JPH09100386A - Polymer composite and preparation thereof - Google Patents

Polymer composite and preparation thereof

Info

Publication number
JPH09100386A
JPH09100386A JP25766795A JP25766795A JPH09100386A JP H09100386 A JPH09100386 A JP H09100386A JP 25766795 A JP25766795 A JP 25766795A JP 25766795 A JP25766795 A JP 25766795A JP H09100386 A JPH09100386 A JP H09100386A
Authority
JP
Japan
Prior art keywords
polymer composite
anion exchange
exchange resin
meth
unsaturated monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25766795A
Other languages
Japanese (ja)
Inventor
Katsuhiko Yano
勝彦 矢野
Atsuro Kiyokawa
敦郎 清川
Hiroaki Takayanagi
弘昭 高柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP25766795A priority Critical patent/JPH09100386A/en
Publication of JPH09100386A publication Critical patent/JPH09100386A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prepare a polymer composite which can easily desorb an org. material and has an anion exchange capacity by impregnating a styrenic basic anion exchange resin with particular two monomers and conducting copolymn. in the presence of an insoluble medium. SOLUTION: A styrenic basic anion exchange resin (A) is impregnated with a monovinyl unsatd. monomer (B) selected from (meth)acrylic acid derivatives having a group represented by formula N<+> R1 R2 R3 or NR1 R2 (wherein R1 , R2 , and R3 represent H, an alkyl, or an alkanol, provided that R1 , R2 , and R3 do not simultaneously represent H) (e.g. dimethylaminopropylacrylamide), a cross- linkable polyvinyl unsatd. monomer (C) selected from poly (meth)acrylic acid derivatives (e.g. N,N-methylenebisacrylamide), and a polymn. initiator (D) (e.g. potassium persulfate). Copolymn. is conducted in the presence of a medium which does not dissolve the components (B) and (C) (e.g. toluene) to prepare a polymer composite.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アニオン交換樹
脂、特に水中の有機物の吸脱着性に優れたアニオン交換
樹脂として利用される高分子複合体に関するものであ
る。
TECHNICAL FIELD The present invention relates to an anion exchange resin, and more particularly to a polymer composite used as an anion exchange resin having excellent adsorption and desorption properties of organic matter in water.

【0002】[0002]

【従来の技術】従来、イオン交換樹脂の多くは、スチレ
ンとジビニルベンゼンの共重合体を母体構造に持ち、こ
の共重合体に種々のイオン交換基を付与することによっ
て製造されてきた。このスチレン系共重合体の母体構造
は、物理的、化学的、熱的に安定であり、イオン交換樹
脂の母体構造として適した構造であるといえる。このイ
オン交換樹脂は、脱塩水の製造や種々の有機物の精製等
様々な用途に用いられてきた。
2. Description of the Related Art Conventionally, most ion exchange resins have been produced by having a copolymer of styrene and divinylbenzene as a matrix structure and imparting various ion exchange groups to the copolymer. The matrix structure of this styrene-based copolymer is physically, chemically and thermally stable, and can be said to be a structure suitable as the matrix structure of the ion exchange resin. This ion exchange resin has been used for various purposes such as production of demineralized water and purification of various organic substances.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、イオン
交換樹脂は、そのスチレン系共重合体の母体構造によ
り、有機物の疎水的な不可逆吸着を避けられない構造で
あり、また同時に親水性の物質に対する親和性も減少す
る。したがって、イオン交換樹脂の用途によっては、あ
る程度の親水性を付与した構造が望まれていた。また、
イオン交換樹脂の基本性能は、中性塩分解容量、水分含
有量、粒径等によって決定される。イオン交換樹脂を種
々の手法により改質し新たな物性を付加する場合、これ
らの基本性能を維持することが必要である。
However, the ion exchange resin has a structure in which hydrophobic irreversible adsorption of organic substances is unavoidable due to the matrix structure of the styrene copolymer, and at the same time, it has an affinity for hydrophilic substances. Sex also decreases. Therefore, a structure having a certain degree of hydrophilicity has been desired depending on the use of the ion exchange resin. Also,
The basic performance of the ion exchange resin is determined by the neutral salt decomposition capacity, the water content, the particle size and the like. When the ion exchange resin is modified by various methods to add new physical properties, it is necessary to maintain these basic performances.

【0004】さらに、イオン交換樹脂による脱塩水の製
造において、原水中に有機物が含まれているとその有機
物がイオン交換樹脂に不可逆吸着し、この汚染によりイ
オン交換樹脂の脱塩性能が著しく低下するという課題が
あり、このような場合、イオン交換樹脂の再生操作によ
り吸着した有機物が容易に脱着する樹脂が求められてい
た。本発明者らは、3級アミノ基あるいは4級アンモニ
ウム基を有する低級(メタ)アクリル系モノビニル不飽
和単量体と架橋性のポリビニル不飽和単量体とを共重合
してなる高分子、およびスチレン系強塩基性アニオン交
換樹脂の高分子複合体を得ることにより、水中での有機
物の吸脱着性に優れアニオン交換性能を有する高分子複
合体である本発明を完成した。
Further, in the production of demineralized water using an ion exchange resin, if the raw water contains an organic matter, the organic matter is irreversibly adsorbed to the ion exchange resin, and this contamination significantly reduces the desalination performance of the ion exchange resin. In such a case, there has been a demand for a resin in which the adsorbed organic matter is easily desorbed by the regeneration operation of the ion exchange resin. The present inventors have prepared a polymer obtained by copolymerizing a lower (meth) acrylic monovinyl unsaturated monomer having a tertiary amino group or a quaternary ammonium group and a crosslinkable polyvinyl unsaturated monomer, and By obtaining a polymer composite of a styrene-based strongly basic anion exchange resin, the present invention, which is a polymer composite having excellent adsorption and desorption of organic substances in water and having anion exchange performance, was completed.

