JPH09101322A - Flow detection apparatus and method for fluid - Google Patents

Flow detection apparatus and method for fluid

Info

Publication number
JPH09101322A
JPH09101322A JP27836795A JP27836795A JPH09101322A JP H09101322 A JPH09101322 A JP H09101322A JP 27836795 A JP27836795 A JP 27836795A JP 27836795 A JP27836795 A JP 27836795A JP H09101322 A JPH09101322 A JP H09101322A
Authority
JP
Japan
Prior art keywords
thermistor
flow
temperature
fluid
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27836795A
Other languages
Japanese (ja)
Other versions
JP3264609B2 (en
Inventor
Yuji Ogawa
裕路 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP27836795A priority Critical patent/JP3264609B2/en
Publication of JPH09101322A publication Critical patent/JPH09101322A/en
Application granted granted Critical
Publication of JP3264609B2 publication Critical patent/JP3264609B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
  • Switches Operated By Changes In Physical Conditions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flow detector for fluid which is low in pressure loss and power consumption, and has a simple structure. SOLUTION: This flow detector is provided with a thermistor 2 which comes into contact with a fluid to be measured and measures resistance value of the thermistor 2 initially at one detection cycle with a resistance R1, an AD convertor 3 and a MPU 1. The results are converted into temperature. Then, a current is fed to the thermistor 2 to generate heat and the resistance value of the thermistor 2 is measured a specified time after the initial measurement. The results are converted into temperature. When changes in the temperature of the thermistor 2 before and after the heat generation exceed a specified value, no flow is judged to exist and when they are below the specified value, some flow is judged to exist. This procedure is repeated cyclically to detect the presence or absence of the flow continuously. Thus, the presence of the flow of a fluid is detected by one thermistor paying attention to the fact that the changing rate and the time constant change in the temperature of the thermistor depends on the presence or absence of the flow.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、流体の流れ検知装
置及び方法に関し、特に、被測定流体中に配置されるサ
ーミスタに発熱乃至は加温のための電流を流し、この加
温に起因した所定時間内の温度変化の大小に基づいて流
れの有無を検知することを可能にした、流体の流れ検知
装置及び方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and method for detecting a fluid flow, and more particularly, a current for heating or heating is applied to a thermistor arranged in a fluid to be measured, which is caused by the heating. The present invention relates to a fluid flow detection device and method capable of detecting the presence or absence of a flow based on the magnitude of a temperature change within a predetermined time.

【0002】[0002]

【従来の技術】燃料や水等の液体、ガスを送る配管で
は、内部流体の流れの有無や流速を検知するための装置
が用いられている。例えば、機械的な方法で流れの有無
を検知する装置では、パドル式フロースイッチが知られ
ている。パドル式フロースイッチは、流体の流路に可動
式の障害物となるパドルを設置し、流体がパドルに当た
って生じるパドルの移動をマイクロスイッチ等を用いて
電気信号として取り出す。
2. Description of the Related Art In pipes for feeding liquids such as fuel and water, and gas, a device for detecting the presence or absence of the flow of an internal fluid and the flow velocity thereof is used. For example, a paddle type flow switch is known as a device that detects the presence or absence of flow by a mechanical method. In the paddle type flow switch, a movable paddle is installed in a fluid flow path, and movement of the paddle caused by the fluid hitting the paddle is extracted as an electric signal using a microswitch or the like.

【0003】また、電気的な方法で流れの有無を検知す
る装置として、図7に示すように、2個のサーミスタを
センサとして用いた熱式フローセンサがある。一方のサ
ーミスタAは流体自体の温度を測定するためのもの、他
方のサーミスタBは加温電流を流して自己発熱させると
共に、これに伴うサーミスタの温度上昇を測定するため
のものである。これらサーミスタA、Bを、サーミスタ
Aが配管の上流側となるように流体中に配置し、サーミ
スタAにより測定した流体温度と、自己発熱し流体によ
って冷却されるサーミスタBの温度との差が一定値を超
えるか超えないかによって、流体の流れの有無を判定す
る。
As an apparatus for detecting the presence or absence of flow by an electrical method, there is a thermal type flow sensor using two thermistors as sensors as shown in FIG. One thermistor A is for measuring the temperature of the fluid itself, and the other thermistor B is for supplying a heating current to cause self-heating and measuring the temperature rise of the thermistor accompanying this. These thermistors A and B are arranged in a fluid such that the thermistor A is located on the upstream side of the pipe, and the temperature difference between the fluid temperature measured by the thermistor A and the temperature of the thermistor B which is self-heated and cooled by the fluid is constant. The presence or absence of fluid flow is determined by whether or not the value is exceeded.

【0004】また、上記と類似の装置によって流体の流
速を検出するものもある。例えば、上記サーミスタAと
サーミスタBの温度差を、予め設定した比率で流速に換
算する方法、あるいはサーミスタAとサーミスタBの温
度差が常に一定となるように、サーミスタBに流す電流
値を制御し、その電流値から流速を計算する方法等があ
る。
There is also a device similar to the above which detects the flow velocity of the fluid. For example, a method of converting the temperature difference between the thermistor A and thermistor B into a flow rate at a preset ratio, or controlling the current value flowing through the thermistor B so that the temperature difference between the thermistor A and thermistor B is always constant. , There is a method of calculating the flow velocity from the current value.

