JPH09101211A - Temperature compensation circuit for span voltage of semiconductor pressure sensor - Google Patents

Temperature compensation circuit for span voltage of semiconductor pressure sensor

Info

Publication number
JPH09101211A
JPH09101211A JP26120295A JP26120295A JPH09101211A JP H09101211 A JPH09101211 A JP H09101211A JP 26120295 A JP26120295 A JP 26120295A JP 26120295 A JP26120295 A JP 26120295A JP H09101211 A JPH09101211 A JP H09101211A
Authority
JP
Japan
Prior art keywords
resistor
gauge
compensation circuit
pressure sensor
operational amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26120295A
Other languages
Japanese (ja)
Inventor
Masahiro Kurita
正弘 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP26120295A priority Critical patent/JPH09101211A/en
Publication of JPH09101211A publication Critical patent/JPH09101211A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Sensors (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance the work efficiency by disusing the individual adjustment of function trimming and trimming the resistance evenly. SOLUTION: A sensor comprises a gauge part, an amplifier circuit 2, a temperature characteristic compensation circuit 3 for span voltage, and a temperature characteristic compensation circuit 4 at zero point wherein the temperature characteristic compensation circuit 3 for span voltage comprises a thermistor 7, three thick film resistors, a linear positive temperature characteristic resistor, and an operational amplifier. In the temperature characteristic compensation circuit 3 for span voltage, series circuit of the thermistor 7 and a resistor 8 is connected in parallel with a resistor 9 to provide a combined resistor part which is then connected in series with a linear positive temperature coefficient resistor 10 and the joint A of combined resistor part and the linear positive temperature coefficient resistor is connected with the plus terminal of the operational amplifier. On the other hand, a resistor is inserted between a gauge bridge 1 and a ground line and the joint B thereof is connected with the minus terminal of the operational amplifier.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【発明の属する技術分野】本発明は半導体圧力センサの
スパン電圧温度補償回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a span voltage temperature compensation circuit for a semiconductor pressure sensor.

【従来の技術】従来の半導体圧力センサのスパン電圧温
度補償方法は特願平2−135708 号明細書に示すように各
センサ毎にオペアンプ内の拡散抵抗を測定し、その値に
対応した厚膜抵抗をファンクショントリミングにより調
整している。スパン電圧温度補償方法では個別測定と個
別調整が必要で作業効率を上げることに配慮されていな
い問題があった。
2. Description of the Related Art A conventional method for compensating the span voltage and temperature of a semiconductor pressure sensor is to measure the diffusion resistance in an operational amplifier for each sensor as shown in Japanese Patent Application No. 2-135708 and to prepare a thick film corresponding to that value. The resistance is adjusted by function trimming. The span voltage temperature compensation method has a problem that individual measurement and individual adjustment are necessary and work efficiency is not considered.

【発明が解決しようとする課題】スパン電圧温度補償精
度を確保するためゲージ通電電流の温度特性を曲線正温
度特性にする。
In order to ensure the accuracy of span voltage temperature compensation, the temperature characteristic of the gauge current is set to the curve positive temperature characteristic.

【課題を解決するための手段】スパン温度補償回路にサ
ーミスタと厚膜抵抗の合成抵抗部で温度特性を曲線とし
リニア正温度係数抵抗器で正温度特性とする。あるいは
リニア正温度係数抵抗器に並列厚膜抵抗を配置すること
によってもゲージ通電電流の曲線正温度特性は得られ
る。前記スパン温度補償回路にすることにより一律に抵
抗トリミングし個別調整を廃止する。定電流駆動回路に
設けたリニア正温度係数抵抗器10により、ゲージ通電
電流は直線正温度特性となり、更にサーミスタ7へ直列
に厚膜抵抗8を接続し、サーミスタ7と直列厚膜抵抗8
に対し並列に厚膜抵抗9を接続した合成抵抗部をリニア
正温度係数抵抗器10に接続することにより直線正温度
特性を曲げて曲線正温度特性が得られる。サーミスタ7
を使用しないで厚膜抵抗にリニア正温度係数抵抗器10
と並列厚膜抵抗9の合成抵抗を接続することにより同様
に曲線正温度特性が得られる。
In a span temperature compensating circuit, a temperature characteristic is made a curve by a combined resistance portion of a thermistor and a thick film resistor, and a positive temperature characteristic is made by a linear positive temperature coefficient resistor. Alternatively, by arranging a parallel thick film resistor in the linear positive temperature coefficient resistor, the curve positive temperature characteristic of the gauge-carrying current can be obtained. By using the span temperature compensation circuit, resistance trimming is uniformly performed, and individual adjustment is abolished. The linear positive temperature coefficient resistor 10 provided in the constant current drive circuit causes the gauge current to have a linear positive temperature characteristic. Further, the thick film resistor 8 is connected in series to the thermistor 7, and the thermistor 7 and the series thick film resistor 8 are connected.
On the other hand, by connecting the combined resistance part in which the thick film resistor 9 is connected in parallel to the linear positive temperature coefficient resistor 10, the linear positive temperature characteristic is bent and the curve positive temperature characteristic is obtained. Thermistor 7
Linear temperature coefficient resistor 10 for thick film resistors without using
By connecting a combined resistance of the parallel thick film resistor 9 and the parallel thick film resistor 9, the curve positive temperature characteristic is similarly obtained.