【0005】[0005]

【課題を解決するための手段】本発明は、上記課題を解
決するために請求項1において、化学式−N+123
あるいは−NR12(式中、R1、R2、R3はそれぞれ
水素原子、アルキル基、またはアルカノール基を表す。
ただし、R1、R2、R3の全てが同時に水素原子である
ことはない。)で表される基を有する(メタ)アクリル
酸誘導体から選ばれるモノビニル不飽和単量体と多価
(メタ)アクリル酸誘導体から選ばれる架橋性ポリビニ
ル不飽和単量体とを共重合してなる高分子、およびスチ
レン系強塩基性アニオン交換樹脂からなることを特徴と
する高分子複合体を、提供するものである。
In order to solve the above-mentioned problems, the present invention provides the chemical formula -N + R 1 R 2 R 3 in Claim 1.
Alternatively, —NR 1 R 2 (In the formula, R 1 , R 2 and R 3 each represent a hydrogen atom, an alkyl group or an alkanol group.
However, not all of R 1 , R 2 and R 3 are hydrogen atoms at the same time. ) A copolymer of a monovinyl unsaturated monomer selected from (meth) acrylic acid derivatives having a group represented by and a crosslinkable polyvinyl unsaturated monomer selected from polyvalent (meth) acrylic acid derivatives. There is provided a polymer composite comprising a polymer and a styrene-based strongly basic anion exchange resin.

【0006】さらに、本発明は、スチレン系強塩基性ア
ニオン交換樹脂に、モノビニル不飽和単量体、架橋性ポ
リビニル不飽和単量体および重合開始剤を含浸させ、こ
れら単量体を実質的に溶解しない媒体の存在下、共重合
することを特徴とする請求項1記載の高分子複合体の製
造方法を、提供するものである。
Further, in the present invention, a styrene-based strongly basic anion exchange resin is impregnated with a monovinyl unsaturated monomer, a crosslinkable polyvinyl unsaturated monomer and a polymerization initiator, and these monomers are substantially contained. The method for producing a polymer composite according to claim 1, wherein the copolymerization is carried out in the presence of a medium which does not dissolve.

【0007】[0007]

【発明の実施の形態】以下、本発明を具体的に説明す
る。本発明は、スチレン系強塩基性アニオン交換樹脂の
物理的、化学的及び熱的安定性を保持しつつ有機物の吸
脱着性の優れた樹脂組成物である高分子複合体を得るこ
とを目的とし、スチレン系強塩基性アニオン交換樹脂の
母体構造における有機物の疎水的な吸着を抑制するため
イオン交換能を有する親水性基を導入することにより達
成したのである。即ち、本発明は、特定のモノビニル不
飽和単量体と特定の架橋性ポリビニル不飽和単量体とを
共重合してなる高分子、およびスチレン系強塩基性アニ
オン交換樹脂からなる高分子複合体に存する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described below. An object of the present invention is to obtain a polymer composite which is a resin composition having excellent adsorption and desorption properties of organic substances while maintaining the physical, chemical and thermal stability of a styrene-based strongly basic anion exchange resin. This was achieved by introducing a hydrophilic group having an ion exchange ability in order to suppress hydrophobic adsorption of organic substances in the matrix structure of the styrene-based strongly basic anion exchange resin. That is, the present invention is a polymer composite comprising a polymer obtained by copolymerizing a specific monovinyl unsaturated monomer and a specific crosslinkable polyvinyl unsaturated monomer, and a styrene-based strongly basic anion exchange resin. Exist in.

【0008】本発明におけるモノビニル不飽和単量体と
は、化学式−N+123あるいは−NR12(式中、
1、R2、R3はそれぞれ水素原子、C1〜C10のアルキ
ル基、またはアルカノール基を表す。ただし、R1
2、R3の全てが同時に水素原子であることはない。)
で表される基を有する(メタ)アクリル酸誘導体から選
ばれるものである。モノビニル不飽和単量体の具体例と
しては、N,N-ジメチルアミノプロピルアクリルアミド、
トリメチルアンモニオプロピルアクリルアミド塩化物、
(メタ)アクリル酸ジメチルアミノエチル、(メタ)ア
クリル酸トリメチルアンモニオエチル塩化物、(メタ)
アクリルアミド、N-ヒドロキシメチル(メタ)アクリル
アミド、N,N-ジメチル(メタ)アクリルアミド等が挙げ
られる。これらは1種または2種以上の混合物であって
もよい。好ましくは、アニオン交換能を有しているN,N-
ジメチルアミノプロピルアクリルアミド、トリメチルア
ンモニオプロピルアクリルアミド塩化物が挙げられる。
The monovinyl unsaturated monomer in the present invention has the chemical formula -N + R 1 R 2 R 3 or -NR 1 R 2 (wherein
R 1 , R 2 , and R 3 each represent a hydrogen atom, a C 1 to C 10 alkyl group, or an alkanol group. Where R 1 ,
R 2 and R 3 are not all hydrogen atoms at the same time. )
It is selected from a (meth) acrylic acid derivative having a group represented by Specific examples of monovinyl unsaturated monomers include N, N-dimethylaminopropyl acrylamide,
Trimethylammoniopropyl acrylamide chloride,
Dimethylaminoethyl acrylate (meth), trimethylammonioethyl acrylate (meth) chloride, (meth)
Examples thereof include acrylamide, N-hydroxymethyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide and the like. These may be one kind or a mixture of two or more kinds. Preferably, N, N- having anion exchange capacity
Examples include dimethylaminopropyl acrylamide and trimethylammoniopropyl acrylamide chloride.