【0005】[0005]

【発明が解決しようとする課題】ところで、前記機械的
なフロースイッチを用いる方法は、流体の流速を利用し
て機械的な駆動力を得ているために、流体中に圧力損失
を生じるという問題がある。また、所定の流量範囲を超
えると圧力損失が特に増大することから、対応できる流
速の範囲が狭い、更には、構造自体が大きくなりがち
で、取付けスペースの確保が困難という問題もある。
By the way, in the method using the mechanical flow switch, since a mechanical driving force is obtained by utilizing the flow velocity of the fluid, pressure loss occurs in the fluid. There is. Further, when the flow rate exceeds the predetermined flow rate range, the pressure loss is particularly increased, so that the range of the applicable flow velocity is narrow, and further, the structure itself tends to be large, and it is difficult to secure a mounting space.

【0006】一方、熱式フローセンサや熱式流速計は、
センサの取付けスペースの確保は容易であるものの、流
体温度測定用と自己発熱用の2組の高精度サーミスタ及
びその測定回路を必要とし、装置が高価になりがちであ
る。また、双方のサーミスタの温度特性を同じものとす
ることは困難なため、温度特性の差を補償する温度補償
回路が別に必要となり、回路が複雑化する。更には、双
方の測定回路における各部品間の特性の相違や経時変化
等を考慮して、双方のサーミスタの温度差を大きくとる
ことが必要なため、加温のための消費電力が大きくなり
がちという欠点もある。
On the other hand, the thermal type flow sensor and the thermal type velocity meter are
Although it is easy to secure a space for mounting the sensor, two sets of high-precision thermistors for measuring fluid temperature and for self-heating and a measuring circuit therefor are required, and the device tends to be expensive. Further, since it is difficult to make the temperature characteristics of both thermistors the same, a separate temperature compensation circuit for compensating for the difference in temperature characteristics is required, which complicates the circuit. Furthermore, it is necessary to take a large temperature difference between both thermistors in consideration of differences in characteristics between parts in both measurement circuits and changes over time, so power consumption for heating tends to increase. There is also a drawback.

【0007】本発明は、上記に鑑み、圧力損失が小さ
く、その検出範囲も広くとれると共に、簡素な構造で製
作コストが低く且つ検知のための消費電力も少なくて足
りる、流体の流れ検知装置を提供することを目的とす
る。
In view of the above, the present invention provides a fluid flow detection device which has a small pressure loss, a wide detection range, a simple structure, low manufacturing cost, and low power consumption for detection. The purpose is to provide.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明の流れ検知装置は、被測定流体中に配置され
るサーミスタと、周期的又は間欠的に前記サーミスタに
通電してこれを加温する通電手段と、前記通電手段の通
電時期に関連して前記サーミスタの温度を所定の時間間
隔をあけて測定する温度測定手段と、前記所定の時間間
隔でのサーミスタの温度変化の大小に基づいて流体の流
れの有無を判定する流れ判定手段とを備えることを特徴
とする。
In order to achieve the above object, the flow detecting device of the present invention is configured such that a thermistor arranged in a fluid to be measured and the thermistor are energized periodically or intermittently. An energizing means for heating, a temperature measuring means for measuring the temperature of the thermistor at a predetermined time interval in relation to the energizing timing of the energizing means, and a change in temperature of the thermistor at the predetermined time interval. Flow determining means for determining the presence / absence of a fluid flow based on the flow determining means.

【0009】また、本発明の流れ検知方法は、被測定流
体中にサーミスタを配置し、周期的又は間欠的に前記サ
ーミスタを加温し、該加温の時期に関連してサーミスタ
の所定時間内の温度変化を測定し、該温度変化測定値の
大小に基づいて流体の流れの有無を検知することを特徴
とする。
Further, in the flow detecting method of the present invention, a thermistor is arranged in the fluid to be measured, the thermistor is heated periodically or intermittently, and within a predetermined time of the thermistor in relation to the heating timing. Is measured, and the presence or absence of a fluid flow is detected based on the magnitude of the temperature change measurement value.

【0010】[0010]

【発明の実施の形態】本発明の流れ検知装置及び方法の
1つの実施形態では、サーミスタを流体中に配置し、通
電手段によりサーミスタを加温し、サーミスタの抵抗値
測定回路により、サーミスタの加温前温度と加温から一
定時間経過後の温度とを夫々測定する。サーミスタは、
流体に流れがないときには温度変化が大きく現れ、流体
に流れがあるときには、流体の冷却効果により温度変化
が小さく現れる。従って、双方の温度差が所定値以上の
ときには流れが無いものと判定し、所定値以下のときに
は流れが有るものと判定できる。その後、サーミスタの
温度が安定する期間をおいて、再び上記手順を繰り返し
て、周期的又は間欠的に流体の流れの有無を検知する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In one embodiment of the flow detection apparatus and method of the present invention, a thermistor is placed in a fluid, the thermistor is heated by an energizing means, and the thermistor resistance value measuring circuit is used to apply the thermistor. The temperature before warming and the temperature after a lapse of a fixed time from heating are measured. The thermistor
When there is no flow in the fluid, a large temperature change appears, and when there is a flow in the fluid, a small temperature change appears due to the cooling effect of the fluid. Therefore, it can be determined that there is no flow when the temperature difference between the two is greater than or equal to the predetermined value, and it can be determined that there is flow when the temperature difference is less than or equal to the predetermined value. Then, after a period in which the temperature of the thermistor stabilizes, the above procedure is repeated again to detect the presence or absence of the fluid flow periodically or intermittently.

