JPH09100701A - Moving blade of radial turbine - Google Patents

Moving blade of radial turbine

Info

Publication number
JPH09100701A
JPH09100701A JP25873895A JP25873895A JPH09100701A JP H09100701 A JPH09100701 A JP H09100701A JP 25873895 A JP25873895 A JP 25873895A JP 25873895 A JP25873895 A JP 25873895A JP H09100701 A JPH09100701 A JP H09100701A
Authority
JP
Japan
Prior art keywords
blade
shroud
moving blade
outlet
trailing edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP25873895A
Other languages
Japanese (ja)
Inventor
Takeshi Osako
雄志 大迫
Hirotaka Higashimori
弘高 東森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP25873895A priority Critical patent/JPH09100701A/en
Publication of JPH09100701A publication Critical patent/JPH09100701A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PROBLEM TO BE SOLVED: To average the flow velocity of gas and to reduce a flowing loss caused by viscosity in a shroud side by positioning the exit rear edge of a blade in the downstream side of the shroud side and in the upstream side of a hub side with the average radius of the blade as a reference and forming the same in a nearly straight line obliquely to a rotary shaft. SOLUTION: Since the exit rear edge 5 of a moving blade 2 is formed obliquely in a straight line so as to be positioned not in a surface perpendicular to a rotary shaft but in such a manner that its shroud side is positioned in the downstream direction and its hub side 12 is positioned in the upstream side more than the exit edge of the moving blade of a conventional example, the shroud side 11 is drawn by expanding a throat width against a blade pitch more for the hub side 12 than that of the moving blade of the conventional example. Thus, compared with the moving blade of the conventional example, a flow velocity in a shroud line 7 in which a flow rate is limited more is reduced, for a velocity triangle in the exit edge 5 the turning component of an exit absolute velocity is reduced in the shroud side 11 and thereby a flowing loss is reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、過給器、ガスター
ビン、ガスエキスパンダなどとして適用されるラジアル
タービンの動翼に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotor blade of a radial turbine applied as a supercharger, a gas turbine, a gas expander or the like.

【0002】[0002]

【従来の技術】図4はエンジンの過給器として使用され
ている従来のラジアルタービンの説明図である。図にお
いて、エンジンから排出されるガス9は本ラジアルター
ビンの渦巻状の流路をなすスクロール1内に流入し、紙
面に垂直の円周方向に旋回して半径方向の流速を与えら
れ、スクロール1の出口3、動翼2の入口前縁4を経て
動翼2内に流入し、動翼2の出口後縁5を経て排気ディ
フューザ6へ流出する。ガス9は動翼2内を通過する際
に動翼2を回転軸周りに回転させて動力を発生させる。
図における符号7は動翼2の入口前縁4から動翼2の出
口後縁5にかけてのシュラウドライン、8は同様に動翼
2の入口前縁4から出口後縁5にかけてのハブライン、
11は動翼2出口のシュラウド側、12は動翼2出口の
ハブ側である。
2. Description of the Related Art FIG. 4 is an explanatory view of a conventional radial turbine used as a supercharger of an engine. In the figure, a gas 9 discharged from an engine flows into a scroll 1 forming a spiral flow passage of the radial turbine, and is swirled in a circumferential direction perpendicular to the plane of the drawing to be given a flow velocity in a radial direction. Through the outlet 3 and the inlet leading edge 4 of the moving blade 2 into the moving blade 2 and through the outlet trailing edge 5 of the moving blade 2 to the exhaust diffuser 6. When the gas 9 passes through the inside of the moving blade 2, the gas 9 rotates the rotating blade 2 around the rotation axis to generate power.
Reference numeral 7 in the drawing is a shroud line from the inlet leading edge 4 of the moving blade 2 to the outlet trailing edge 5 of the moving blade 2, and 8 is a hub line from the inlet leading edge 4 to the outlet trailing edge 5 of the moving blade 2 in the same manner.
Reference numeral 11 is a shroud side of the outlet of the moving blade 2, and 12 is a hub side of the outlet of the moving blade 2.