【0009】本発明における架橋性ポリビニル不飽和単
量体としては、分子内に2個以上のビニル基を有する多
価(メタ)アクリル酸誘導体から選ばれるものである。
この架橋性ポリビニル不飽和単量体の具体例としては、
N,N-メチレンビス(メタ)アクリルアミド、エチレング
リコールジ(メタ)アクリレート、ジエチレングリコー
ルジ(メタ)アクリレート等が挙げられる。これらは1
種または2種以上の混合物であってもよい。好ましく
は、N,N-メチレンビス(メタ)アクリルアミドが挙げら
れる。
The crosslinkable polyvinyl unsaturated monomer in the present invention is selected from polyvalent (meth) acrylic acid derivatives having two or more vinyl groups in the molecule.
Specific examples of the crosslinkable polyvinyl unsaturated monomer include:
Examples thereof include N, N-methylenebis (meth) acrylamide, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate and the like. These are 1
It may be one kind or a mixture of two or more kinds. Preferably, N, N-methylenebis (meth) acrylamide is used.

【0010】本発明におけるスチレン系強塩基性アニオ
ン交換樹脂については、公知のもの(例えば、北条叙正
編「キレート樹脂、イオン交換樹脂」(株)講談社 発
行:参照)が使用できる。また、通常のアニオン交換樹
脂には、細孔構造としてミクロポアとマクロポアがあり
ミクロポアのみを有するゲル型のものおよびミクロポア
とマクロポアの両者を有する多孔性のものがあるが、本
発明で使用するスチレン系強塩基性アニオン交換樹脂と
しては、ゲル型および多孔性のどちらのものでもよい。
さらに、アニオン交換樹脂のイオン交換基における対イ
オン種には、Clイオンを持つCl型、OHイオンを持つOH型
等があり、本発明のスチレン系強塩基性アニオン交換樹
脂としては、特に区別することなく任意の種類のものを
使用することができる。
As the styrene-based strongly basic anion exchange resin in the present invention, known ones (see, for example, "Chelate Resin, Ion Exchange Resin", Kodansha, Ltd., edited by Tadashi Hojo) can be used. In addition, the usual anion exchange resins include a gel type having micropores and macropores as a pore structure and having only micropores and a porous type having both micropores and macropores. The strongly basic anion exchange resin may be either gel type or porous type.
Further, the counter ion species in the ion exchange group of the anion exchange resin, there is a Cl type having Cl ions, OH type having OH ions, etc., and as the styrene-based strongly basic anion exchange resin of the present invention, it is particularly distinguished. Any kind can be used without.

【0011】本発明の高分子複合体は、まず最初にスチ
レン系強塩基性アニオン交換樹脂に単官能性単量体であ
るモノビニル不飽和単量体と多官能性単量体である架橋
性ポリビニル不飽和単量体および重合開始剤からなる混
合物を含浸させ、得られた含浸アニオン交換樹脂を上記
単量体混合物から濾過分離し、ついでこれら単量体混合
物を実質的に溶解しない媒体の存在下、加熱し重合する
ことにより製造することができる。
The polymer composite of the present invention comprises a styrene-based strongly basic anion exchange resin, a monofunctional unsaturated monomer which is a monovinyl unsaturated monomer and a polyfunctional monomer which is a crosslinkable polyvinyl. The mixture of the unsaturated monomer and the polymerization initiator is impregnated, the resulting impregnated anion exchange resin is separated by filtration from the monomer mixture, and then the monomer mixture is not substantially dissolved in the presence of a medium. It can be produced by heating and polymerizing.

【0012】本発明の高分子複合体の製造方法につい
て、以下実施態様例を挙げて具体的に説明する。本発明
における単量体混合物の含浸は、上記単量体を溶解する
ことのできる溶媒を使用するのがよい。好ましくは溶媒
として水を使用することができる。本発明における上記
単量体混合物等の組成割合は、モノビニル不飽和単量体
を溶媒に対して1重量%以上好ましくは10重量%以上
の溶液に調整し、架橋性ポリビニル不飽和単量体をモノ
ビニル不飽和単量体に対して0.1〜20重量%の範囲
の量を上記溶液に溶解させるのがよい。また、重合開始
剤はモノビニル不飽和単量体に対して0.01〜10重
量%の範囲の量を上記溶液に溶解させる。ついで、ここ
で調整された溶液を、スチレン系強塩基性アニオン交換
樹脂に対し2倍容量以上加え、その分散液を振とうし、
単量体混合物を上記アニオン交換樹脂に含浸させる。含
浸は、振とう速度50〜100rpmで1〜24時間室温で行
う。重合開始剤としては、水溶性のものが挙げられ、例
えば過硫酸カリウム、過硫酸アンモニウムなどの過硫酸
塩類が挙げられる。
The method for producing the polymer composite of the present invention will be specifically described below with reference to embodiments. For the impregnation of the monomer mixture in the present invention, it is preferable to use a solvent that can dissolve the above-mentioned monomers. Water can be preferably used as the solvent. The composition ratio of the monomer mixture or the like in the present invention is adjusted such that the monovinyl unsaturated monomer is a solution of 1% by weight or more, preferably 10% by weight or more with respect to the solvent, and the crosslinkable polyvinyl unsaturated monomer is added. An amount in the range of 0.1 to 20% by weight based on the monovinyl unsaturated monomer is preferably dissolved in the above solution. Further, the polymerization initiator is dissolved in the above solution in an amount in the range of 0.01 to 10% by weight based on the monovinyl unsaturated monomer. Then, the solution prepared here is added to the styrene-based strongly basic anion exchange resin in an amount not less than twice the volume, and the dispersion is shaken,
The monomer mixture is impregnated into the anion exchange resin. The impregnation is carried out at room temperature at a shaking speed of 50-100 rpm for 1-24 hours. Examples of the polymerization initiator include water-soluble ones such as potassium persulfate and ammonium persulfate.

【0013】さらに、上記分散溶液から単量体混合物を
含浸させたスチレン系強塩基性アニオン交換樹脂を濾過
分離し、含浸アニオン交換樹脂体積の2〜10倍容量の単
量体混合物を実質的に溶解しない媒体に分散懸濁させ、
加熱し重合する。上記単量体混合物を実質的に溶解しな
い媒体としては、例えば、トルエン、ジクロロエタン、
ヘキサンなどが挙げられる。本発明方法における重合条
件は、重合開始剤の種類および添加量などにより適宜選
択されるが、通常50〜80℃で1〜24時間共重合させれ
ばよい。共重合反応後、得られた高分子複合体は、濾過
洗浄されて製品となる。
Further, the styrene-based strongly basic anion exchange resin impregnated with the monomer mixture is filtered and separated from the above dispersion solution, and the monomer mixture having a volume of 2 to 10 times the volume of the impregnated anion exchange resin is substantially obtained. Disperse and suspend in a medium that does not dissolve,
Heat to polymerize. The medium that does not substantially dissolve the monomer mixture, for example, toluene, dichloroethane,
Hexane and the like can be mentioned. The polymerization conditions in the method of the present invention are appropriately selected depending on the type and addition amount of the polymerization initiator, but usually they may be copolymerized at 50 to 80 ° C. for 1 to 24 hours. After the copolymerization reaction, the obtained polymer composite is filtered and washed into a product.

【0014】本発明の高分子複合体において、高分子お
よびスチレン系強塩基性アニオン交換樹脂の各組成割合
は、以下に示す方法で求めることができる。本発明の高
分子複合体および原料のスチレン系強塩基性アニオン交
換樹脂の重量当たりの中性塩分解容量は、三菱化学
(株)発行のダイヤイオンマニュアルに記載の方法に従
って測定し求められる。また、本発明の高分子の中性塩
分解容量は、含浸する単量体混合物の仕込み組成比から
求めることができる。求められたスチレン系強塩基性ア
ニオン交換樹脂の重量当たりの中性塩分解容量をa(meq
/g)、高分子の重量当たりの中性塩分解容量をb(meq/
g)、高分子複合体の重量当たりの中性塩分解容量をc(m
eq/g)とすると、高分子複合体中の高分子の含有重量分
率x(重量%)は、次式で表される。 x=((c−a)/(b−a))*100 本発明において、上記式によって求められる高分子複合
体中の高分子の含有重量分率が0.1〜30重量%の範
囲となるように含まれているのが好ましい。高分子の含
有重量分率が0.1重量%未満では高分子複合化の効果
が少なくなり、また30重量%を越える場合には高分子
複合体の物理的、化学的、熱的安定性が低下することが
あるので好ましくない。
In the polymer composite of the present invention, the respective composition ratios of the polymer and the styrene-based strongly basic anion exchange resin can be determined by the following method. The neutral salt decomposition capacity per weight of the polymer composite of the present invention and the raw material styrene-based strongly basic anion exchange resin is measured and determined according to the method described in the DIAION Manual issued by Mitsubishi Chemical Corporation. Further, the neutral salt decomposing capacity of the polymer of the present invention can be determined from the charged composition ratio of the impregnated monomer mixture. The neutral salt decomposition capacity per weight of the obtained styrene-based strongly basic anion exchange resin was calculated as a (meq
/ g), the neutral salt decomposition capacity per weight of polymer is b (meq /
g), the neutral salt decomposition capacity per weight of the polymer complex is c (m
eq / g), the content weight fraction x (wt%) of the polymer in the polymer composite is expressed by the following equation. x = ((c−a) / (b−a)) * 100 In the present invention, the content weight fraction of the polymer in the polymer composite obtained by the above formula is in the range of 0.1 to 30 wt%. Is preferably included. When the content weight fraction of the polymer is less than 0.1% by weight, the effect of the polymer composite is reduced, and when it exceeds 30% by weight, the physical, chemical and thermal stability of the polymer composite is deteriorated. It may decrease, which is not preferable.

【0015】また、本発明の高分子複合体をアニオン交
換能を有する樹脂組成物として実用に供する場合には、
上記高分子複合体中の水分含有率が40〜80%、粒径
が100〜1000μmであることが望ましい。さらに、本発
明の高分子複合体は、従来既存のアニオン交換樹脂と実
質的に同等のイオン交換容量、および物理的、化学的、
熱的安定性を有する。また、本発明の高分子複合体は、
これまでのアニオン交換樹脂に比べ親水性が向上してお
り、水中の代表的有機物であるフミン酸に対して、吸着
性が向上すると共に再生剤による脱着性が向上してい
る。したがって、本発明の産業上の利用価値は極めて大
である。
When the polymer composite of the present invention is put to practical use as a resin composition having anion exchange ability,
It is desirable that the polymer composite has a water content of 40 to 80% and a particle size of 100 to 1000 μm. Further, the polymer composite of the present invention has an ion exchange capacity substantially equivalent to that of conventional anion exchange resins, and physical, chemical,
It has thermal stability. Further, the polymer composite of the present invention,
It has improved hydrophilicity compared to conventional anion exchange resins, and has improved adsorption to humic acid, which is a typical organic substance in water, and improved desorption by a regenerant. Therefore, the industrial utility value of the present invention is extremely high.

【0016】[0016]

【実施例】以下に、本発明を実施例、比較例に基づいて
さらに詳細に説明するが本発明はその要旨を越えない限
り、以下の記載例に限定されるものではない。なお、以
下の例において、中性塩分解容量、水分含有率は、三菱
化学(株)発行のダイヤイオンマニュアルに準拠して測
定した。また、得られた高分子複合体およびイオン交換
樹脂の耐有機汚染性の評価は、水中の有機物の指標とし
て次に示すフミン酸の吸着脱着試験方法により行った。
EXAMPLES The present invention will be described in more detail based on the following examples and comparative examples, but the present invention is not limited to the following examples as long as the gist thereof is not exceeded. In addition, in the following examples, the neutral salt decomposition capacity and the water content were measured in accordance with the DIAION Manual issued by Mitsubishi Chemical Corporation. The evaluation of the organic contamination resistance of the obtained polymer composite and ion exchange resin was carried out by the following adsorption / desorption test method of humic acid as an index of organic matter in water.

【0017】[吸着脱着試験方法]フミン酸(和光純薬
製試薬)0.1gを、1N NaOH 100mlに溶解し、メンブレン
フィルターで濾過し、カチオン交換樹脂ダイヤイオンSK
1B(H) 500mlに通液した後、NaOHでpHを7付近に調整し
た。このフミン酸溶液を25ppm濃度に希釈し、フミン酸
標準液とした。一方、高分子複合体およびアニオン交換
樹脂の試料をOH型に調整した後、10mlを三角フラスコに
採取した。フミン酸吸着試験は、上記試料とフミン酸標
準液300mlとを25℃、24時間浸とう混合して、350nm波長
の吸光度を測定することにより、フミン酸の吸着量を算
出した。また、フミン酸脱着試験は、フミン酸吸着試験
後の試料を濾過分離し、10% NaCl 300ml中に加え、25
℃、24時間振とう混合し、再度350nm波長の吸光度を測定
することにより、フミン酸の脱着量を算出した。
[Adsorption and desorption test method] 0.1 g of humic acid (reagent manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 100 ml of 1N NaOH, filtered through a membrane filter, and cation exchange resin DIAION SK
After passing through 500 ml of 1B (H), the pH was adjusted to around 7 with NaOH. This humic acid solution was diluted to a concentration of 25 ppm to prepare a humic acid standard solution. On the other hand, after adjusting the samples of the polymer complex and the anion exchange resin to the OH type, 10 ml was collected in an Erlenmeyer flask. In the humic acid adsorption test, the amount of humic acid adsorbed was calculated by measuring the absorbance at a wavelength of 350 nm by mixing the above sample with 300 ml of a humic acid standard solution by stirring at 25 ° C. for 24 hours. In the humic acid desorption test, the sample after the humic acid adsorption test was separated by filtration, added to 300 ml of 10% NaCl, and
The desorbed amount of humic acid was calculated by mixing again by shaking at 24 ° C. for 24 hours and measuring the absorbance at a wavelength of 350 nm again.

【0018】[実施例1]アニオン交換樹脂ダイヤイオ
ンSA10A(ダイヤイオンは三菱化学(株)の商標であ
る)をCl型に調整した。得られた樹脂30mlを遠心分離
器で脱水した後、200mlガラス製三角フラスコに入れ、1
0wt%トリメチルアンモニオプロピルアミド塩化物および
0.5wt%メチレンビスアクリルアミドを含む単量体混合物
100mlを加え、25℃、16時間、100rpmで振とうした。さら
に、0.5wt%過硫酸カリウム水溶液を加え1時間、25℃、100
rpmの条件で振とうし、ついで濾過して、含浸樹脂を得
た。さらに、500ml四つ口フラスコに、上記含浸樹脂
(約30ml)およびトルエン100mlを加え、窒素雰囲気下
攪拌しながら、70℃、7時間保持重合した後、濾過水洗す
ることにより目的の高分子複合体を得た。この高分子複
合体の中性塩分解容量は3.59meq/gであり、水分含
有率は45.8%、粒径は300〜600μmであっ
た。また、高分子複合体の赤外線吸収(IR)スペクト
ル(図1)は、原料のアニオン交換樹脂にはない165
0cmー1のアミド結合に由来する吸収が確認された。実
施例1および比較例1の中性塩分解容量の値から、トリ
メチルアンモニオプロピルアクリルアミド塩化物とメチ
レンビスアクリルアミドからなる高分子が、高分子複合
体中に3.6重量%含まれていることが判明した。
Example 1 Anion exchange resin DIAION SA10A (DIAION is a trademark of Mitsubishi Chemical Co., Ltd.) was adjusted to a Cl type. After dehydrating 30 ml of the obtained resin in a centrifuge, put it in a 200 ml glass Erlenmeyer flask and
0 wt% trimethylammoniopropylamide chloride and
Monomer mixture containing 0.5wt% methylenebisacrylamide
100 ml was added, and the mixture was shaken at 25 ° C. for 16 hours at 100 rpm. Further, add 0.5 wt% potassium persulfate aqueous solution for 1 hour at 25 ° C and 100
Shaking was carried out under the condition of rpm, and then filtration was carried out to obtain an impregnated resin. Furthermore, the above impregnated resin (about 30 ml) and 100 ml of toluene were added to a 500 ml four-necked flask, and the mixture was polymerized by holding it at 70 ° C for 7 hours while stirring in a nitrogen atmosphere, and then washing with water to obtain the desired polymer complex. Got The polymer salt had a neutral salt decomposition capacity of 3.59 meq / g, a water content of 45.8% and a particle size of 300 to 600 μm. In addition, the infrared absorption (IR) spectrum of the polymer composite (FIG. 1) was not found in the anion exchange resin as a raw material.
Absorption derived from an amide bond at 0 cm -1 was confirmed. From the values of the neutral salt decomposing capacity of Example 1 and Comparative Example 1, it was found that the polymer composed of trimethylammoniopropylacrylamide chloride and methylenebisacrylamide was contained in the polymer composite in an amount of 3.6% by weight. There was found.

【0019】[実施例2]実施例1において、ダイヤイ
オンSA10Aを多孔性のアニオン交換樹脂ダイヤイオンHPA
25に変えた以外は、実施例1と同様にして高分子複合体
を得た。得られた高分子複合体の中性塩分解容量は3.
22meq/gで、水分含有率は57.9%、粒径は150
〜600μmであった。IRスペクトル(図2)は、1
650cmー1のアミド結合由来の吸収が認められた。実
施例2および比較例2の中性塩分解容量の値から、高分
子複合体中の高分子の含有量は、26.5重量%であっ
た。
Example 2 In Example 1, Diaion SA10A was used as the porous anion exchange resin Diaion HPA.
A polymer composite was obtained in the same manner as in Example 1 except that the number was changed to 25. The neutral salt decomposition capacity of the obtained polymer composite was 3.
22 meq / g, water content 57.9%, particle size 150
Was about 600 μm. IR spectrum (Fig. 2) is 1
Absorption derived from an amide bond at 650 cm -1 was observed. From the values of the neutral salt decomposing capacity of Example 2 and Comparative Example 2, the content of the polymer in the polymer composite was 26.5% by weight.

【0020】[比較例1]実施例1で用いたダイヤイオ
ンSA10Aをそのまま試料とした。このイオン交換樹脂の
中性塩分解容量は、3.55meq/gであり、水分含有率
は45.6%、粒径は300〜600μmであった。
Comparative Example 1 Diaion SA10A used in Example 1 was used as it was as a sample. The ion exchange resin had a neutral salt decomposing capacity of 3.55 meq / g, a water content of 45.6%, and a particle size of 300 to 600 μm.

【0021】[比較例2]実施例2で用いたダイヤイオ
ンHPA25をそのまま試料とした。このイオン交換樹脂の
中性塩分解容量は、2.70meq/gであり、水分含有率
は65.3%、粒径は150〜600μmであった。
Comparative Example 2 Diaion HPA25 used in Example 2 was used as a sample as it was. The ion exchange resin had a neutral salt decomposing capacity of 2.70 meq / g, a water content of 65.3%, and a particle size of 150 to 600 μm.

【0022】[フミン酸吸着脱着試験結果]フミン酸標
準液の1回の測定に使用したフミン酸量を100%としたと
き、各試料へのフミン酸の吸着量、脱着量および脱着率
(脱着量/吸着量)%を表1に示す。表1から明らかな
ように、本発明の高分子複合体は、脱着率が大きくフミ
ン酸の脱着性能が極めて良好であることが分かる。
[Results of humic acid adsorption / desorption test] When the amount of humic acid used for one measurement of the humic acid standard solution is 100%, the amount of humic acid adsorbed on each sample, the amount of desorption, and the desorption rate (desorption The amount / adsorption amount)% is shown in Table 1. As is apparent from Table 1, the polymer composite of the present invention has a large desorption rate and a very good humic acid desorption performance.