【0011】[0011]

【実施例】以下、図面を参照し、本発明の実施例につい
て説明する。図1(a)は、本発明の第1の実施例の流
体の流れ検知装置の構成を示す回路図である。同図にお
いて、1はマイクロコンピュータ(MPU)、2はサー
ミスタ、3はAD変換器である。また、R1はサーミス
タ2と直列に接続された抵抗、TR1はp-n-pトラン
ジスタ、TR2はn-p-nトランジスタ、4は直流電源
装置である。サーミスタ2は、ガラス等の絶縁物で覆わ
れて流体から保護され、例えば図2に示すように、表面
にネジ山が刻まれた保持具(プラグ)10の先端に取り
付けられている。プラグ10が配管11に設けられたネ
ジ孔(取付け座)12にねじ込まれると、サーミスタ2
は、配管11中を流れる流体の流路に位置し、流体と接
触する構造である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1A is a circuit diagram showing a configuration of a fluid flow detecting device according to a first embodiment of the present invention. In the figure, 1 is a microcomputer (MPU), 2 is a thermistor, and 3 is an AD converter. Further, R1 is a resistor connected in series with the thermistor 2, TR1 is a p-n-p transistor, TR2 is an n-p-n transistor, and 4 is a DC power supply device. The thermistor 2 is covered with an insulating material such as glass to be protected from a fluid, and is attached to the tip of a holder (plug) 10 having a threaded surface, for example, as shown in FIG. When the plug 10 is screwed into the screw hole (mounting seat) 12 provided in the pipe 11, the thermistor 2
Is a structure that is located in the flow path of the fluid flowing in the pipe 11 and is in contact with the fluid.

【0012】流体の流れの有無の検知は、一定周期で現
れる一連の手順により行なわれる。各検知周期は、被測
定流体の温度測定工程、サーミスタ加温工程、サーミス
タ鎮静化工程、鎮静化工程後の再度の温度測定工程、及
び、サーミスタ冷却工程からなる。鎮静化工程後に得ら
れた温度測定値と、最初に測定された被測定流体の温度
測定値とを比較し、両者の温度差が、予め定めた値を下
回れば流体の流れが有り、これを上回れば流体の流れが
無いものと判定する。
The detection of the presence or absence of the flow of fluid is carried out by a series of procedures which appear in a constant cycle. Each detection cycle includes a temperature measuring step of the fluid to be measured, a thermistor heating step, a thermistor calming step, a temperature measuring step after the calming step, and a thermistor cooling step. The temperature measurement value obtained after the sedation process is compared with the temperature measurement value of the fluid to be measured initially measured, and if the temperature difference between the two is below a predetermined value, there is a fluid flow. If it exceeds, it is determined that there is no fluid flow.

【0013】図1(b)のタイムチャートを更に参照し
て、本実施例の流れ検知装置の動作を詳細に説明する。
被測定流体の温度測定工程は、トランジスタTR1をO
Nに、トランジスタTR2をOFFにする。トランジス
タTR1を通過した電流はサーミスタ2を通り抵抗R1
を経由してアースに至り、抵抗R1の両端にサーミスタ
2の抵抗値に対応した電圧降下を発生させる。この電圧
降下は、AD変換器3によってディジタル信号に変換さ
れてMPU1に入力され、更にMPU1内で温度換算さ
れて記憶される。このように、先ずサーミスタ2の抵抗
値を測定し、これを温度に換算して被測定流体の測定温
度とする。
The operation of the flow detection apparatus of this embodiment will be described in detail with further reference to the time chart of FIG. 1 (b).
In the process of measuring the temperature of the fluid to be measured, the transistor TR1 is turned on.
At N, the transistor TR2 is turned off. The current passing through the transistor TR1 passes through the thermistor 2 and the resistor R1.
To the ground via the resistor R1 and a voltage drop corresponding to the resistance value of the thermistor 2 is generated across the resistor R1. This voltage drop is converted into a digital signal by the AD converter 3 and input to the MPU 1, and further converted into temperature in the MPU 1 and stored. As described above, first, the resistance value of the thermistor 2 is measured, and the resistance value is converted into the temperature to obtain the measured temperature of the fluid to be measured.

【0014】サーミスタ2の加温工程は、引き続きトラ
ンジスタTR2をONとして行なわれる。トランジスタ
TR1を通過した電流は、サーミスタ2、トランジスタ
TR2を介してアースに流れ、サーミスタ2はこの通電
電流により自己発熱する。サーミスタ2は、流体により
冷却され且つ流体温度を上昇させる。この加温工程は、
例えば数秒間である。
The heating process of the thermistor 2 is continued by turning on the transistor TR2. The current passing through the transistor TR1 flows to the ground via the thermistor 2 and the transistor TR2, and the thermistor 2 self-heats due to this energized current. The thermistor 2 is cooled by the fluid and raises the fluid temperature. This heating process is
For example, a few seconds.

