の(b)に示すように耳穴1に向かっ
て−Z軸方向に移動する。
In the measurement, as shown in FIG. 3A, when the fixing plate 12 of the measuring instrument 6 is applied to the head side and the switch 22 is turned on, the motor 17 is rotated by the command of the control device 23, and the speed reducer. The measurement head 16 rotates via 18, and the measurement head 16 moves in the −Z-axis direction toward the ear canal 1 as shown in FIG. 3B.

【0024】この図3の(a)(b)(c)は計測の初
期、中期、計測終了時の状況を表しており、光切断ユニ
ット15a,15b,15cによって耳穴1の形状が測
定される。ここではハッチング24で示す部分が、その
時々の計測エリアである。
3 (a), (b) and (c) show the states of the initial, middle and end of measurement, and the shape of the ear canal 1 is measured by the light cutting units 15a, 15b, 15c. . Here, the portion indicated by hatching 24 is the measurement area at that time.

【0025】3組の光切断ユニットが組み込まれている
のは、−Z方向、+X方向,−X方向および、耳穴1の
オーバーハング部25を計測するために配置されてい
る。また、計測ヘッド16が耳穴1に侵入して計測ヘッ
ド16の先端が耳穴奥端に当接した計測終了時には、計
測ヘッド16の先端に設けた接触センサより信号が出さ
れて制御装置23に入り、制御装置23はモータ17へ
の通電を終了して計測ヘッドの−Z軸への進行が自動停
止しされる。
The three sets of light cutting units are installed to measure -Z direction, + X direction, -X direction and the overhang portion 25 of the ear canal 1. When the measurement head 16 enters the ear canal 1 and the tip of the measurement head 16 comes into contact with the inner end of the ear canal, a signal is output from the contact sensor provided at the tip of the measurement head 16 and enters the control device 23. The control device 23 ends the energization of the motor 17 and automatically stops the movement of the measuring head to the -Z axis.

【0026】なお、計測ヘッド16のZ方向の位置と回
転角は、モータ17に設置されるか、または、計測ヘッ
ド16の側部に設けられた位置/回転センサー19で検
知されて計測ヘッド16の位置と回転が特定されてい
る。
The position and rotation angle of the measuring head 16 in the Z direction are either set on the motor 17 or detected by a position / rotation sensor 19 provided on the side of the measuring head 16 to detect the measuring head 16. The position and rotation of are specified.

【0027】光切断ユニット15a〜15cは図4に示
すように計測ヘッド16に配設されている。図4におい
て、光切断ユニット15a〜15cが計測すべき範囲
は、図のA線から反時計回りにB線までのハッチング2
6で示される範囲である。このA線とB線で囲まれた範
囲を六等分し、その等分割された1つの角度をθとした
場合に、A線からθ,3θ,5θの所(Pc,Pb,P
a)に発光素子20c,20b,20aを配置する。そ
して原点Oに対して線O−Pc対称に、受光素子21C
1,21C2を線O−Pcに一定の角度αをなす様に配
置する。発光素子20bに対する受光素子21b1,2
1b2ならびに、発光素子20aに対する受光素子21
a1,21a2も同様である。
The light cutting units 15a to 15c are arranged in the measuring head 16 as shown in FIG. In FIG. 4, the range to be measured by the light cutting units 15a to 15c is the hatching 2 from line A to line B in the counterclockwise direction.
The range is indicated by 6. When the range surrounded by the A line and the B line is divided into six equal parts, and one of the equally divided angles is θ, the positions at θ, 3θ, and 5θ from the A line (Pc, Pb, P
The light emitting elements 20c, 20b, 20a are arranged in a). The light receiving element 21C is symmetrical with respect to the origin O along the line O-Pc.
1, 21C2 are arranged so as to form a constant angle α with the line O-Pc. Light receiving elements 21b1 and 21b2 for the light emitting element 20b
1b2 and the light receiving element 21 for the light emitting element 20a
The same applies to a1 and 21a2.

【0028】そして、発光素子20c,20b,20a
からそれぞれ扇状のライン光が発光され、耳穴1に当っ
て、それぞれの受光素子に受光される。発光素子20c
から出射した光の散乱光は2次元受光素子21C1,2
1C2に結像される。発光素子20b,20aも同様で
ある。ここに、2つの受光素子を配置するのは対称物の
傾斜に対して計測の死角をなくすためである。
The light emitting elements 20c, 20b, 20a
Each emits fan-shaped line light, hits the ear hole 1, and is received by each light receiving element. Light emitting element 20c
The scattered light of the light emitted from the two-dimensional light receiving elements 21C1, 21C1
An image is formed on 1C2. The same applies to the light emitting elements 20b and 20a. The two light-receiving elements are arranged here in order to eliminate the blind spot of measurement with respect to the inclination of the symmetrical object.