【0023】[0023]

【表1】 表1 樹脂 吸着成分 脱着成分 脱着率(%) 実施例1 95% 39% 42 実施例2 100% 48% 48 比較例1 55% 17% 32 比較例2 99% 32% 32[Table 1] Table 1 Resin Adsorption component Desorption component Desorption rate (%) Example 1 95% 39% 42 Example 2 100% 48% 48 Comparative Example 1 55% 17% 32 Comparative Example 2 99% 32% 32

【0024】[0024]

【発明の効果】本発明の高分子複合体は、従来のアニオ
ン交換樹脂と比べて同等の交換容量、水分および粒径を
持ち、物理的、化学的、熱的安定性を有する。さらに、
本発明の高分子複合体は、従来のアニオン交換樹脂と比
べて親水性が付与され、有機物の吸脱着性に優れた構造
を持つ。したがって、本発明方法で得られた高分子複合
体は、再生能力に優れ、イオン交換樹脂として長期間使
用できるので、工業的価値が大きい。
The polymer composite of the present invention has the same exchange capacity, water content and particle size as conventional anion exchange resins, and has physical, chemical and thermal stability. further,
The polymer composite of the present invention has a structure that is more hydrophilic than conventional anion exchange resins and has excellent adsorption / desorption properties of organic substances. Therefore, the polymer composite obtained by the method of the present invention is excellent in regeneration ability and can be used as an ion exchange resin for a long period of time, so that it has great industrial value.

【0025】[0025]

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1で得られた高分子複合体の赤外線吸収
スペクトルである。
FIG. 1 is an infrared absorption spectrum of the polymer composite obtained in Example 1.

【図2】実施例2で得られた高分子複合体の赤外線吸収
スペクトルである。
FIG. 2 is an infrared absorption spectrum of the polymer composite obtained in Example 2.

【図3】比較例1の樹脂試料で得られる赤外線吸収スペ
クトルである。
FIG. 3 is an infrared absorption spectrum obtained with a resin sample of Comparative Example 1.

【図4】比較例2の樹脂試料で得られる赤外線吸収スペ
クトルである。
FIG. 4 is an infrared absorption spectrum obtained with a resin sample of Comparative Example 2.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】化学式−N+123あるいは−NR12
(式中、R1、R2、R3はそれぞれ水素原子、アルキル基、
またはアルカノール基を表す。ただし、R1、R 2、R3
全てが同時に水素原子であることはない。)で表される
基を有する(メタ)アクリル酸誘導体から選ばれるモノ
ビニル不飽和単量体と多価(メタ)アクリル酸誘導体か
ら選ばれる架橋性ポリビニル不飽和単量体とを共重合し
てなる高分子、およびスチレン系強塩基性アニオン交換
樹脂からなることを特徴とする高分子複合体。
1. Chemical formula-N+R1RTwoRThreeOr -NR1RTwo
(Where R1, RTwo, RThreeAre hydrogen atom, alkyl group,
Alternatively, it represents an alkanol group. Where R1, R Two, RThreeof
Not all are hydrogen atoms at the same time. )
Selected from (meth) acrylic acid derivatives having a group
Is it a vinyl unsaturated monomer and a polyvalent (meth) acrylic acid derivative?
Copolymerized with a crosslinkable polyvinyl unsaturated monomer selected from
Polymer and styrene strong base anion exchange
A polymer composite comprising a resin.
【請求項2】スチレン系強塩基性アニオン交換樹脂が、
ゲル型のアニオン交換樹脂であることを特徴とする請求
項1記載の高分子複合体。
2. A styrene-based strongly basic anion exchange resin,
The polymer composite according to claim 1, which is a gel type anion exchange resin.
【請求項3】スチレン系強塩基性アニオン交換樹脂が、
多孔性のアニオン交換樹脂であることを特徴とする請求
項1記載の高分子複合体。
3. A styrene-based strongly basic anion exchange resin,
The polymer composite according to claim 1, which is a porous anion exchange resin.
【請求項4】モノビニル不飽和単量体が、ジメチルアミ
ノプロピルアクリルアミドおよび/またはトリメチルア
ンモニオプロピルアクリルアミド塩化物から選ばれてな
ることを特徴とする請求項1ないし請求項3のいずれか
1項に記載の高分子複合体。
4. The monovinyl unsaturated monomer is selected from dimethylaminopropyl acrylamide and / or trimethylammoniopropyl acrylamide chloride, and any one of claims 1 to 3 is characterized. The polymer composite described.
【請求項5】架橋性ポリビニル不飽和単量体が、N,N-メ
チレンビス(メタ)アクリルアミド、エチレングリコー
ルジ(メタ)アクリレート、ジエチレングリコールジ
(メタ)アクリレートから選ばれた1種または2種以上
の混合物であることを特徴とする請求項1ないし請求項
4のいずれか1項に記載の高分子複合体。
5. The crosslinkable polyvinyl unsaturated monomer is one or more selected from N, N-methylenebis (meth) acrylamide, ethylene glycol di (meth) acrylate and diethylene glycol di (meth) acrylate. The polymer composite according to any one of claims 1 to 4, which is a mixture.
【請求項6】請求項1記載の高分子が、高分子複合体中
に0.1〜30重量%の範囲で含まれていることを特徴
とする請求項1記載の高分子複合体。
6. The polymer composite according to claim 1, wherein the polymer according to claim 1 is contained in the polymer composite in an amount of 0.1 to 30% by weight.
【請求項7】高分子複合体が、該高分子複合体中の水分
含有率40〜80%、粒径100〜1000μmである
ことを特徴とする請求項1ないし請求項6のいずれか1
項に記載の高分子複合体。
7. The polymer composite according to claim 1, wherein the polymer composite has a water content of 40 to 80% and a particle diameter of 100 to 1000 μm.
The polymer composite according to the item.
【請求項8】スチレン系強塩基性アニオン交換樹脂に、
モノビニル不飽和単量体、架橋性ポリビニル不飽和単量
体および重合開始剤を含浸させ、これら単量体を実質的
に溶解しない媒体の存在下、共重合することを特徴とす
る請求項1記載の高分子複合体の製造方法。
8. A styrene-based strongly basic anion exchange resin,
The monovinyl unsaturated monomer, the crosslinkable polyvinyl unsaturated monomer and a polymerization initiator are impregnated, and the copolymerization is carried out in the presence of a medium in which these monomers are not substantially dissolved. A method for producing a polymer composite.
JP25766795A 1995-10-04 1995-10-04 Polymer composite and preparation thereof Pending JPH09100386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25766795A JPH09100386A (en) 1995-10-04 1995-10-04 Polymer composite and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25766795A JPH09100386A (en) 1995-10-04 1995-10-04 Polymer composite and preparation thereof