【発明の実施の形態】以下、本発明の一実施例を図1で
説明する。圧力センサの回路構成は圧力信号を電気信号
に変換するゲージ部1とゲージ微小電圧信号を増幅して
センサ信号とするため厚膜抵抗とオペアンプで構成する
増幅回路2部及びスパン電圧温度補償回路3とゼロ点電
圧温度補償回路4で構成されている。ゲージ部1は半導
体材料例えば、シリコン表面に4ケの拡散抵抗5でホー
イストンブリッジに構成している。半導体材料の裏面は
数μのダイアフラムに加工することで圧力に応じたダイ
アフラム変位が発生し、4ケの拡散抵抗5のうち2ケは
抵抗値が減少し、残り2ケは増加する。減少抵抗と増加
抵抗を隣接接続することによりダイアフラムに圧力P6
が印加されるとブリッジホーイストン中点に印加圧力に
応じた微小電圧信号が発生する。一般に半導体圧力セン
サ用ゲージのスパン温度変化12は、図2に示すよう
に、悪く温度補償が必要である。本発明のスパン電圧温
度補償回路3はサーミスタ7へ直列に厚膜抵抗8を接続
し、更にサーミスタ7と直列厚膜抵抗8に対し並列に厚
膜抵抗9を接続した合成抵抗部へ、更にリニア正温度係
数抵抗器10を接続する。合成抵抗部とリニア正温度係
数抵抗器10の接合点Aをオペアンプのプラス端子へ接
続する。一方、ゲージブリッジとグランドライン間に抵
抗を設け、ゲージブリッジと抵抗の接続点Bをオペアン
プのマイナス端子に接続する。ゲージ通電電流11は図
2に示すゲージスパン温度変化の逆特性となるようサー
ミスタ7の抵抗値とB定数または厚膜抵抗8,9の抵抗
値,リニア正温度係数抵抗器10の温度係数と抵抗値を
適切に選ぶことにより得られる。次に第2実施例を図3
で説明する。第1実施例との相違はサーミスタ7,直列
厚膜抵抗8を止め、リニア正温度係数抵抗器10と並列
厚膜抵抗9を配置したことにある。上記説明ではリニア
正温度係数抵抗器10で説明したが正温度特性を有する
ダイオードおよびトランジスタを用いても温度補償は可
能である。また厚膜抵抗は他の抵抗、例えば、薄膜抵抗
等に置き換えても問題ない。増幅回路2については本発
明に関連しないため1段増幅回路の例を示したが本例以
外の2段増幅以上にしても問題ない。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to FIG. The circuit configuration of the pressure sensor is such that a gauge unit 1 for converting a pressure signal into an electric signal, an amplifier circuit 2 constituted by a thick film resistor and an operational amplifier for amplifying a gauge minute voltage signal into a sensor signal, and a span voltage temperature compensation circuit 3 And a zero point voltage temperature compensation circuit 4. The gauge portion 1 is formed of a semiconductor material, for example, silicon into a Wheatstone bridge with four diffusion resistors 5 on the surface. By processing the back surface of the semiconductor material into a diaphragm of several μ, a diaphragm displacement corresponding to the pressure occurs, and two of the four diffusion resistors 5 have a reduced resistance value and the other two have an increased resistance value. By connecting the decreasing resistance and the increasing resistance adjacently, the pressure P6 is applied to the diaphragm.
When is applied, a minute voltage signal corresponding to the applied pressure is generated at the midpoint of the bridge hoiston. Generally, the span temperature change 12 of a gauge for a semiconductor pressure sensor is bad and requires temperature compensation as shown in FIG. In the span voltage temperature compensating circuit 3 of the present invention, a thick film resistor 8 is connected in series to the thermistor 7, and further a linear resistor is provided to a combined resistance portion in which a thick film resistor 9 is connected in parallel to the thermistor 7 and the series thick film resistor 8. The positive temperature coefficient resistor 10 is connected. The junction point A between the combined resistance section and the linear positive temperature coefficient resistor 10 is connected to the positive terminal of the operational amplifier. On the other hand, a resistor is provided between the gauge bridge and the ground line, and the connection point B between the gauge bridge and the resistor is connected to the negative terminal of the operational amplifier. The gauge current 11 has the resistance value of the thermistor 7 and the B constant or the resistance values of the thick film resistors 8 and 9 and the temperature coefficient and resistance of the linear positive temperature coefficient resistor 10 so that the gauge span current 11 has an inverse characteristic of the gauge span temperature change. Obtained by choosing the value appropriately. Next, a second embodiment is shown in FIG.
Will be described. The difference from the first embodiment is that the thermistor 7 and the series thick film resistor 8 are stopped, and the linear positive temperature coefficient resistor 10 and the parallel thick film resistor 9 are arranged. Although the linear positive temperature coefficient resistor 10 has been described in the above description, temperature compensation can be performed by using a diode and a transistor having a positive temperature characteristic. There is no problem even if the thick film resistor is replaced with another resistor such as a thin film resistor. Since the amplifier circuit 2 is not related to the present invention, an example of a one-stage amplifier circuit is shown, but there is no problem even if two or more stages of amplification other than this example are used.