【0029】次に、図5に示すように計測ヘッド16が
回転しながらZ方向に進むと、計測エリア26が平面を
保ちつつ回転するので耳穴1の全体が計測される。受光
素子21C1,21C2,21b1,21b2,21a
1,21a2に得られるライン状の像が、コンピュータ
7で座標変換、重心計算、画像処理が行なわれ、耳型の
立体計測形状が表示される。そして、このデータに厚み
付け処理を行ない、数値制御工作機11にデータ転送さ
れ、耳型シェルが出来上がる。
Next, as shown in FIG. 5, when the measurement head 16 rotates and moves in the Z direction, the measurement area 26 rotates while maintaining a flat surface, and the entire ear canal 1 is measured. Light receiving elements 21C1, 21C2, 21b1, 21b2, 21a
The computer 7 performs the coordinate conversion, the center of gravity calculation, and the image processing on the line-shaped images obtained at 1 and 21a2, and the ear-shaped stereoscopic measurement shape is displayed. Then, a thickening process is performed on this data and the data is transferred to the numerically controlled machine tool 11 to complete the ear shell.

【0030】このように、被測定対象の耳穴1に計測器
6を直接に挿入して耳型を計測し、このデータまたはデ
ータを処理した結果に基づいて数値制御工作機11を運
転するので、充填剤による型取りが不要で、熟練しなく
ても正確な耳型を計測することができる。
As described above, since the measuring instrument 6 is directly inserted into the ear canal 1 to be measured, the ear mold is measured, and the numerically controlled machine tool 11 is operated based on this data or the result of processing the data. Since there is no need for mold making with a filler, accurate ear molds can be measured without skill.

【0031】また、充填剤による型取りと型取りした耳
型の計測と云った工程が必要で無いため、従来よりも迅
速に補聴器シェルを得ることができる。さらに、耳型と
いう廃棄物を出さないで済み、被計測者も耳型計測に伴
なう危険(充てん剤が奥に入っていく)がなく、オーダ
ーメイド補聴器用の耳穴の測定を安心して受けてもらう
ことができる。
Further, since the steps of taking a mold with a filler and measuring the ear mold that has been taken are not necessary, the hearing aid shell can be obtained more quickly than in the past. In addition, there is no need to dispose of waste, which is called the ear type, and the subject does not have the risk (filling material goes into the back) associated with the ear type measurement, and the ear hole for a custom-made hearing aid can be measured with confidence. Can be asked.

【0032】上記の実施例では、コンピュータ7で座標
変換、重心計算、画像処理、厚み付け処理を行なったデ
ータを、通信回線10を介して数値制御工作機11に転
送したが、計測器6の測定データを通信回線を介して数
値制御工作機11に転送してから座標変換、重心計算、
画像処理、厚み付け処理を行なって耳型シェルを作るこ
ともできる。
In the above-described embodiment, the data on which the computer 7 has performed the coordinate conversion, the calculation of the center of gravity, the image processing and the thickening processing is transferred to the numerical control machine tool 11 via the communication line 10. After transferring the measured data to the numerically controlled machine tool 11 via the communication line, coordinate conversion, center of gravity calculation,
It is also possible to make an ear shell by performing image processing and thickening processing.

【0033】上記の実施例では、3組みの光切断ユニッ
トを使用したが、この光切断手段は、1組でもよいし、
又、1方向発光2方向観測でなくても、1方向発光、1
方向観測でもよい。
In the above embodiment, three sets of light cutting units are used, but this light cutting means may be one set,
One-way emission, one-way emission,
Directional observation is also possible.

【0034】又、三角測量法によらず、モワレ法、投影
法により、3次元形状を把握してもよい。さらに、超音
波や核磁気共鳴でもよい。又、計測ヘッド16の駆動
は、ねじ回転ではなく、リニアモータによってZ方向に
直線駆動するようにも構成できる。
The three-dimensional shape may be grasped by the Moire method or the projection method instead of the triangulation method. Furthermore, ultrasonic waves or nuclear magnetic resonance may be used. Further, the measuring head 16 can be driven not by screw rotation but by linear driving in the Z direction by a linear motor.

【0035】[0035]

【発明の効果】請求項1の構成によると、被測定対象の
耳穴に計測器を直接に挿入して耳型を計測し、このデー
タまたはデータを処理した結果に基づいて数値制御工作
機を運転して補聴器シェルを作るので、充填剤による型
取りが不要である。
According to the first aspect of the invention, the measuring instrument is directly inserted into the ear hole of the object to be measured to measure the ear mold, and the numerical control machine tool is operated based on this data or the result of processing the data. Since the hearing aid shell is made by doing so, it is not necessary to mold with a filler.