Publications (1)

Publication Number Publication Date
JPH09100386A true JPH09100386A (en) 1997-04-15

Family

ID=17309438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25766795A Pending JPH09100386A (en) 1995-10-04 1995-10-04 Polymer composite and preparation thereof

Country Status (1)

Country Link
JP (1) JPH09100386A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001063683A3 (en) * 2000-02-23 2002-03-14 Toyota Motor Co Ltd Polymer electrolyte membrane and method of production thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001063683A3 (en) * 2000-02-23 2002-03-14 Toyota Motor Co Ltd Polymer electrolyte membrane and method of production thereof
US7060735B2 (en) 2000-02-23 2006-06-13 Toyota Jidosha Kabushiki Kaisha Polymer electrolyte membrane and method of production thereof

Similar Documents

Publication Publication Date Title
JP4988574B2 (en) Macroporous ion exchange resin
Hosoya et al. Influence of the seed polymer on the chromatographic properties of size monodisperse polymeric separation media prepared by a multi‐step swelling and polymerization method
EP1966287B1 (en) Method of making macroporous cation exchange resins
KR860003044A (en) Composite porous material, preparation method thereof, and method for separating metal element
WO2011163070A1 (en) Semi-interpenetrating polymer network
CN107892733B (en) Heavy metal wastewater ion adsorption resin and preparation method thereof
Wang et al. Column preconcentration of lead in aqueous solution with macroporous epoxy resin-based polymer monolithic matrix
CN106660039B (en) Sulfonic acid-containing polymeric materials as amine adsorbents
US5880240A (en) Alkyl-containing porous resin, process for its preparation and its use
EP0425848B1 (en) Column packing material for gel permeation chromatography, process of preparation and use thereof
Maciejewska Characterization of macroporous 1‐vinyl‐2‐pyrrolidone copolymers obtained by suspension polymerization
EP0007792B1 (en) Synthetic polymeric adsorbents and ion exchange resins, their production and processes using them
Sal¸ h et al. Congo red-attached poly (EGDMA-HEMA) micro beads for removal of heavy metal ions
JPH09100386A (en) Polymer composite and preparation thereof
Ma et al. Dispersion solid-phase extraction of flavonoid with amphiphilic monomers N-vinyl pyrrolidone and 1 H, 1 H, 7 H-dodecafluoroheptyl methacrylate based poly (styrene-divinylbenzene) and silica
JP2003064128A (en) Boron-absorbing polymer porous body, method for manufacturing the same and boron absorbing agent
KR20000050964A (en) Method For Controlling Surface Area And Microporosity of Polymer Bead And Process for Preparing Post-crosslinking Polymer Bead Whose Surface Area And Microporosity Are Increased
JP2987949B2 (en) Porous resin and method for producing the same
JP2021031677A (en) Polar polymer fine particle, production method and usage thereof
Suárez et al. Functionalized glycidyl methacrylate based polymers as stationary phases for protein retention
JP2743072B2 (en) Packing material for liquid chromatography
WO2001096556A1 (en) The use of polymer adsorbent particles in dna separation
JP2004190014A (en) Porous cross-linked polymer, adsorbent, and their manufacturing process
JP3657436B2 (en) Polymer packing material for liquid chromatography and process for producing the same
KR100565863B1 (en) New Nanoporous Organic Polymer composite and its Synthesis Method thereof and application for catalysis