【発明の効果】半導体圧力センサのスパン電圧温度補償
をするため個別ゲージ特性測定と個別調整を廃止し、ス
パン電圧温度補償を一律抵抗トリミングで対応できるた
め作業性の向上が図れる。
EFFECT OF THE INVENTION Individual gauge characteristic measurement and individual adjustment are abolished in order to compensate the span voltage temperature of the semiconductor pressure sensor, and the span voltage temperature compensation can be dealt with by uniform resistance trimming, so that workability can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1の回路図。FIG. 1 is a circuit diagram of a first embodiment of the present invention.

【図2】半導体圧力センサのゲージスパン温度の特性
図。
FIG. 2 is a characteristic diagram of gauge span temperature of a semiconductor pressure sensor.

【図3】本発明の実施例2の回路図。FIG. 3 is a circuit diagram of a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…ゲージ部、2…増幅回路、3…スパン電圧温度補償
回路、4…ゼロ点電圧温度補償回路、5…拡散抵抗、6
…印加圧力、7…サーミスタ、8…直列抵抗、9…並列
抵抗、10…リニア正温度特性抵抗器、11…ゲージ通
電電流。
1 ... Gauge part, 2 ... Amplification circuit, 3 ... Span voltage temperature compensation circuit, 4 ... Zero point voltage temperature compensation circuit, 5 ... Diffusion resistance, 6
... Applied pressure, 7 ... Thermistor, 8 ... Series resistance, 9 ... Parallel resistance, 10 ... Linear positive temperature characteristic resistor, 11 ... Gauge energization current.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】半導体材料基板の表面に少なくとも1ケの
拡散抵抗を配置し、更に前記半導体材料基板の裏面をダ
イアフラムに加工したゲージチップと、温度補償回路及
び増幅回路を混成集積回路上に成形する半導体圧力セン
サにおいて、前記半導体圧力センサのスパン電圧温度補
償のためゲージ駆動方式を定電流駆動とし、前記電流温
度特性がゲージスパン温度特性の逆特性を得るため、ス
パン温度補償回路にサーミスタへ少なくとも1ケの直列
抵抗を接続し、更にその両端に少なくとも1ケの並列抵
抗を接続した合成抵抗部とリニア正温度係数抵抗器を直
列に接続し合成抵抗部と前記リニア正温度係数抵抗器の
接合点をオペアンプのプラス端子へ接続し、ゲージブリ
ッジとグランドライン間に抵抗を設け、前記ゲージブリ
ッジと前記抵抗の接続点を前記オペアンプのマイナス端
子に接続する構成を特徴とする半導体圧力センサ用スパ
ン電圧温度補償回路。
1. A gauge chip in which at least one diffusion resistor is arranged on a front surface of a semiconductor material substrate, and a back surface of the semiconductor material substrate is processed into a diaphragm, and a temperature compensation circuit and an amplification circuit are formed on a hybrid integrated circuit. In the semiconductor pressure sensor, the gauge drive method is a constant current drive for the span voltage temperature compensation of the semiconductor pressure sensor, and the current-temperature characteristic obtains an inverse characteristic of the gauge span temperature characteristic. A series resistance is connected to at least one parallel resistance at both ends, and a linear positive temperature coefficient resistor is connected in series to connect the series resistance to the linear positive temperature coefficient resistor. Connect the point to the positive terminal of the operational amplifier, provide a resistor between the gauge bridge and the ground line, and connect the gauge bridge and the resistor. Semiconductor pressure sensor span voltage temperature compensation circuit, characterized in configuration of connecting the attachment point to the negative terminal of the operational amplifier.
【請求項2】請求項1との相違は前記オペアンプの前記
プラス端子への接合を抵抗に前記リニア正温度係数抵抗
器へ前記並列抵抗で構成する合成抵抗部の接合点Aとし
た半導体圧力センサ用スパン電圧温度補償回路。
2. A semiconductor pressure sensor different from claim 1 in that the junction of the operational amplifier to the plus terminal is a resistor, and a junction point A of a combined resistance portion constituted by the parallel positive temperature coefficient resistor and the parallel resistor. Compensation circuit for span voltage.
JP26120295A 1995-10-09 1995-10-09 Temperature compensation circuit for span voltage of semiconductor pressure sensor Pending JPH09101211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26120295A JPH09101211A (en) 1995-10-09 1995-10-09 Temperature compensation circuit for span voltage of semiconductor pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26120295A JPH09101211A (en) 1995-10-09 1995-10-09 Temperature compensation circuit for span voltage of semiconductor pressure sensor