【0003】[0003]

【発明が解決しようとする課題】上記のような従来のラ
ジアルタービンにおいては、各動翼2は回転軸に放射状
に装着され、また動翼2の出口後縁5が回転軸に垂直に
直線状に形成されているため、動翼2の出口後縁5にお
けるスロート幅θは翼ピッチPに対してハブ側12で小
さく、シュラウド側11で大きくなる。従って、動翼2
の出口後縁5において翼ピッチPとスロート幅θとで定
義される翼角=sin -1(θ/P)はハブ側12で小さく
シュラウド側11で大きい不均一な分布となっている。
In the conventional radial turbine as described above, the rotor blades 2 are mounted radially on the rotary shaft, and the trailing edge 5 of the outlet of the rotor blade 2 is linear and perpendicular to the rotary shaft. Therefore, the throat width θ at the outlet trailing edge 5 of the moving blade 2 is smaller on the hub side 12 and larger on the shroud side 11 with respect to the blade pitch P. Therefore, moving blade 2
The blade angle = sin −1 (θ / P) defined by the blade pitch P and the throat width θ at the outlet trailing edge 5 is small on the hub side 12 and large on the shroud side 11 and has an uneven distribution.

【0004】このため、動翼2内におけるガス9の流れ
はシュラウドライン7に多量のガス9が流れてシュラウ
ドライン7の流速はハブライン8に比べて可成り大きく
なっており、流速が速い分だけ粘性による流れの損失が
増加する。また、動翼2の出口後縁5における翼角が平
均半径における翼角に比べてハブ側12で小さくシュラ
ウド側11で大きいことにより、出口後縁5における速
度三角形もシュラウド側11で出口絶対速度の旋回成分
が大きくなって流れの損失が大きくなるため、一般にラ
ジアルタービンの動翼2出口における効率はハブ側12
で高く、シュラウド側11では低いなどの不具合があ
る。
Therefore, the flow of the gas 9 in the rotor blade 2 is such that a large amount of gas 9 flows in the shroud line 7 and the flow velocity of the shroud line 7 is considerably higher than that of the hub line 8. Increased flow loss due to viscosity. Further, since the blade angle at the outlet trailing edge 5 of the moving blade 2 is smaller on the hub side 12 and larger on the shroud side 11 than the blade angle at the average radius, the velocity triangle at the outlet trailing edge 5 is also the shroud side 11 at the outlet absolute velocity. Since the swirling component of the radial turbine increases and the flow loss increases, the efficiency at the outlet of the blade 2 of the radial turbine is generally 12 on the hub side.
There is a problem such as high at the shroud side and low at the shroud side 11.

【0005】[0005]

【課題を解決するための手段】本発明に係るラジアルタ
ービンの動翼は上記課題の解決を目的にしており、複数
の翼が回転軸に放射状に設けられたラジアルタービンの
動翼における翼の出口後縁が翼の平均半径を基準として
シュラウド側で下流にハブ側で上流に位置して回転軸に
対して斜めの略直線状に形成されている。このように、
翼の出口後縁を回転軸に対して垂直な従来例の動翼にお
ける翼の出口後縁よりも翼の平均半径を基準としてシュ
ラウド側が下流方向にハブ側が上流方向に位置するよう
に略直線状に形成したことにより、スロート幅は従来例
の動翼よりもハブ側を拡げ、シュラウド側を絞ることが
できる。これにより、従来例の動翼に比べてシュラウド
ラインを流れる流量が抑えられ、シュラウドラインにお
ける流速が小さくなるとともに、翼の出口後縁における
翼角を従来例の動翼よりもハブ側を平均半径における翼
角とほぼ同等に大きく、シュラウド側を平均半径におけ
る翼角よりも小さくすることができ、翼の出口後縁にお
ける流速の速いシュラウド側、流速の遅いハブ側から流
出するガスの流速が平均化されて軸流に近付く。
SUMMARY OF THE INVENTION A blade of a radial turbine according to the present invention is intended to solve the above-mentioned problems, and a blade outlet of a blade of a radial turbine in which a plurality of blades are radially provided on a rotating shaft. The trailing edge is located on the shroud side downstream and on the hub side upstream on the basis of the average radius of the blade, and is formed in a substantially linear shape oblique to the rotation axis. in this way,
The blade trailing edge is generally linear so that the shroud side is located downstream and the hub side is located upstream from the blade trailing edge in the conventional example of a blade that is perpendicular to the axis of rotation. By forming the throat, the throat width can be expanded on the hub side and narrowed on the shroud side as compared with the moving blade of the conventional example. As a result, the flow rate in the shroud line is suppressed compared to the blade of the conventional example, the flow velocity in the shroud line is reduced, and the blade angle at the outlet trailing edge of the blade is smaller than the blade of the conventional example on the hub side in the average radius. The blade angle at the shroud side can be made smaller than the blade angle at the average radius, and the flow velocity of the gas flowing out from the shroud side where the flow velocity is fast and the hub side where the flow velocity is slow is average on the shroud side. It is turned into an axial flow.