【0015】次に、鎮静化工程として、トランジスタT
R1、TR2をOFFとして、加温されたサーミスタ2
の中心部の熱が、ガラス等の絶縁材や周囲の被測定流体
に拡散して平均化する時間を確保する。この期間は、例
えば約1secである。次いで、トランジスタTR1を短
時間ONとして、サーミスタ2の加温後温度を測定す
る。この測定温度と、先に測定した加温前温度すなわち
被測定流体の温度とを比較し、その温度上昇分が、予め
設定した基準値を上回る場合には、流体が静止状態にあ
り、下回る場合には流れていると判定する。これは、サ
ーミスタ2の温度上昇は流体の流れがある場合に小さ
く、且つ、温度降下は流体の流れがある場合に大きいと
いう原理に基づいている。
Next, as a soothing step, the transistor T
Thermistor 2 heated by turning off R1 and TR2
The time at which the heat of the central part of the diffuses to the insulating material such as glass and the surrounding fluid to be measured and is averaged is secured. This period is, for example, about 1 sec. Then, the transistor TR1 is turned on for a short time, and the temperature after heating the thermistor 2 is measured. If this measured temperature is compared with the previously measured pre-heating temperature, that is, the temperature of the fluid to be measured, and if the temperature rise exceeds a preset reference value, the fluid is in a stationary state and falls below the reference value. Is judged to be flowing. This is based on the principle that the temperature rise of the thermistor 2 is small when there is a fluid flow, and the temperature drop is large when there is a fluid flow.

【0016】冷却工程は、加温工程で加えた熱エネルギ
が被測定流体中に拡散し、サーミスタが加温前温度に近
くなるようにするもので、トランジスタTR1、TR2
の双方をOFFにする。なお、この期間は例えば数sec
である。加温前温度測定工程から冷却工程迄の一連の工
程により1つの流れ検知周期Tが構成される。
In the cooling step, the thermal energy applied in the heating step is diffused into the fluid to be measured so that the thermistor becomes close to the pre-heating temperature, and the transistors TR1 and TR2 are used.
Turn off both. Note that this period is, for example, several seconds.
It is. One flow detection cycle T is constituted by a series of processes from the pre-heating temperature measurement process to the cooling process.

【0017】以上の各工程における、サーミスタ2の温
度と時間との関係を図3に示す。このグラフは、流体を
水とした実験で得られたもので、水温を25℃とし、毎
分1リットルの流れ有りのとき、及び、流れ無しのとき
の図である。同図に示されるように、サーミスタ2の温
度は、流体に流れが有るときには加温開始から約1sec
で飽和状態になり、流れの無いときには加温開始後3se
c経過後も上昇を続ける。例えば約3secの加温工程をと
り、その後に約1secの鎮静化工程を設けると、双方の
下降曲線間に図示したような判別可能な相違ができる。
FIG. 3 shows the relationship between the temperature of the thermistor 2 and time in each of the above steps. This graph was obtained by an experiment using water as a fluid, and is a diagram at a water temperature of 25 ° C., with a flow of 1 liter / min and without flow. As shown in the figure, the temperature of the thermistor 2 is about 1 second from the start of heating when the fluid has a flow.
It becomes saturated at, and when there is no flow, after heating starts 3se
Continues to rise after c. For example, if a heating step of about 3 seconds is performed and then a sedation step of about 1 second is provided, a discernible difference as shown in the figure can be made between the two descending curves.

【0018】ここで、被測定流体の温度測定時点Aの温
度と、鎮静完了時点Bの温度とを比較すると、流れが有
る場合にはその差がほとんどなく、流れが無い場合には
一定以上の差が生じている。時点Aと時点Bの温度差
を、予め設定した基準値と比較することによって流れの
有無を判定する。
Here, comparing the temperature at the temperature measurement point A of the fluid to be measured with the temperature at the sedation completion point B, there is almost no difference when there is a flow, and a certain level or more when there is no flow. There is a difference. Whether or not there is a flow is determined by comparing the temperature difference between time A and time B with a preset reference value.

【0019】図3から理解できるように、加温開始後例
えば約1sec後の時点Cと3sec間の加温終了直前の時点
Dとの温度差からも、流れの有無を判別することができ
る。このようにすることで、1回の測定に必要な時間を
短縮する。更に、この場合、測定時点Cの温度は高くと
もよいので、測定時点D後の冷却工程の時間の短縮も可
能である。ここで、時点Aと時点Bの温度差による検知
と、時点Cと時点Dの温度差による検知とを併用するこ
とも可能である。
As can be understood from FIG. 3, the presence or absence of the flow can be discriminated also from the temperature difference between the time point C about 1 second after the start of heating and the time point D just before the end of heating for 3 seconds. By doing so, the time required for one measurement is shortened. Further, in this case, since the temperature at the measurement time point C may be high, the time of the cooling step after the measurement time point D can be shortened. Here, the detection based on the temperature difference between the time points A and B and the detection based on the temperature difference between the time points C and D can be used together.

【0020】以上のような流れ検知の手順を周期的に繰
り返すことで、継続的な流れ検知が行なわれる。また、
このような周期的な検知に代えて、流れの有無を検知す
る必要が生じた場合に、その都度、上記検知手順を実施
するという間欠的な検知を行なうことも出来る。
Continuous flow detection is performed by periodically repeating the above flow detection procedure. Also,
Instead of such periodic detection, it is also possible to perform intermittent detection in which the detection procedure is performed each time it is necessary to detect the presence or absence of flow.