Publications (1)

Publication Number Publication Date
JPH09101211A true JPH09101211A (en) 1997-04-15

Family

ID=17358568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26120295A Pending JPH09101211A (en) 1995-10-09 1995-10-09 Temperature compensation circuit for span voltage of semiconductor pressure sensor

Country Status (1)

Country Link
JP (1) JPH09101211A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015133129A1 (en) * 2014-03-05 2015-09-11 株式会社デンソー Physical quantity detector
US11525751B2 (en) 2020-06-03 2022-12-13 Mitsumi Electric Co., Ltd. Sensor drive circuit with improved temperature characteristic compensation
CN115855327A (en) * 2023-02-22 2023-03-28 成都凯天电子股份有限公司 Adjustable resistance ceramic substrate applied to silicon piezoresistive pressure sensor and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015133129A1 (en) * 2014-03-05 2015-09-11 株式会社デンソー Physical quantity detector
JP2015180854A (en) * 2014-03-05 2015-10-15 株式会社デンソー Physical quantity detector
US11525751B2 (en) 2020-06-03 2022-12-13 Mitsumi Electric Co., Ltd. Sensor drive circuit with improved temperature characteristic compensation
CN115855327A (en) * 2023-02-22 2023-03-28 成都凯天电子股份有限公司 Adjustable resistance ceramic substrate applied to silicon piezoresistive pressure sensor and manufacturing method thereof
CN115855327B (en) * 2023-02-22 2023-06-09 成都凯天电子股份有限公司 Adjustable resistance ceramic substrate applied to silicon piezoresistive pressure sensor and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP3071202B2 (en) Semiconductor pressure sensor amplification compensation circuit
US4480478A (en) Pressure sensor employing semiconductor strain gauge
US5686826A (en) Ambient temperature compensation for semiconductor transducer structures
CA2145698C (en) Electronic circuit for a transducer
JPS59217375A (en) Semiconductor mechanic-electric conversion device
US4463274A (en) Temperature compensation circuit for pressure sensor
JPH0691265B2 (en) Semiconductor pressure sensor
US3956927A (en) Strain gauge transducer apparatus
US5134885A (en) Circuit arrangement for measuring a mechanical deformation, in particular under the influence of a pressure
JP2002116105A (en) Physical quantity detecting device
US4800759A (en) Semiconductor pressure converter
US6101883A (en) Semiconductor pressure sensor including a resistive element which compensates for the effects of temperature on a reference voltage and a pressure sensor
US5408885A (en) Pressure detecting circuit for semiconductor pressure sensor
JPH11153503A (en) Pressure sensor apparatus
JPH09101211A (en) Temperature compensation circuit for span voltage of semiconductor pressure sensor
JPH0425488B2 (en)
JP3544102B2 (en) Semiconductor pressure sensor
RU2036445C1 (en) Pressure converter
JP2001165797A (en) Semiconductor pressure sensor device
JPS6255629B2 (en)
JPH0371031A (en) Semiconductor pressure sensor
JP3402356B2 (en) Semiconductor integrated circuit
JPH0419494B2 (en)
JP2610736B2 (en) Amplification compensation circuit of semiconductor pressure sensor
JPH0682844B2 (en) Semiconductor strain converter