【0006】[0006]

【発明の実施の形態】図1乃至図3は本発明の実施の一
形態に係るラジアルタービンの説明図である。図におい
て、本実施の形態に係るラジアルタービンはエンジンの
過給器として使用されるもので、図に示すようにエンジ
ンから排出されるガス9は本ラジアルタービンの渦巻状
の流路をなすスクロール1内に流入し、紙面に垂直の円
周方向に旋回して半径方向の流速を与えられ、スクロー
ル1の出口3、動翼2の入口前縁4を経て動翼2内に流
入し、動翼2の出口後縁5を経て排気ディフューザ6へ
流出する。ガス9は動翼2内を通過する際に動翼2を回
転軸周りに回転させて動力を発生させる。図における符
号7は動翼2の入口前縁4から動翼2の出口後縁5にか
けてのシュラウドライン、8は同様に動翼2の入口前縁
4から出口後縁5にかけてのハブライン、11は動翼2
出口のシュラウド側、12は動翼2出口のハブ側であ
る。各動翼2は回転軸に放射状に装着されている。ま
た、本ラジアルタービンにおいては動翼2の出口後縁5
が回転軸に対して垂直ではなく、平均半径R=〔(RI
2 +RO 2 )/2〕1/2 を基準としてシュラウド側11
が下流に、ハブ側12が上流に位置するように傾き角ψ
をψ=4°〜10°と設定し、この傾き角ψで出口後縁
5のシュラウド側11とハブ側12とを直線で結ぶよう
に形成されている。
1 to 3 are explanatory views of a radial turbine according to an embodiment of the present invention. In the figure, the radial turbine according to the present embodiment is used as a supercharger of an engine, and as shown in the figure, a gas 9 discharged from the engine is a scroll 1 that forms a spiral flow path of the radial turbine. Flow into the inside of the rotor, the rotor is swirled in the circumferential direction perpendicular to the plane of the drawing and is given a flow velocity in the radial direction, and then flows into the rotor blade 2 through the outlet 3 of the scroll 1 and the inlet front edge 4 of the rotor blade 2, It flows out to the exhaust diffuser 6 through the trailing edge 5 of the outlet 2. When the gas 9 passes through the inside of the moving blade 2, the gas 9 rotates the rotating blade 2 around the rotation axis to generate power. Reference numeral 7 in the drawing is a shroud line from the inlet leading edge 4 of the moving blade 2 to the outlet trailing edge 5 of the moving blade 2, 8 is a hub line from the inlet leading edge 4 to the outlet trailing edge 5 of the moving blade 2, and 11 is Moving blade 2
The outlet is a shroud side, and 12 is a hub side of the rotor blade 2 outlet. Each rotor blade 2 is radially mounted on the rotating shaft. Further, in this radial turbine, the outlet trailing edge 5 of the rotor blade 2 is
Is not perpendicular to the axis of rotation, and the average radius R = [(R I
2 + R O 2 ) / 2] 1/2 as the standard shroud side 11
Is located downstream and the hub side 12 is located upstream so that the tilt angle ψ
Is set to ψ = 4 ° to 10 °, and the shroud side 11 and the hub side 12 of the outlet trailing edge 5 are connected by a straight line at this inclination angle ψ.

【0007】このように、動翼2の出口後縁5が回転軸
に対して垂直な面ではなく、平均半径Rを基準として従
来例の動翼における出口後縁よりもシュラウド側11が
下流方向にハブ側12が上流方向に位置するように傾い
て直線状に形成されていることにより、図2(a)に実
線で示すように翼ピッチPに対してスロート幅θを従来
例の動翼よりもハブ側12を拡げてシュラウド側11を
絞ることができる。これにより、従来例の動翼に比べて
シュラウドライン7を流れる流量が抑えられてシュラウ
ドライン7における流速が小さくなり、図3に示すよう
に出口後縁5における速度三角形もシュラウド側11で
出口絶対速度の旋回成分が小さくなって流れの損失が低
減する。また、動翼2の出口後縁5がこのように傾いて
直線状に形成されていることにより、図2(b)に実線
で示すように出口後縁5において翼ピッチPとスロート
幅θとで定義される翼角=sin -1(θ/P)が従来例の
動翼よりもハブ側12で平均半径Rにおける翼角とほぼ
同等に大きく、シュラウド側11で平均半径Rにおける
翼角よりも小さく分布させることができ、流速の速いシ
ュラウド側11、流速の遅いハブ側12を流れるガス9
の流速を平均化して軸流に近づけることができる。
As described above, the outlet trailing edge 5 of the moving blade 2 is not a plane perpendicular to the rotation axis, but the shroud side 11 is downstream from the outlet trailing edge of the moving blade of the conventional example based on the average radius R. Since the hub side 12 is inclined and is formed in a straight line so as to be positioned in the upstream direction, the throat width θ is set to the blade pitch P as shown by the solid line in FIG. The shroud side 11 can be narrowed by expanding the hub side 12 more. As a result, the flow rate in the shroud line 7 is suppressed and the flow velocity in the shroud line 7 is reduced as compared with the blade of the conventional example, and as shown in FIG. The swirl component of the velocity is reduced and the flow loss is reduced. Further, since the outlet trailing edge 5 of the moving blade 2 is thus inclined and formed linearly, the blade pitch P and the throat width θ at the outlet trailing edge 5 are as shown by the solid line in FIG. 2B. The blade angle = sin −1 (θ / P) defined by is larger than the blade angle at the average radius R on the hub side 12 and the blade angle at the average radius R on the shroud side 11 than the blade of the conventional example. The gas 9 flowing through the shroud side 11 having a high flow velocity and the hub side 12 having a low flow velocity.
It is possible to average the flow velocities of and to approximate the axial flow.

【0008】従来のラジアルタービンにおいては、各動
翼は回転軸に放射状に装着され、また動翼の出口後縁が
回転軸に垂直に直線状に形成されているため、動翼の出
口後縁におけるスロート幅θは翼ピッチPに対してハブ
側で小さく、シュラウド側で大きくなる。従って、動翼
の出口後縁において翼ピッチPとスロート幅θとで定義
される翼角=sin -1(θ/P)はハブ側で小さくシュラ
ウド側で大きい不均一な分布となっている。このため、
動翼内におけるガスの流れはシュラウドラインに多量の
ガスが流れてシュラウドラインの流速はハブラインに比
べて可成り大きくなっており、流速が速い分だけ粘性に
よる流れの損失が増加する。また、動翼の出口後縁にお
ける翼角が平均半径における翼角に比べてハブ側で小さ
くシュラウド側で大きいことにより、出口後縁における
速度三角形もシュラウド側で出口絶対速度の旋回成分が
大きくなって流れの損失が大きくなるため、一般にラジ
アルタービンの動翼出口における効率はハブ側で高く、
シュラウド側では低いなどの不具合があるが、本ラジア
ルタービンにおいては動翼2の出口後縁5が回転軸に対
して垂直な面ではなく、平均半径Rを基準としてシュラ
ウド側11が下流方向にハブ側12が上流方向に位置す
るように直線状に形成されており、このように動翼2の
出口後縁5の形状を回転軸に対して垂直な面よりもシュ
ラウド側11が下流方向に、ハブ側12が上流方向に位
置するように直線状に形成したことにより動翼2の出口
後縁5におけるスロート幅θがシュラウド側11で絞ら
れハブ側12で拡げられる形状となり、シュラウドライ
ン7における流速が抑えられるとともに出口後縁5から
流出するガス9を軸流状に近付けることができる。この
結果、シュラウド側の粘性による流れの損失が低減され
てラジアルタービンの性能が向上する。
In the conventional radial turbine, since each moving blade is radially mounted on the rotating shaft and the outlet trailing edge of the moving blade is formed in a straight line perpendicular to the rotating shaft, the outlet trailing edge of the moving blade is formed. The throat width θ at is smaller on the hub side and larger on the shroud side with respect to the blade pitch P. Therefore, the blade angle = sin −1 (θ / P) defined by the blade pitch P and the throat width θ at the trailing edge of the outlet of the moving blade is small on the hub side and large on the shroud side and has an uneven distribution. For this reason,
A large amount of gas flows through the shroud line in the rotor blade, and the flow velocity of the shroud line is considerably higher than that of the hub line. The flow loss due to viscosity increases as the flow velocity increases. In addition, since the blade angle at the outlet trailing edge of the rotor blade is smaller on the hub side and larger on the shroud side than the blade angle at the average radius, the velocity triangle at the outlet trailing edge also has a large swirling component of the outlet absolute velocity on the shroud side. Therefore, the efficiency at the rotor blade outlet of the radial turbine is generally high on the hub side,
Although there is a problem such as low on the shroud side, in this radial turbine, the outlet trailing edge 5 of the rotor blade 2 is not a plane perpendicular to the rotation axis, but the shroud side 11 is a hub in the downstream direction based on the average radius R. The side 12 is linearly formed so as to be positioned in the upstream direction, and thus the shape of the outlet trailing edge 5 of the moving blade 2 is such that the shroud side 11 is in the downstream direction with respect to the plane perpendicular to the rotation axis. Since the hub side 12 is linearly formed so as to be positioned in the upstream direction, the throat width θ at the outlet trailing edge 5 of the rotor blade 2 is narrowed at the shroud side 11 and widened at the hub side 12, and the shroud line 7 has a shape. The flow velocity is suppressed, and the gas 9 flowing out from the outlet trailing edge 5 can be made to approach an axial flow. As a result, the flow loss due to the viscosity on the shroud side is reduced, and the performance of the radial turbine is improved.

【0009】[0009]

【発明の効果】本発明に係るラジアルタービンの動翼は
前記のように構成されており、翼の出口後縁におけるシ
ュラウド側、ハブ側から流出するガスの流速が平均化さ
れるので、シュラウド側の粘性による流れの損失が低減
されてラジアルタービンの性能が向上する。
The blade of the radial turbine according to the present invention is constructed as described above, and the flow velocities of the gas flowing out from the shroud side and the hub side at the trailing edge of the blade outlet are averaged, so that the shroud side. The loss of the flow due to the viscosity of is reduced and the performance of the radial turbine is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1(a)は本発明の実施の一形態に係るラジ
アルタービンの断面図、同図(b)はその動翼の子午面
断面図である。
1A is a cross-sectional view of a radial turbine according to an embodiment of the present invention, and FIG. 1B is a meridional cross-sectional view of a moving blade thereof.

【図2】図2(a)はそのスロート幅の分布図、同図
(b)はその出口翼角の分布図である。
FIG. 2A is a distribution diagram of the throat width, and FIG. 2B is a distribution diagram of the outlet blade angle thereof.

【図3】図3はその動翼出口における速度三角形であ
る。
FIG. 3 is a velocity triangle at the rotor blade exit.

【図4】図4(a)は従来のラジアルタービンの断面
図、同図(b)はその作用説明図である。
FIG. 4 (a) is a sectional view of a conventional radial turbine, and FIG. 4 (b) is an explanatory view of its operation.