【0021】図3の実験結果から、加温中乃至は加温後
のサーミスタの温度変化の等価的な時定数が、流体の流
れの有無で異なることが理解できる。即ち、流れがある
ときには時定数が小さく、流れがないときには時定数が
大きい。これを利用して、流れ検知の所要時間を先に説
明した例から更に短縮することが出来る。これを、図4
を参照して説明する。流れがある状態では、サーミスタ
の温度は、その加温開始から約1sec経過後に飽和す
る。従って、加温時間を1secに短縮して、その加温開
始時点Aと、加温終了時点又は鎮静終了時点Bの温度差
を測定することでも、流れの有無判定が可能となる。周
期的な検知を行なう場合には、或る検知周期で流れが有
ると判定されたら、その周期の冷却期間を1secにし、
流れが無いと判定されたら、その周期の冷却期間を3se
cにする。これにより、検知周期Tを小さくできる。
From the experimental results shown in FIG. 3, it can be understood that the equivalent time constant of the temperature change of the thermistor during heating or after heating differs depending on the presence or absence of fluid flow. That is, when there is a flow, the time constant is small, and when there is no flow, the time constant is large. By utilizing this, the time required for flow detection can be further shortened from the example described above. This is shown in FIG.
This will be described with reference to FIG. When there is a flow, the temperature of the thermistor becomes saturated about 1 second after the start of heating. Therefore, the presence / absence of the flow can be determined by shortening the heating time to 1 second and measuring the temperature difference between the heating start time point A and the heating end time point or the sedation end time point B. When performing periodic detection, if it is determined that there is a flow in a certain detection cycle, the cooling period of that cycle is set to 1 sec,
If it is determined that there is no flow, set the cooling period for that cycle to 3se
set to c. Thereby, the detection cycle T can be shortened.

【0022】上記第1の実施例によれば、加温前後の温
度測定や加温時刻に関連した所定時間間隔の温度測定を
共通のサーミスタで行うので、別々の検出回路を設けた
従来の流れ検知装置に比べて、誤差の要因が少なくな
る。即ち、温度特性や経時変化等のバラツキを考慮する
必要が無いので、僅かな加温でも加温前後等の温度差が
有効に測定でき、加温のための電力を削減することがで
きる。例えば、2個のサーミスタを用いて水の流れの有
無を測定する場合には、特性のバラツキを考慮すると、
被測定流体の温度を25℃として、加温温度を5℃程度
とる必要があり、この場合、消費電力は50mW程度必
要である。これに対し、本発明では、バラツキを考慮し
なくともよいことから、加温温度は最小で約2.5℃程
度でもよく、この場合、消費電力は25mW程度で済
む。また、部品が少なくて済むとともに、構成部品のバ
ラツキや誤差を吸収するための調整が不要となるので、
製造原価の低減を図ることができる。
According to the first embodiment described above, the temperature measurement before and after heating and the temperature measurement at the predetermined time interval related to the heating time are performed by the common thermistor. As compared with the detection device, the factors of error are reduced. That is, since it is not necessary to consider variations such as temperature characteristics and changes with time, it is possible to effectively measure a temperature difference before and after heating even with a slight heating, and it is possible to reduce electric power for heating. For example, when measuring the presence or absence of water flow using two thermistors, considering variations in characteristics,
It is necessary to set the temperature of the fluid to be measured to 25 ° C. and the heating temperature to about 5 ° C. In this case, power consumption is required to be about 50 mW. On the other hand, in the present invention, since it is not necessary to consider the variation, the minimum heating temperature may be about 2.5 ° C., and in this case, the power consumption may be about 25 mW. In addition, the number of parts is small, and adjustments to absorb variations and errors in components are unnecessary, so
Manufacturing costs can be reduced.

【0023】次に、図5(a)及び(b)を参照して、
本発明の第2の実施例の流体の流れ検知装置について説
明する。なお、第1の実施例で説明した要素と同一また
は相当する要素には同じ符号を付して、その説明を省略
する。本実施例は、センサとして1個のサーミスタ2を
使用する点は、先の実施例と同じである。異なる点はそ
の回路構成にある。図5(a)に示すように、サーミス
タ2と直列の抵抗R1に代えてコンデンサCを設けた
点、AD変換器を省略した点、及び、MPU1にシュミ
ット回路を含めた点である。
Next, referring to FIGS. 5A and 5B,
A fluid flow detecting device according to a second embodiment of the present invention will be described. The same or corresponding elements as those described in the first embodiment are designated by the same reference numerals and the description thereof will be omitted. This embodiment is the same as the previous embodiment in that one thermistor 2 is used as a sensor. The difference lies in the circuit configuration. As shown in FIG. 5A, a capacitor C is provided instead of the resistor R1 in series with the thermistor 2, an AD converter is omitted, and a Schmitt circuit is included in the MPU1.