【0036】請求項2の構成によると、測定場所で被測
定対象の耳穴に計測器を直接に挿入して耳型を計測し、
このデータまたはデータを処理した結果を前記の測定場
所から離れた製造場所に通信回線を介して転送し、製造
場所に設置された数値制御工作機を受信したデータに基
づいて運転するので、補聴器をオーダする利用者が数値
制御工作機にある工場に出向かなくても、各店舗で計測
器で耳穴を測定するだけで、迅速に目的の補聴器を得る
ことができる。
According to the structure of claim 2, at the measurement location, the measuring instrument is directly inserted into the ear hole of the object to be measured to measure the ear mold,
This data or the result of processing the data is transferred to the manufacturing site away from the measurement site via a communication line, and the numerically controlled machine tool installed at the manufacturing site operates based on the received data. Even if the ordering user does not go to the factory with the numerically controlled machine tool, the target hearing aid can be quickly obtained simply by measuring the ear canal with the measuring instrument at each store.

【0037】請求項3の構成によると、計測器は回転し
ながら被測定対象の耳穴を移動して耳型を計測するの
で、複雑な形状を正確に測定でき、良好な補聴器シェル
を提供できる。
According to the third aspect of the present invention, the measuring instrument moves the ear hole of the object to be measured while rotating to measure the ear mold, so that a complicated shape can be accurately measured and a good hearing aid shell can be provided.

【0038】請求項4の構成によると、計測器が複数組
の三角測量光切断法によって被測定対象の耳穴の耳型を
計測するので、非接触による測定を実現できる。請求項
5,請求項6,請求項7の構成によると、上記の補聴器
シェルの製造方法を実現できるものである。
According to the structure of claim 4, since the measuring instrument measures the ear shape of the ear hole of the object to be measured by a plurality of sets of triangulation optical cutting methods, non-contact measurement can be realized. According to the configurations of claims 5, 6, and 7, the method for manufacturing a hearing aid shell described above can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の補聴器シェルの製造方法を実現する製
造装置の構成図である。
FIG. 1 is a configuration diagram of a manufacturing apparatus that realizes a method for manufacturing a hearing aid shell according to the present invention.

【図2】同実施例の計測器の断面図である。FIG. 2 is a sectional view of the measuring instrument according to the embodiment.

【図3】同実施例で耳穴を測定する工程図である。FIG. 3 is a process diagram for measuring an ear canal in the same example.

【図4】光切断法による測定原理の説明図である。FIG. 4 is an explanatory diagram of a measurement principle by a light section method.

【図5】同実施例で計測ヘッドが回転する場合の説明図
である。
FIG. 5 is an explanatory view when the measuring head rotates in the same embodiment.

【図6】従来の補聴器シェル製造方法の説明図である。FIG. 6 is an explanatory diagram of a conventional hearing aid shell manufacturing method.

【符号の説明】[Explanation of symbols]

1 耳穴〔被測定対象〕 6 計測器 7 コンピュータ 8 測定場所 9 製造場所 10 通信回線 11 数値制御工作機 15a,15b,15c 光切断ユニット 16 計測ヘッド 1 ear hole [object to be measured] 6 measuring instrument 7 computer 8 measuring place 9 manufacturing place 10 communication line 11 numerical control machine tool 15a, 15b, 15c optical cutting unit 16 measuring head

───────────────────────────────────────────────────── フロントページの続き (72)発明者 濱野 誠司 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Seiji Hamano 1006 Kadoma, Kadoma-shi, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 被測定対象の耳穴に計測器を挿入して耳
型を計測し、このデータまたはデータを処理した結果に
基づいて数値制御工作機を運転して補聴器耳型シェルを
形成する補聴器シェルの製造方法。
1. A hearing aid for forming a hearing aid ear shell by inserting a measuring instrument into an ear hole to be measured, measuring an ear shape, and operating a numerical control machine tool based on the data or a result of processing the data. Shell manufacturing method.
【請求項2】 測定場所で被測定対象の耳穴に計測器を
挿入して耳型を計測し、このデータまたはデータを処理
した結果を通信回線を介して前記の測定場所から離れた
製造場所に転送し、製造場所に設置された数値制御工作
機を受信したデータに基づいて運転して補聴器耳型シェ
ルを形成する補聴器シェルの製造方法。
2. An ear mold is measured by inserting a measuring instrument into the ear hole of the object to be measured at the measurement location, and the data or the result of processing the data is transferred to a manufacturing location away from the measurement location via a communication line. A method of manufacturing a hearing aid shell, which is transferred and operates a numerically controlled machine tool installed at a manufacturing site based on received data to form a hearing aid ear shell.
【請求項3】 計測器が回転しながら被測定対象の耳穴
を移動して耳型を計測する請求項1,請求項2記載の補
聴器シェルの製造方法。
3. The method for manufacturing a hearing aid shell according to claim 1, wherein the ear mold is measured by moving the ear hole of the object to be measured while the measuring instrument rotates.
【請求項4】 計測器が複数組の三角測量光切断法によ
って被測定対象の耳穴の耳型を計測する請求項1,請求
項2,請求項3記載の補聴器シェルの製造方法。
4. The method for manufacturing a hearing aid shell according to claim 1, wherein the measuring instrument measures the ear pattern of the ear hole to be measured by a plurality of sets of triangulation optical cutting methods.
【請求項5】 被測定対象の耳穴に挿入可能な計測ヘッ
ドを有する耳型計測器と、耳型計測器から出力された三
次元数値データを補聴器製造に必要な数値データに変換
するコンピュータと、コンピュータで変換された数値デ
ータで運転が制御される数値制御工作機とを設けた補聴
器シェルの製造装置。
5. An ear-type measuring instrument having a measuring head that can be inserted into an ear hole to be measured, and a computer for converting three-dimensional numerical data output from the ear-type measuring instrument into numerical data necessary for manufacturing a hearing aid. A hearing aid shell manufacturing apparatus provided with a numerical control machine tool whose operation is controlled by numerical data converted by a computer.
【請求項6】 耳型計測器の計測ヘッドは光または超音
波またはX線を被測定対象の耳穴に照射して耳型を非接
触に測定する請求項5記載の補聴器シェルの製造装置。
6. The hearing aid shell manufacturing apparatus according to claim 5, wherein the measuring head of the ear-type measuring instrument irradiates light, ultrasonic waves, or X-rays to the ear hole of the object to be measured to measure the ear-type in a non-contact manner.
【請求項7】 耳型計測器の計測ヘッドは核磁気共鳴ス
キャナである請求項5記載の補聴器シェルの製造装置。
7. The hearing aid shell manufacturing apparatus according to claim 5, wherein the measuring head of the ear-type measuring instrument is a nuclear magnetic resonance scanner.
JP16486495A 1995-06-30 1995-06-30 Manufacture of hearing aid shell and manufacturing device therefor Pending JPH0910254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16486495A JPH0910254A (en) 1995-06-30 1995-06-30 Manufacture of hearing aid shell and manufacturing device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16486495A JPH0910254A (en) 1995-06-30 1995-06-30 Manufacture of hearing aid shell and manufacturing device therefor

Publications (1)

Publication Number Publication Date
JPH0910254A true JPH0910254A (en) 1997-01-14

Family

ID=15801378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16486495A Pending JPH0910254A (en) 1995-06-30 1995-06-30 Manufacture of hearing aid shell and manufacturing device therefor

Country Status (1)

Country Link
JP (1) JPH0910254A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007209532A (en) * 2006-02-09 2007-08-23 Hamamatsu Univ School Of Medicine Body impression acquisition device, method, and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007209532A (en) * 2006-02-09 2007-08-23 Hamamatsu Univ School Of Medicine Body impression acquisition device, method, and program

Similar Documents

Publication Publication Date Title
EP0503890B1 (en) Process and apparatus for producing dental filling for restoration of tooth crown
US5569578A (en) Method and apparatus for effecting change in shape of pre-existing object
US6954557B2 (en) Foot measurement system and method
EP1314000B1 (en) Method and apparatus for three-dimensional optical scanning of interior surfaces
CN103596521B (en) For guiding the 3D system and method for object
US7961300B2 (en) Method and apparatus for a single point scanner
US7625335B2 (en) Method and apparatus for three-dimensional optical scanning of interior surfaces
CN101738171B (en) Apparatus and method for measuring three-dimensional shape of a wood block
KR100612834B1 (en) 3 Dimensional Location Measurement Sensor
JP2905053B2 (en) Calibration-free tooth measurement method
AU2004212587A1 (en) Panoramic scanner
CN103017679A (en) Lumen scanning system based on laser ranging sensor
JPH11206745A (en) X-ray device
JPWO2009035142A1 (en) Dental prosthesis measurement processing system
US20040151367A1 (en) Method and device for the three-dimensional determination and digitisation of a plaster-or positive-model
US20160051134A1 (en) Guidance of three-dimensional scanning device
EP1003439A1 (en) Method and arrangement for making artificial teeth
KR101137516B1 (en) Scaner for oral cavity and system for manufacturing teeth mold
CN113967026B (en) Method of positioning imaging-related components, imaging device and computer program product
CN106908802A (en) A kind of laser beam space positioner and method based on image procossing
JP6793632B2 (en) 3D scanner with accelerometer
JPH0910254A (en) Manufacture of hearing aid shell and manufacturing device therefor
CN106913357A (en) Joint ultrasonic image-forming system and its method
JP2002074347A (en) Information aquiring system
JP2000326082A (en) Laser beam machine