【符号の説明】[Explanation of symbols]

1 スクロール 2 動翼 3 スクロールの出口 4 動翼の入口前縁 5 動翼の出口後縁 6 排気ディフューザ 7 動翼のシュラウドライン 8 動翼のハブライン 9 ガス 11 動翼出口のシュラウド側 12 動翼出口のハブ側 1 scroll 2 rotor blade 3 scroll outlet 4 rotor blade inlet leading edge 5 rotor blade outlet trailing edge 6 exhaust diffuser 7 rotor blade shroud line 8 rotor blade hubline 9 gas 11 rotor blade outlet shroud side 12 rotor blade outlet Hub side

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 複数の翼が回転軸に放射状に設けられた
ラジアルタービンの動翼において、翼の出口後縁が翼の
平均半径を基準としてシュラウド側で下流にハブ側で上
流に位置して回転軸に対して斜めの略直線状に形成され
たことを特徴とするラジアルタービンの動翼。
1. A radial turbine rotor blade having a plurality of blades radially arranged on a rotating shaft, wherein an outlet trailing edge of the blade is located downstream on the shroud side and upstream on the hub side with reference to an average radius of the blade. A radial turbine rotor blade characterized by being formed in a substantially straight line that is oblique with respect to a rotation axis.
JP25873895A 1995-10-05 1995-10-05 Moving blade of radial turbine Withdrawn JPH09100701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25873895A JPH09100701A (en) 1995-10-05 1995-10-05 Moving blade of radial turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25873895A JPH09100701A (en) 1995-10-05 1995-10-05 Moving blade of radial turbine

Publications (1)

Publication Number Publication Date
JPH09100701A true JPH09100701A (en) 1997-04-15

Family

ID=17324401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25873895A Withdrawn JPH09100701A (en) 1995-10-05 1995-10-05 Moving blade of radial turbine

Country Status (1)

Country Link
JP (1) JPH09100701A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018123045A1 (en) * 2016-12-28 2018-12-27 三菱重工エンジン&ターボチャージャ株式会社 Turbine and turbocharger
WO2020110257A1 (en) * 2018-11-29 2020-06-04 三菱重工エンジン&ターボチャージャ株式会社 Turbine rotor blade and turbine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018123045A1 (en) * 2016-12-28 2018-12-27 三菱重工エンジン&ターボチャージャ株式会社 Turbine and turbocharger
WO2020110257A1 (en) * 2018-11-29 2020-06-04 三菱重工エンジン&ターボチャージャ株式会社 Turbine rotor blade and turbine
CN111819347A (en) * 2018-11-29 2020-10-23 三菱重工发动机和增压器株式会社 Turbine rotor blade and turbine
EP3786425A4 (en) * 2018-11-29 2021-06-23 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Turbine rotor blade and turbine
JPWO2020110257A1 (en) * 2018-11-29 2021-09-02 三菱重工エンジン&ターボチャージャ株式会社 Turbine blades and turbines
CN111819347B (en) * 2018-11-29 2022-06-07 三菱重工发动机和增压器株式会社 Turbine rotor blade and turbine
US11365631B2 (en) 2018-11-29 2022-06-21 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Turbine rotor blade and turbine

Similar Documents

Publication Publication Date Title
US7665964B2 (en) Turbine
US6540481B2 (en) Diffuser for a centrifugal compressor
JP5762641B2 (en) Mixed flow turbine
KR100530824B1 (en) Mixed flow turbine and mixed flow turbine rotor blade
EP1304445B1 (en) Structure of radial turbine scroll and blades
US3936223A (en) Compressor diffuser
JP2016539276A (en) Curved diffusion channel section of centrifugal compressor
JP2002213202A (en) Gas turbine blade
JPH0893691A (en) Variable inlet guide vane of centrifugal compressor
JPS6133968B2 (en)
JP2011132810A (en) Moving blade of radial turbine
US3837760A (en) Turbine engine
JP2020186649A (en) Impeller for centrifugal compressor, centrifugal compressor and turbo charger
JP3040601B2 (en) Radial turbine blade
JPH09100701A (en) Moving blade of radial turbine
WO2021010338A1 (en) Impeller and centrifugal compressor using same
JP7336026B2 (en) Turbine and turbocharger with this turbine
JP4402503B2 (en) Wind machine diffusers and diffusers
JP3380897B2 (en) Compressor
JP3534730B2 (en) Rotor blade of radial turbine
JP7303763B2 (en) Exhaust diffuser and turbine housing, and supercharger
JP3462613B2 (en) Turbine scroll
JP3124188B2 (en) Mixed flow turbine nozzle
JPH0615878B2 (en) High-speed centrifugal compressor diffuser
JP2012132446A (en) Supersonic compressor rotor, and method for assembling the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030107