【0024】第2の実施例における各検知周期は、図5
(b)に示すように、第1の実施例と同様な構成であ
る。先ず、トランジスタTR1をONに、トランジスタ
TR2をOFFにし、被測定流体の温度測定を行う。ト
ランジスタTR1を通った電流は、サーミスタ2を通
り、コンデンサCに充電される。コンデンサCの端子電
圧は、サーミスタ2の抵抗値に依存し、その値がMPU
1のシュミット回路に入力される。コンデンサCへの充
電開始からシュミット回路のHレベル電圧に到達する迄
の時間を測定して温度に換算する。ここで、トランジス
タTR2をONすると、コンデンサCの電荷は瞬間的に
放電され、コンデンサCの端子電圧はゼロに復帰し、同
時に、サーミスタ2は加温され自己発熱し始める。
Each detection cycle in the second embodiment is shown in FIG.
As shown in (b), the configuration is similar to that of the first embodiment. First, the transistor TR1 is turned on and the transistor TR2 is turned off, and the temperature of the fluid to be measured is measured. The current passing through the transistor TR1 passes through the thermistor 2 and is charged in the capacitor C. The terminal voltage of the capacitor C depends on the resistance value of the thermistor 2, and its value is MPU.
1 is input to the Schmitt circuit. The time from the start of charging the capacitor C until reaching the H level voltage of the Schmitt circuit is measured and converted into temperature. Here, when the transistor TR2 is turned on, the electric charge of the capacitor C is instantaneously discharged, the terminal voltage of the capacitor C returns to zero, and at the same time, the thermistor 2 is heated and starts to generate heat by itself.

【0025】3秒間の加温期間経過後に、鎮静化工程と
して、トランジスタTR1、TR2の双方をOFFと
し、先の実施例と同様に温度が平均化される時間を確保
する。この期間は例えば0.5secである。温度が平均
化した時点で、トランジスタTR1をONにする。コン
デンサCの端子電圧がMPU1のシュミット回路に入力
され、シュミット回路のHレベルに達する迄の時間を測
定して温度に換算する。先の温度とこの温度とが比較さ
れ、その温度差から流れの有無が判定される。
After the lapse of the heating period of 3 seconds, both transistors TR1 and TR2 are turned off in the sedative step to secure the time for averaging the temperature as in the previous embodiment. This period is 0.5 sec, for example. When the temperatures are averaged, the transistor TR1 is turned on. The terminal voltage of the capacitor C is input to the Schmitt circuit of the MPU 1 and the time required to reach the H level of the Schmitt circuit is measured and converted into temperature. The previous temperature and this temperature are compared, and the presence or absence of flow is determined from the temperature difference.

【0026】冷却工程は、先の実施例と同様な目的で設
けられ、トランジスタTR1、TR2の双方をOFFに
することで得られる。なお、この期間は、例えば3.5
secとしてある。以上のような手順を周期的又は間欠的
に繰り返し、継続的な流れの検知を行う。
The cooling step is provided for the same purpose as in the previous embodiment, and can be obtained by turning off both the transistors TR1 and TR2. Note that this period is, for example, 3.5
It is as sec. The above procedure is repeated periodically or intermittently to continuously detect the flow.

【0027】次に、図6を参照して、本発明の第3の実
施例である純水等の水の電気伝導率測定装置について説
明する。本実施例では、イオン交換式純水製造装置から
送られる純水の電気伝導率を測定する電気伝導率測定装
置の水中電極21、22と、先に説明した実施例の流れ
検知装置のサーミスタ2とを、図6に示すように、1つ
のプラグ20上に配置して1つの部品にまとめている。
Next, with reference to FIG. 6, an electric conductivity measuring apparatus for water such as pure water according to a third embodiment of the present invention will be described. In the present embodiment, the underwater electrodes 21 and 22 of the electric conductivity measuring device for measuring the electric conductivity of pure water sent from the ion exchange type pure water producing device, and the thermistor 2 of the flow detecting device of the embodiment described above. As shown in FIG. 6, they are arranged on one plug 20 to be integrated into one component.

【0028】一般に、イオン交換式純水製造装置では、
純水の純度を確保するために、そのイオン交換樹脂の性
能が低下したことを検知する終点検知を行なう。この場
合、装置出口の純水の電気伝導率を測定し、電気伝導率
が所定値以上に上昇したことを検知した時点で、イオン
交換樹脂の性能が低下したものとしてその終点を検知す
る。ところで、この形式の純水製造装置で得られる純水
の電気伝導率は、装置の運転開始時点では高く、その値
が安定するのは運転開始から約30sec経過後であるこ
とが知られている。つまり、終点検知のためには、装置
の運転開始から30sec以上経過後の電気伝導率を測定
する必要がある。このため、この形式の純水製造装置で
は、一般に、装置出口で純水が流れ始めたことをフロー
スイッチ等で検知し、その検知時点から30sec経過後
の電気伝導率を測定している。
Generally, in the ion exchange type pure water producing apparatus,
In order to ensure the purity of pure water, the end point detection is performed to detect that the performance of the ion exchange resin has deteriorated. In this case, the electric conductivity of pure water at the outlet of the apparatus is measured, and when it is detected that the electric conductivity has risen to a predetermined value or more, the end point is detected as the performance of the ion exchange resin is lowered. By the way, it is known that the electric conductivity of pure water obtained by this type of pure water producing apparatus is high at the time of starting the operation of the apparatus, and that the value stabilizes after about 30 seconds have elapsed from the start of the operation. . That is, in order to detect the end point, it is necessary to measure the electrical conductivity after 30 seconds or more have passed from the start of operation of the device. For this reason, in this type of pure water producing apparatus, it is generally detected that pure water has started to flow at the outlet of the apparatus with a flow switch or the like, and the electrical conductivity is measured 30 seconds after the detection.

【0029】純水の電気伝導率の測定は、被測定純水に
接触する1対の電極間に交流電圧を印加し、これらの間
に流れる電流値を測定することで行なわれる。ところ
で、同じ純度の純水でも、その測定時点の水温によって
電気伝導率は大きく異なるものである。このため、JI
Sにおいても、水の電気伝導率は水温25℃に於ける値
を用いるように規定しているので、25℃に換算する必
要がある。つまり、水の電気伝導率の測定では、その測
定時点の水温の測定が不可欠である。
The electric conductivity of pure water is measured by applying an AC voltage between a pair of electrodes in contact with pure water to be measured and measuring the value of the current flowing between them. By the way, even with pure water of the same purity, the electric conductivity varies greatly depending on the water temperature at the time of measurement. Therefore, JI
Also in S, the electric conductivity of water is specified to use the value at a water temperature of 25 ° C., so it is necessary to convert it to 25 ° C. That is, in measuring the electric conductivity of water, it is essential to measure the water temperature at the time of the measurement.

【0030】そこで、本実施例では、前記のごとく、流
れ検知装置のサーミスタ2と電気伝導率測定装置の水中
電極21、22とを1つの部品としてまとめ、これらを
プラグ20の先端に取り付けてある。このプラグを、純
水の出口配管の取付け座にねじ込むことで、純水の流れ
の有無検知、水温換算のための水温測定、及び、電気伝
導率測定の全てについて、この1つの部品を利用でき
る。このようにして、本実施例は、純水製造装置におけ
る部品点数の削減及びスペースの縮小を図っている。
Therefore, in the present embodiment, as described above, the thermistor 2 of the flow detecting device and the underwater electrodes 21 and 22 of the electric conductivity measuring device are integrated as one component, and these are attached to the tip of the plug 20. . By screwing this plug into the mounting seat of the pure water outlet pipe, this one part can be used for all the detection of the flow of pure water, the water temperature measurement for water temperature conversion, and the electric conductivity measurement. . In this way, the present embodiment aims to reduce the number of parts and space in the pure water producing apparatus.

【0031】[0031]

【発明の効果】本発明の流れ検知装置及び方法では、1
つのサーミスタを利用してその加温前後等における流体
の温度変化を測定し、この温度変化の大小に従って流れ
の有無を検知することとしたので、本発明は、部品点数
の削減による製造コストの削減はもとより、素子や部品
の特性のバラツキ等に起因する誤差の要因を減らして加
温のための電力削減を可能とした、低圧力損失で且つ広
い検出範囲を有する流れ検知装置を提供した顕著な効果
を奏する。
According to the flow detecting apparatus and method of the present invention,
Since the temperature change of the fluid before and after the heating is measured using two thermistors and the presence or absence of the flow is detected according to the magnitude of the temperature change, the present invention reduces the manufacturing cost by reducing the number of parts. In addition to providing a flow detection device with a low pressure loss and a wide detection range, it is possible to reduce the power source for heating by reducing the factors of error caused by variations in the characteristics of elements and parts Produce an effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は本発明の第1の実施例の流体の流れ検
知装置の回路図、(b)はその回路の動作を示すタイミ
ングチャート。
FIG. 1A is a circuit diagram of a fluid flow detecting device according to a first embodiment of the present invention, and FIG. 1B is a timing chart showing the operation of the circuit.

【図2】図1の流れ検知部の構造を示す断面図。FIG. 2 is a cross-sectional view showing the structure of the flow detection unit of FIG.

【図3】図1の実施例のサーミスタの温度変化を示すグ
ラフ。
FIG. 3 is a graph showing a temperature change of the thermistor of the embodiment shown in FIG.

【図4】図1の実施例の変形例のサーミスタの温度変化
を示すグラフ。
FIG. 4 is a graph showing a temperature change of a thermistor of a modified example of the embodiment of FIG.

【図5】(a)は本発明の第2の実施例の流体の流れ検
知装置の回路図、(b)はその回路の動作を示すタイミ
ングチャート。
5A is a circuit diagram of a fluid flow detecting device according to a second embodiment of the present invention, and FIG. 5B is a timing chart showing the operation of the circuit.

【図6】本発明の第3の実施例の電気伝導率測定装置の
センサ部分の構造を示す斜視図。
FIG. 6 is a perspective view showing a structure of a sensor portion of an electric conductivity measuring apparatus according to a third embodiment of the present invention.

【図7】従来の流体の流れ検知装置の模式的側面図。FIG. 7 is a schematic side view of a conventional fluid flow detection device.

【符号の説明】[Explanation of symbols]

1 マイクロコンピュータ(MPU) 2 サーミスタ 3 AD変換器 4 直流電源装置 R1 抵抗器 TR1、TR2 トランジスタ 10、20 保持具(プラグ) 11 配管 12 ネジ孔(取付け座) 21、22 水中電極 1 Microcomputer (MPU) 2 Thermistor 3 AD converter 4 DC power supply device R1 Resistor TR1, TR2 Transistor 10, 20 Holding tool (plug) 11 Piping 12 Screw hole (mounting seat) 21, 22 Underwater electrode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 被測定流体中に配置されるサーミスタ
と、周期的又は間欠的に前記サーミスタに通電してこれ
を加温する通電手段と、前記通電手段の通電時期に関連
して前記サーミスタの温度を所定の時間間隔をあけて測
定する温度測定手段と、前記所定の時間間隔でのサーミ
スタの温度変化の大小に基づいて流体の流れの有無を判
定する流れ判定手段とを備えることを特徴とする流体の
流れ検知装置。
1. A thermistor arranged in a fluid to be measured, an energizing means for energizing the thermistor to heat the thermistor periodically or intermittently, and a thermistor of the thermistor in relation to the energizing timing of the energizing means. A temperature measuring means for measuring the temperature at predetermined time intervals, and a flow determining means for determining the presence or absence of a fluid flow based on the magnitude of the temperature change of the thermistor at the predetermined time intervals. Fluid flow detector.
【請求項2】 請求項1に記載の流体の流れ検知装置を
備えた流体の電気伝導率測定装置であって、前記サーミ
スタを電気伝導率測定の際の水温測定に使用し、且つ、
該サーミスタと、電気伝導率測定装置の水中電極とを1
つのプラグ上に配置したことを特徴とする電気伝導率測
定装置。
2. A fluid electrical conductivity measuring device comprising the fluid flow detecting device according to claim 1, wherein the thermistor is used for water temperature measurement during electrical conductivity measurement, and
The thermistor and the underwater electrode of the electric conductivity measuring device
An electric conductivity measuring device characterized by being arranged on one plug.
【請求項3】 被測定流体中にサーミスタを配置し、周
期的又は間欠的に前記サーミスタを加温し、該加温の時
期に関連してサーミスタの所定時間内の温度変化を測定
し、該温度変化測定値の大小に基づいて流体の流れの有
無を検知することを特徴とする、流体の流れ検知方法。
3. A thermistor is arranged in a fluid to be measured, the thermistor is heated periodically or intermittently, and a temperature change within a predetermined time of the thermistor is measured in relation to the timing of the heating. A method for detecting a fluid flow, which comprises detecting the presence or absence of a fluid flow based on the magnitude of a temperature change measurement value.
JP27836795A 1995-10-02 1995-10-02 Apparatus and method for detecting fluid flow Expired - Fee Related JP3264609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27836795A JP3264609B2 (en) 1995-10-02 1995-10-02 Apparatus and method for detecting fluid flow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27836795A JP3264609B2 (en) 1995-10-02 1995-10-02 Apparatus and method for detecting fluid flow

Publications (2)

Publication Number Publication Date
JPH09101322A true JPH09101322A (en) 1997-04-15
JP3264609B2 JP3264609B2 (en) 2002-03-11

Family

ID=17596362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27836795A Expired - Fee Related JP3264609B2 (en) 1995-10-02 1995-10-02 Apparatus and method for detecting fluid flow

Country Status (1)

Country Link
JP (1) JP3264609B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030018345A (en) * 2001-08-28 2003-03-06 한국생산기술연구원 Mass flow sensor and measuring apparatus
JP4750910B1 (en) * 2011-03-03 2011-08-17 立山科学工業株式会社 Seismograph
JP2012526253A (en) * 2009-05-07 2012-10-25 デカ・プロダクツ・リミテッド・パートナーシップ Product distribution system
JP2013024769A (en) * 2011-07-22 2013-02-04 Tateyama Kagaku Kogyo Kk Seismoscope

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030018345A (en) * 2001-08-28 2003-03-06 한국생산기술연구원 Mass flow sensor and measuring apparatus
JP2012526253A (en) * 2009-05-07 2012-10-25 デカ・プロダクツ・リミテッド・パートナーシップ Product distribution system
JP4750910B1 (en) * 2011-03-03 2011-08-17 立山科学工業株式会社 Seismograph
JP2013024769A (en) * 2011-07-22 2013-02-04 Tateyama Kagaku Kogyo Kk Seismoscope

Also Published As

Publication number Publication date
JP3264609B2 (en) 2002-03-11

Similar Documents

Publication Publication Date Title
US7775706B1 (en) Compensated heat energy meter
US11402250B2 (en) Liquid level meter, vaporizer equipped with the same, and liquid level detection method
JP2014041055A (en) Gas detection device and gas detection method
US7971479B2 (en) Fluid flow rate measurement apparatus
JPH09101322A (en) Flow detection apparatus and method for fluid
JP3969167B2 (en) Fluid flow measuring device
JP2004294208A (en) Water level - water temperature sensor
JPH08201326A (en) Exhaust co concentration detecting device for combustion apparatus
WO2006018366A3 (en) Method and device for determining and/or monitoring mass flow rate
JPH08136491A (en) Ambient air detecting apparatus
JP3759377B2 (en) Flow rate detector for gas meter
JP3929846B2 (en) Intermittent drive type combustible gas detector
JPH05313536A (en) Thermal fixing device for image forming device
JPH0789074B2 (en) Liquid level detector
JPS648249B2 (en)
JP2009031014A (en) Thermal gas mass flowmeter
JP2007155502A (en) Detector
JPH09257821A (en) Flow velocity sensor
JP3747725B2 (en) Fluid supply device
JP2009186222A (en) Deterioration detector
JP2005278070A (en) Frequency stability detection circuit
RU2295730C1 (en) Method of measuring speed of fluid in stationary and transient modes
JP4670293B2 (en) Gas flow sensor device
JP2001074529A (en) Flow measuring device
JPS5956629A (en) Electric range

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20071228

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081228

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20081228

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20091228

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091228

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees