JPH0899110A - Method for controlling thickness with rolling mill - Google Patents

Method for controlling thickness with rolling mill

Info

Publication number
JPH0899110A
JPH0899110A JP6234912A JP23491294A JPH0899110A JP H0899110 A JPH0899110 A JP H0899110A JP 6234912 A JP6234912 A JP 6234912A JP 23491294 A JP23491294 A JP 23491294A JP H0899110 A JPH0899110 A JP H0899110A
Authority
JP
Japan
Prior art keywords
rolling
temperature
rolled
rolling mill
pass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6234912A
Other languages
Japanese (ja)
Inventor
Tadashi Uemura
忠司 植村
Kazufumi Baba
和史 馬場
Kazuhiro Yahiro
和広 八尋
Isamu Okamura
勇 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP6234912A priority Critical patent/JPH0899110A/en
Publication of JPH0899110A publication Critical patent/JPH0899110A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE: To control thickness with a high accuracy from the time when a material to be rolled is bitten into a rolling mill in the case that the same material is rolled changing the direction every pass. CONSTITUTION: In a thickness control method with the rolling mill 4 at the time of rolling the material (steel sheet) to be rolled which is extracted from a heating furnace 1 changing the direction every pass, every alternate rolling of the material to be rolled in the forward direction 5 and in reverse direction 6, the temp. the predicting calculation of the bitten end part of the material to be rolled is executed before the end part is bitten into the rolling mill, the rolling load at the time of biting the material into the rolling mill is calculated based on the predicted temp., the opening degree of roll is determined from the rolling load and the opening degree of roll is set to the rolling mill.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、圧延機による板厚制御
方法、特にパス毎に圧延方向を変えて圧延する際に圧延
機に噛み込まれる被圧延材の先端温度を高精度に推定
し、それを圧延荷重計算に用いることにより、高精度な
ロール開度設定を行うことができる圧延機による板厚制
御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling plate thickness by a rolling mill, and in particular, highly accurately estimates the tip temperature of a material to be rolled that is caught in the rolling mill when rolling in different rolling directions. The present invention relates to a strip thickness control method by a rolling mill capable of performing highly accurate roll opening setting by using it for rolling load calculation.

【0002】[0002]

【従来の技術】被圧延材、例えば厚板鋼板を圧延する際
に圧延温度を正確に予測することは、板厚・平坦度制御
により鋼板を良好な寸法精度で製造する上で必要な最も
基本的で重要な要素技術の1つである。即ち、鋼板の温
度推定が不正確であると、圧延荷重の推定を誤ることに
なり、板厚精度の低下や形状不良を招くことになる。特
に、圧延機に最初に噛み込まれる鋼板先端部(以下、噛
込端部とも言う)の板厚精度は、自動板厚制御装置では
制御し得ないため、該先端部の板厚精度の向上のために
は鋼板が圧延機に噛み込まれる時の荷重を高精度に予測
することが必要であるが、そのためには鋼板の噛込端部
の温度を正確に予測し、評価することが不可欠である。
2. Description of the Related Art Accurately predicting a rolling temperature when rolling a material to be rolled, for example, a thick steel plate, is the most basic requirement for manufacturing a steel plate with good dimensional accuracy by controlling the thickness and flatness. It is one of the important and important elemental technologies. That is, if the temperature estimation of the steel sheet is inaccurate, the estimation of the rolling load will be erroneous, which will lead to a reduction in sheet thickness accuracy and a defective shape. Particularly, since the plate thickness accuracy of the steel plate tip portion (hereinafter, also referred to as a biting end portion) that is first bit into the rolling mill cannot be controlled by the automatic plate thickness control device, the plate thickness accuracy of the tip portion is improved. For that purpose, it is necessary to accurately predict the load when the steel plate is bitten into the rolling mill, but for that purpose it is essential to accurately predict and evaluate the temperature of the biting end of the steel plate. Is.

【0003】従来より、厚板鋼板の圧延時に鋼板先端温
度を予測する技術としては、例えば特開昭62−409
27号公報に開示されているように、加熱炉内に存在す
るときの鋼板の長手方向温度分布及びその鋼板が圧延機
に噛み込まれるまでの空冷時間と水冷時間より、鋼板先
端部の平均温度と鋼板中央部の平均温度との差を推定
し、圧延機噛込時の鋼板先端部の平均温度を予測する方
法があった。
Conventionally, as a technique for predicting the steel plate tip temperature during the rolling of a thick steel plate, for example, JP-A-62-409 is used.
As disclosed in Japanese Unexamined Patent Publication No. 27-27, the average temperature of the tip of the steel sheet is calculated from the temperature distribution in the longitudinal direction of the steel sheet when present in the heating furnace and the air-cooling time and the water-cooling time until the steel sheet is caught in the rolling mill. There was a method of estimating the difference between the average temperature of the steel plate central part and the average temperature of the steel plate tip part when the rolling mill is engaged.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、同一の
被圧延材に対する圧延方向をパス毎に変更する圧延で
は、例えば奇数番目と偶数番目のパスで、鋼板の長手方
向に交互に方向を変更して圧延を行う場合は、図7に加
熱炉抽出時からの圧延終了までの時間に対して板厚変化
と共に示した鋼板の前端部と後端部の温度変化を示した
ように、通常鋼板先端部(前端部)と尾端部(後端部)
とでは温度が異なるため、加熱炉抽出時の鋼板長手方向
先端部の温度を予測し、その予測温度から奇数番目のパ
スで適切な板厚にするためのロール開度を決定できたと
しても、その次の偶数番目のパスでは、噛込端部が尾端
部に変わるため、同一の予測温度を用いたのではロール
開度を求めることができないため、高精度な板厚制御が
できないという問題があった。
However, in rolling in which the rolling direction for the same material to be rolled is changed for each pass, for example, in the odd-numbered and even-numbered passes, the direction is alternately changed in the longitudinal direction of the steel sheet. When rolling is performed, as shown in FIG. 7, the temperature changes at the front end and the rear end of the steel sheet are shown along with the change in the sheet thickness with respect to the time from the extraction of the heating furnace to the end of rolling. (Front end) and tail end (rear end)
Since the temperature is different in and, even if it is possible to predict the temperature of the front end of the steel plate longitudinal direction at the time of extracting the heating furnace, even if it is possible to determine the roll opening for an appropriate plate thickness in the odd numbered passes from the predicted temperature, In the next even-numbered pass, the bite end changes to the tail end, so if the same predicted temperature is used, the roll opening cannot be obtained, so high-precision thickness control cannot be performed. was there.

【0005】この問題は、矩形の鋼板を縦方向(長手方
向)に圧延する場合だけでなく、その方向と直交する横
方向(幅方向)に圧延する場合にも、幅方向両端部では
通常温度が異なるために同様に存在する。
This problem arises not only when a rectangular steel plate is rolled in the longitudinal direction (longitudinal direction) but also when it is rolled in the lateral direction (width direction) orthogonal to that direction, at normal temperature at both ends in the width direction. Exists because they are different.

【0006】本発明は、前記従来の問題点を解決するべ
くなされたもので、同一の被圧延材をパス毎に方向を変
更して圧延する場合に、圧延機への噛込時からその板厚
を高精度に制御することができる圧延機による板厚制御
方法を提供することを課題とする。
The present invention has been made to solve the above-mentioned conventional problems, and when the same material to be rolled is rolled by changing the direction for each pass, the plate is caught from the time of being caught in the rolling mill. An object of the present invention is to provide a strip thickness control method by a rolling mill capable of controlling the thickness with high accuracy.

【0007】[0007]

【課題を解決するための手段】本発明は、被圧延材をパ
ス毎に方向を変えて圧延する際の圧延機による板厚制御
方法において、被圧延材の噛込端部の温度を、該端部が
圧延機に噛み込まれる前に予測計算し、その予測温度に
基づいて圧延機噛込時の圧延荷重を算出し、該圧延荷重
からロール開度を決定し、該ロール開度を圧延機に設定
することにより、前記課題を解決したものである。
DISCLOSURE OF THE INVENTION The present invention relates to a method for controlling a plate thickness by a rolling mill when rolling a material to be rolled while changing the direction for each pass, and Predictive calculation is made before the end bites into the rolling mill, the rolling load at the time of rolling mill biting is calculated based on the predicted temperature, the roll opening is determined from the rolling load, and the roll opening is rolled. The problem is solved by setting the machine.

【0008】本発明は、又、上記板厚制御方法におい
て、被圧延材を順方向と逆方向に交互に圧延するように
してもよい。
In the present invention, in the above plate thickness control method, the material to be rolled may be rolled alternately in the forward direction and the reverse direction.

【0009】本発明は、又、上記板厚制御方法におい
て、被圧延材を縦方向と共に横方向にも圧延するように
してもよい。
In the present invention, in the above plate thickness control method, the material to be rolled may be rolled not only in the longitudinal direction but also in the lateral direction.

【0010】[0010]

【作用】本発明においては、パス毎に変わる被圧延材の
噛込端部について、圧延機噛込前に同端部の温度をその
都度正確に予測計算するようにしたので、いずれのパス
についても、上記予測温度に応じた適切なロール開度に
設定できることから、圧延機の噛込時から高精度な板厚
制御が可能となる。
In the present invention, with respect to the biting end of the material to be rolled which changes for each pass, the temperature of the biting end before the biting of the rolling mill is accurately predicted and calculated each time. Also, since the roll opening can be set to an appropriate value according to the predicted temperature, it is possible to control the plate thickness with high accuracy even after the rolling mill is engaged.

【0011】本発明において、被圧延材を順方向と逆方
向に交互に圧延する場合には、矩形の被圧延材をその長
手方向に順方向と逆方向の圧延を交互に行う、いわゆる
可逆式圧延機を用いて圧延する際に、前端部から圧延す
る奇数パスでも、尾端部から圧延する偶数パスでも、常
に鋼板の噛込前にその噛込先端部の予測温度を用いて圧
延機噛込時の圧延荷重予測を行うので、圧延荷重の予測
精度が向上するため、圧延機への噛込時から高精度の板
厚制御が可能となる。
In the present invention, when the material to be rolled is rolled alternately in the forward and reverse directions, a rectangular material to be rolled is alternately rolled in the longitudinal direction in the forward and reverse directions. When rolling with a rolling mill, whether it is an odd number of passes rolling from the front end or an even number of passes rolling from the tail end, always use the predicted temperature of the biting tip before biting the steel plate Since the rolling load is predicted at the time of insertion, the prediction accuracy of the rolling load is improved, so that it is possible to control the plate thickness with high accuracy even after the biting into the rolling mill.

【0012】本発明において、被圧延材の縦方向と共に
横方向にも圧延する場合には、可逆式圧延機に転回テー
ブルを組合せた厚板圧延ラインにより、請求項2の場合
の長手方向の順方向及び逆方向の圧延に加えて、幅方向
の順方向及び逆方向の圧延を行う際にも、同様に高精度
な板厚制御が可能となる。
In the present invention, when the material to be rolled is rolled not only in the longitudinal direction but also in the transverse direction, the order of the longitudinal direction in the case of claim 2 is set by a thick plate rolling line in which a reversing rolling machine is combined with a turning table. In addition to the rolling in the direction and the reverse direction, also when performing the rolling in the forward direction and the reverse direction in the width direction, it is possible to similarly control the plate thickness with high accuracy.

【0013】[0013]

【実施例】以下、図面を参照して、本発明の実施例を詳
細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0014】図1は、本発明に係る第1実施例の板厚制
御方法に適用される圧延ラインの概略を示す構成図であ
る。
FIG. 1 is a schematic diagram showing the outline of a rolling line applied to the plate thickness control method of the first embodiment according to the present invention.

【0015】上記圧延ラインでは、加熱炉1で鋼板(図
示せず)が所定温度に加熱された後、該加熱炉1から抽
出され、搬送テーブル2上を搬送され、デスケーリング
デバイス3を通過してスケールが除去された状態で圧延
機4へ到達する。この圧延機4は、可逆式圧延機であ
り、矢印5の方向へ圧延する正パス(順方向圧延)と、
矢印6の方向へ圧延する逆パス(逆方向圧延)とが交互
に行われるようになっている。
In the rolling line, a steel plate (not shown) is heated in the heating furnace 1 to a predetermined temperature, then extracted from the heating furnace 1, conveyed on the conveying table 2 and passed through the descaling device 3. And reaches the rolling mill 4 with the scale removed. This rolling mill 4 is a reversible rolling mill and has a forward pass (forward rolling) for rolling in the direction of arrow 5,
Reverse passes for rolling in the direction of arrow 6 (reverse rolling) are alternately performed.

【0016】本実施例では、上記圧延機4により可逆圧
延を行う際に、パス毎に圧延機による鋼板の噛込方向が
変化することに対応させて、以下に詳述する方法により
常に鋼板の噛込端部の温度を予測し、その予測温度から
圧延荷重を予測し、その値に基づいてロール開度を計算
し、その開度値に設定することにより板厚精度を向上さ
せる。
In the present embodiment, when the rolling mill 4 performs reversible rolling, it is possible to constantly change the rolling direction of the steel sheet by the method described below in response to the change in the biting direction of the steel sheet by the rolling mill for each pass. The temperature of the bite end is predicted, the rolling load is predicted from the predicted temperature, the roll opening is calculated based on the value, and the sheet thickness accuracy is improved by setting the opening value.

【0017】即ち、本実施例では、鋼板の端部温度計算
位置を、図2に示すように長手方向の前後2箇所で与
え、加熱炉抽出時における鋼板の長手方向先端部(以降
前端と記す)に加えて、長手方向尾端部(以降後端と記
す)の温度を推定する。この両端の予測温度から、鋼板
の可逆圧延時の圧延方向に対応して圧延機に噛み込まれ
る側の鋼板端部の温度を選択することにより、荷重予測
の計算の基礎として使用される鋼板温度の予測精度を向
上させ、得られるその予測荷重よりロール開度の算出、
設定を行うことにより、高精度な板厚制御を実現する。
That is, in the present embodiment, the end temperature calculation positions of the steel sheet are given at two points in the front and rear in the longitudinal direction as shown in FIG. 2, and the front end of the steel sheet in the longitudinal direction during extraction of the heating furnace (hereinafter referred to as the front end). ), The temperature of the longitudinal tail end (hereinafter referred to as the rear end) is estimated. From this predicted temperature at both ends, the steel plate temperature used as the basis for the load prediction calculation by selecting the temperature of the steel plate end on the side that is caught in the rolling mill in accordance with the rolling direction during reversible rolling of the steel plate. Prediction accuracy is improved, and the roll opening is calculated from the obtained predicted load.
By making settings, highly accurate thickness control is realized.

【0018】前記図7に示した如く、加熱炉1による加
熱時に生じる初期温度差等に起因して先端と後端とでは
通常温度が異なっているので、最終的にロール開度の算
出に用いる噛込端部の温度の取得位置をパス毎にその圧
延方向に応じて選択する。即ち、加熱炉1から抽出され
た鋼板を可逆圧延する場合、1パス目(圧延開始パス:
正パス)の順方向圧延は、図2に示した前端が圧延機噛
込端部となるので、前端の予測温度を求め、それを噛込
端部の圧延荷重の計算に用いる。
As shown in FIG. 7, the normal temperature is different between the leading end and the trailing end due to the initial temperature difference generated during heating by the heating furnace 1 and the like, so that it is finally used for calculating the roll opening. The acquisition position of the temperature of the biting end is selected for each pass according to the rolling direction. That is, when reversibly rolling the steel sheet extracted from the heating furnace 1, the first pass (rolling start pass:
In the forward pass (forward pass) rolling, the front end shown in FIG. 2 is the rolling-mesh end, so the predicted temperature of the front end is obtained and used for calculation of the rolling load at the cutting-end.

【0019】順方向の圧延が完了し、鋼板が圧延機4の
後方(図中右側)に移動すると、該鋼板には2パス目
(逆パス)として逆方向の圧延が行われるので、この2
パス目には後端が圧延機噛込端部となる。そこで、逆方
向圧延の前に、2パス目の噛込端部である後端の予測温
度を求め、該温度を用いて圧延荷重計算を行い、求めら
れた圧延荷重からロール開度を設定し、逆方向の圧延を
行う。
When the steel sheet moves to the rear of the rolling mill 4 (right side in the figure) after the rolling in the forward direction is completed, the steel sheet is rolled in the reverse direction as the second pass (reverse pass).
At the pass, the trailing end is the rolling mill bit end. Therefore, before reverse rolling, the predicted temperature of the trailing end, which is the biting end of the second pass, is calculated, the rolling load is calculated using this temperature, and the roll opening is set from the calculated rolling load. , Roll in the opposite direction.

【0020】この2パス目の圧延が終了すると、鋼板は
再び圧延機4の前方(図中左側)に戻る。従って、次の
3パス目は正パスになるため、1パス目の圧延と同様に
前端の予測温度を圧延荷重計算に用いる。このように、
本実施例においては可逆圧延の奇数パスでは鋼板前端温
度を、偶数パスでは後端温度を、噛込端部の温度として
圧延荷重計算に用いる。
When the rolling of the second pass is completed, the steel sheet returns to the front of the rolling mill 4 (left side in the drawing) again. Therefore, since the next third pass is a positive pass, the predicted temperature of the front end is used for the rolling load calculation as in the first pass. in this way,
In the present embodiment, the steel sheet front end temperature is used in the odd-numbered passes of the reversible rolling, and the rear end temperature is used in the even-numbered passes as the temperature of the bite end for the rolling load calculation.

【0021】次に、本実施例で行う鋼板端部の温度予測
方法について詳述する。この温度の予測計算は、熱伝導
方程式の解析解モデル、若しくは差分モデルを用いて計
算できる。一例として、ここでは解析解を用いた温度予
測モデルを使用する場合を説明する。
Next, the method of predicting the temperature of the steel plate end portion in this embodiment will be described in detail. This temperature predictive calculation can be calculated using an analytical solution model of the heat conduction equation or a difference model. As an example, a case of using a temperature prediction model using an analytical solution will be described here.

【0022】鋼材内部の熱伝導を2次の熱伝導方程式を
用いて表わすと、次の(1)式のようになる。
When the heat conduction inside the steel material is expressed using a quadratic heat conduction equation, the following equation (1) is obtained.

【0023】 ∂T/∂t=a(∂2 T/∂x2 +∂2 T/∂y2 ) …(1) t:時間[hr] x:板厚方向位置[m] y:長手方向位置[m] a:温度伝播率[m2 /hr] T:温度[℃]∂T / ∂t = a (∂ 2 T / ∂x 2 + ∂ 2 T / ∂y 2 ) ... (1) t: time [hr] x: plate thickness direction position [m] y: longitudinal direction Position [m] a: Temperature transfer rate [m 2 / hr] T: Temperature [° C]

【0024】上記(1)式を、図2に示した鋼板に適用
し、適当な境界条件の下に解くことにより、次の(2)
式に示す熱伝導度解析解が得られ、この式を圧延温度予
測モデルとする。
By applying the above equation (1) to the steel sheet shown in FIG. 2 and solving it under appropriate boundary conditions, the following (2)
The thermal conductivity analysis solution shown in the equation is obtained, and this equation is used as the rolling temperature prediction model.

【0025】[0025]

【数1】 [Equation 1]

【0026】但し、μm 及びνn はそれぞれ(3)式及
び(4)式の解より求められ、又、λmnは下記(5)式
の関係にある。
However, μ m and ν n are obtained from the solutions of the expressions (3) and (4), respectively, and λ mn has the relationship of the following expression (5).

【0027】 cotXm ={k/(αs d)}・Xm , μm =Xm /d (d:1/2板厚(mm)) …(3) cotYn ={k/(αe l)}・Yn , νn =Yn /l (l:長手方向計算長(mm)) …(4) λmn 2 =μm 2 +νn 2 …(5) ここで、 Amn:解析解係数 k :熱伝導率(kcal/mhr ℃) αs :表面熱伝達係数(kcal/ m2 hr℃) αe :端部側面熱伝達係数(kcal/ m2 hr℃) Ts :表面温度(℃) Te :端部側面温度(℃) T∞:冷媒温度(℃)CotX m = {k / (α s d)} × X m , μ m = X m / d (d: 1/2 plate thickness (mm)) (3) cotY n = {k / (α e l)} · Y n , ν n = Y n / l (l: calculated length in longitudinal direction (mm)) (4) λ mn 2 = μ m 2 + ν n 2 (5) where A mn : analysis Solution coefficient k: Thermal conductivity (kcal / mhr ℃) α s : Surface heat transfer coefficient (kcal / m 2 hr ℃) α e : Edge side heat transfer coefficient (kcal / m 2 hr ℃) T s : Surface temperature (° C) T e : End side temperature (° C) T ∞: Refrigerant temperature (° C)

【0028】上記のようにして構築した圧延温度予測モ
デルにより鋼板端部の温度を予測し、その端部の予測温
度により噛込端部の圧延荷重の計算を行う。
The rolling temperature prediction model constructed as described above is used to predict the temperature at the end of the steel sheet, and the rolling load at the bite end is calculated based on the predicted temperature at the end.

【0029】圧延荷重Fは、変形抵抗k(T)、板幅
w、ロール半径R、板厚h等の関数として次の(6)式
で表わされる。
The rolling load F is expressed by the following equation (6) as a function of deformation resistance k (T), strip width w, roll radius R, strip thickness h and the like.

【0030】 F=f(k(T),w,R,h) …(6)F = f (k (T), w, R, h) (6)

【0031】変形抵抗k(T)は温度に大きく依存する
ため、精度の良い温度予測を行うことで、圧延荷重の予
測精度の向上を見込むことができる。上記(6)式によ
り算出した予測圧延荷重より、次の(7)式を用いてロ
ール開度を決定し、圧延機にその設定を行う。
Since the deformation resistance k (T) greatly depends on the temperature, it is possible to expect the accuracy of the rolling load prediction to be improved by accurately predicting the temperature. From the predicted rolling load calculated by the above equation (6), the roll opening is determined using the following equation (7), and the rolling mill is set.

【0032】 S0 =h2 −F/M …(7) S0 :設定ロール開度[mm] h2 :出側板厚[mm] F :予測圧延荷重[ton] M :予測ミル定数[ton/mm]S 0 = h 2 −F / M (7) S 0 : Set roll opening [mm] h 2 : Delivery side plate thickness [mm] F: Predicted rolling load [ton] M: Predicted mill constant [ton] / Mm]

【0033】即ち、出側板厚h2 を目標板厚として、予
測荷重Fと予測ミル定数Mよりミル伸び量を計算し、こ
の補正を加えたものを設定ロール開度とする。
That is, with the delivery side plate thickness h 2 as the target plate thickness, the mill extension amount is calculated from the predicted load F and the predicted mill constant M, and the correction is added to obtain the set roll opening.

【0034】更に、この予測圧延荷重を自動板厚制御装
置の設定荷重として用い、圧延時に実測荷重との差ΔF
を次の(8)式により板厚変動量Δhに換算し、この板
厚変動を打ち消すようにロール開度を変化させることに
より板厚制御を行う。
Further, this predicted rolling load is used as a set load of the automatic plate thickness control device, and the difference ΔF from the actually measured load during rolling is used.
Is converted into a sheet thickness variation amount Δh by the following equation (8), and the sheet thickness control is performed by changing the roll opening so as to cancel the sheet thickness variation.

【0035】 Δh=ΔF/M …(8) ΔF:荷重変動[ton] Δh:板厚変動[mm] M :予測ミル定数[ton/mm]Δh = ΔF / M (8) ΔF: load fluctuation [ton] Δh: plate thickness fluctuation [mm] M: predicted mill constant [ton / mm]

【0036】例として、塑性定数変動があったときの板
厚制御の方法を図3に示す。この図3には、塑性曲線で
示したように塑性定数変動が生じたために圧延荷重Fが
ΔFだけ変動し、該荷重変動ΔFにより板厚変動Δhが
生じた場合、このΔhを打ち消すようにロール開度をS
0 からSに変更する制御方法が示してある。
As an example, FIG. 3 shows a method of controlling the plate thickness when there is a change in the plastic constant. In FIG. 3, the rolling load F fluctuates by ΔF due to the plastic constant fluctuation as shown by the plasticity curve, and when the plate thickness fluctuation Δh occurs due to the load fluctuation ΔF, the roll is set to cancel this Δh. Open S
A control method for changing from 0 to S is shown.

【0037】以上詳述した本実施例の圧延機による板厚
制御方法によれば、パス毎に鋼板の圧延機噛込時の圧延
荷重の計算を、噛込端部での温度予測値を用いて高精度
に実行するようにしたので、これを用いてロール開度設
定を行うことにより、板厚精度の向上を図ることが可能
となる。
According to the plate thickness control method by the rolling mill of the present embodiment described in detail above, the calculation of the rolling load when the steel plate is bitten by the rolling mill is calculated for each pass by using the temperature prediction value at the biting end. Since it is performed with high accuracy by setting the roll opening degree using this, it is possible to improve the plate thickness accuracy.

【0038】実際に、本実施例方法を、スラブ厚215
mm、圧延終了板厚6mm〜40mmの厚板圧延鋼板9
0本に適用して評価した板厚精度を、従来方法による板
厚精度と比較した結果、先端板厚精度を9.7%向上さ
せることができた。
In practice, the method of this embodiment is applied to the slab thickness 215.
mm, rolled rolled steel plate 9 having a rolled thickness of 6 mm to 40 mm
As a result of comparing the plate thickness accuracy evaluated by applying it to 0 pieces with the plate thickness accuracy by the conventional method, the tip plate thickness accuracy could be improved by 9.7%.

【0039】図4は、本発明に係る第2実施例の板厚制
御方法に適用される圧延ラインの概略を示す構成図であ
る。
FIG. 4 is a schematic diagram showing the outline of a rolling line applied to the plate thickness control method of the second embodiment according to the present invention.

【0040】上記圧延ラインは、圧延機4の前方と後方
にそれぞれ前方転回テーブル7と後方転回テーブル8と
を設置し、鋼板を旋回してその方向を変更できるように
なされている以外は、前記第1実施例に適用した前記図
1の圧延ラインと実質的に同一である。
In the rolling line, a front turning table 7 and a rear turning table 8 are installed in front of and behind the rolling mill 4, respectively, and the direction can be changed by turning a steel plate. It is substantially the same as the rolling line of FIG. 1 applied to the first embodiment.

【0041】本実施例においては、加熱炉1で加熱した
鋼板を圧延機4に搬送し、該圧延機4で正逆両方向の圧
延を行うと共に、上記転回テーブル7又は8により鋼板
を90°転回させ、長手方向の圧延から幅方向の圧延
に、逆に幅方向の圧延から長手方向の圧延に変更できる
ようになっている。
In this embodiment, the steel sheet heated in the heating furnace 1 is conveyed to the rolling mill 4 and is rolled in both forward and reverse directions by the rolling machine 4, and the steel sheet is turned 90 ° by the turning table 7 or 8. Then, the rolling in the longitudinal direction can be changed to the rolling in the width direction, and conversely, the rolling in the width direction can be changed to the rolling in the longitudinal direction.

【0042】鋼板を転回させる主な目的は全体について
目標板幅を得ることにある。即ち、圧延により鋼板が伸
びる方向は主に圧延ロールと垂直な圧延ライン方向であ
るため、幅出し圧延においては、鋼板を90°転回させ
て板の幅方向を圧延方向に一致させて圧延を行う。その
ため、幅出し圧延時には、圧延機前方の転回テーブル
7、あるいは圧延機後方の転回テーブル8により右乃至
左方向へ90°転回することが行われる。
The main purpose of turning the steel plate is to obtain the target plate width for the whole. That is, the direction in which the steel sheet is stretched by rolling is mainly in the rolling line direction perpendicular to the rolling rolls, so in tenter rolling, the steel sheet is turned 90 ° so that the width direction of the sheet coincides with the rolling direction. . Therefore, at the time of tenter rolling, the rolling table 7 on the front side of the rolling mill or the rolling table 8 on the rear side of the rolling mill turns 90 ° from right to left.

【0043】加熱炉1から抽出された鋼板は、前述した
如く長手方向の前端と後端では温度差があるが、幅方向
の両端部にも同様に温度差が存在する。従って、本実施
例のように幅方向にも可逆圧延を行う場合には、その温
度差を考慮する必要がある。
The steel sheet extracted from the heating furnace 1 has a temperature difference between the front end and the rear end in the longitudinal direction as described above, but the temperature difference also exists at both ends in the width direction. Therefore, when performing reversible rolling in the width direction as in the present embodiment, it is necessary to consider the temperature difference.

【0044】そこで、本実施例では、図5に示すように
鋼板の端部の温度計算位置を4箇所で与え、加熱炉抽出
時の鋼板で長手方向先端部A、長手方向尾端部B、幅方
向両端部C、Dの温度を推定する。この4箇所の予測温
度から鋼板の圧延時の圧延方向に対応させて圧延機噛込
時の温度を選択することにより、荷重予測に使用される
鋼板予測温度精度を向上させ、その予測荷重よりロール
開度を決定し、その開度に設定することにより高精度な
板厚制御を実現できる。
Therefore, in the present embodiment, as shown in FIG. 5, the temperature calculation positions of the end portions of the steel sheet are given at four points, and the steel sheet at the time of extracting the heating furnace has a longitudinal tip portion A, a longitudinal tail portion B, The temperatures at the widthwise ends C and D are estimated. By selecting the temperature at the time of rolling mill biting in correspondence with the rolling direction at the time of rolling the steel plate from these four predicted temperatures, the steel plate predicted temperature accuracy used for load prediction is improved, and the roll is calculated from the predicted load. By determining the opening and setting the opening, highly accurate plate thickness control can be realized.

【0045】本実施例においては、図6に示したフロー
チャートに従って板厚制御を行うことができる。
In the present embodiment, the plate thickness control can be performed according to the flow chart shown in FIG.

【0046】即ち、前記第1実施例の場合のように、転
回テーブル7又は8による転回動作を行わない場合(ス
テップ110でno)であれば、加熱炉1から抽出され
た鋼板は圧延開始の1パス目(正パス)は、前記図5に
示した端部Aが噛込端部となるため、該端部Aの予測温
度を先端部の圧延荷重計算に用い、2パス目(逆パス)
には端部Bが圧延機噛込端部となるため、該端部Bの予
測温度を先端部の圧延荷重計算に用いる(ステップ11
2、114、116)。3パス目以降は同様にステップ
110〜116を繰り返すことにより適切な方向の端部
の予測温度を圧延荷重計算に用いることができる。
That is, as in the case of the first embodiment, when the turning operation by the turning table 7 or 8 is not performed (No in step 110), the steel sheet extracted from the heating furnace 1 is not rolled. In the first pass (normal pass), the end portion A shown in FIG. 5 becomes the biting end portion, so the predicted temperature of the end portion A is used for the rolling load calculation of the tip end portion and the second pass (reverse pass). )
In this case, the end portion B becomes the biting end portion of the rolling mill, so the predicted temperature of the end portion B is used for the rolling load calculation of the tip portion (step 11).
2, 114, 116). By repeating steps 110 to 116 in the same way from the third pass onward, the predicted temperature of the end portion in the appropriate direction can be used for the rolling load calculation.

【0047】一方、転回テーブル7又は8による転回を
行う場合(ステップ110でyes)は、転回前におけ
る鋼板長手方向は転回後は圧延方向に垂直になり、転回
前の鋼板幅方向が圧延方向に変わるため、図5における
鋼板の板幅方向端部C又はDが圧延機噛込端部になる。
そこで、ステップ118で圧延機に対する噛込端部の変
化に対応して右転回か左転回かを判定し、右転回(ye
s)であれば幅方向端部Dの温度を端部Aの温度に、端
部Cの温度を端部Bの温度に、端部Aの温度を端部Cの
温度に、端部Bの温度を端部Dの温度に、それぞれ変更
する(ステップ120)ことにより、圧延における鋼板
の圧延機噛込端部の温度を、転回テーブル7又は8によ
る転回動作が伴う場合でも前記第1実施例と同様に正確
に予測することが可能となる。
On the other hand, when the rolling table 7 or 8 is used for rolling (yes in step 110), the longitudinal direction of the steel sheet before rolling is perpendicular to the rolling direction after rolling, and the width direction of the steel sheet before rolling is the rolling direction. Since it changes, the plate width direction end C or D of the steel plate in FIG. 5 becomes the rolling mill bit end.
Therefore, in step 118, it is determined whether the turning is to the right or to the left in accordance with the change in the biting end portion with respect to the rolling mill.
In the case of s), the temperature of the widthwise end D is the temperature of the end A, the temperature of the end C is the temperature of the end B, the temperature of the end A is the temperature of the end C, and the temperature of the end B is By changing the temperature to the temperature of the end portion D (step 120), the temperature of the rolling-mesh-engaging end portion of the steel sheet in rolling is changed to the first embodiment even when the rolling table 7 or 8 is accompanied by the rolling operation. It becomes possible to make an accurate prediction in the same manner as.

【0048】逆に、左転回の場合(ステップ118でn
o)は、端部Cの温度を端部Aの温度に、端部Dの温度
を端部Bの温度に、端部Bの温度を端部Cの温度に、端
部Aの温度を端部Dの温度に、それぞれ変更する(ステ
ップ122)ことにより、鋼板の噛込端部の温度を同様
に予測することが可能となる。
On the contrary, in the case of the left turn (step 118, n
o) indicates that the temperature of the end C is the temperature of the end A, the temperature of the end D is the temperature of the end B, the temperature of the end B is the temperature of the end C, and the temperature of the end A is the end. By changing to the temperature of the portion D (step 122), it is possible to similarly predict the temperature of the meshed end portion of the steel sheet.

【0049】上記のように予測位置の変換を行った後、
ステップ112で正パスであれば、前記ステップ114
で端部Aの予測温度を、又逆パスであれば前記ステップ
116で端部Bの予測温度を、圧延機の噛込先端部の圧
延荷重計算に用いる。以上の操作を圧延が終了するまで
実行する(ステップ124)。
After converting the predicted position as described above,
If it is a positive pass in step 112, the above step 114
The predicted temperature of the end portion A is used for calculating the rolling load of the biting tip portion of the rolling mill in step 116 in the case of a reverse pass. The above operation is executed until the rolling is completed (step 124).

【0050】温度計算方法について説明すると、前記第
1実施例の場合に使用した(1)〜(8)式に加えて、
前記図5に示した幅方向端部C及びDの温度を予測する
ために鋼板内部の熱伝導を2次の熱伝導方程式を用いた
次の(9)式を使用し、前記第1実施例の場合と同様に
各端部A〜Dの温度を予測することができる。
The temperature calculation method will be described. In addition to the equations (1) to (8) used in the case of the first embodiment,
In order to predict the temperatures of the widthwise end portions C and D shown in FIG. 5, the following equation (9) using a quadratic heat conduction equation is used for the heat conduction inside the steel sheet, and the first embodiment is used. The temperature of each of the ends A to D can be predicted in the same manner as in the above case.

【0051】 ∂T/∂t=a(∂2 T/∂x2 +∂2 T/∂z2 ) …(9) t:時間[hr] x:板厚方向位置[m] z:幅方向位置[m] a:温度伝播率[m2 /hr] T:温度[℃][0051] ∂T / ∂t = a (∂ 2 T / ∂x 2 + ∂ 2 T / ∂z 2) ... (9) t: Time [hr] x: thickness-direction position [m] z: width Position [m] a: Temperature transfer rate [m 2 / hr] T: Temperature [° C]

【0052】なお、上記(9)式は前記(1)式と実質
的に同一の形をしており、前記(2)式と全く同様にし
て解くことにより板厚、幅方向に関する熱伝導解析解を
得ることができる。
The above equation (9) has substantially the same form as the above equation (1), and is solved in exactly the same manner as the above equation (2) to analyze the heat conduction in the plate thickness and width direction. You can get a solution.

【0053】以上詳述した本実施例の板厚制御方法によ
れば、鋼板が圧延機に噛み込まれる時の圧延荷重の計算
を、該鋼板の転回を伴う可逆圧延を行う場合でも、パス
毎に噛込端部の温度予測値を用いて高精度に実行するよ
うにしたので、その圧延荷重を用いてロール開度設定を
行うことにより、板厚精度の向上を図ることが可能とな
る。
According to the plate thickness control method of the present embodiment described in detail above, the calculation of the rolling load when the steel plate is bitten into the rolling mill is calculated for each pass even when the reversible rolling involving the rolling of the steel plate is performed. Since the temperature prediction value of the biting end portion is used to perform the processing with high accuracy, it is possible to improve the sheet thickness accuracy by setting the roll opening degree using the rolling load.

【0054】実際に、本実施例方法をスラブ厚215m
m、圧延終了厚6mm〜400mmの厚板圧延鋼板90
本に適用して評価した板厚精度を、従来の方法による板
厚精度と比較した結果、鋼板の端部における板厚偏差が
11.3%減少した。
Actually, the method of this embodiment is applied to a slab having a thickness of 215 m.
m, rolled thick steel plate 90 having a rolling end thickness of 6 mm to 400 mm
As a result of comparing the plate thickness accuracy evaluated by applying to the book with the plate thickness accuracy by the conventional method, the plate thickness deviation at the end of the steel plate was reduced by 11.3%.

【0055】以上、本発明について具体的に説明した
が、本発明は、前記実施例に示したものに限られるもの
でなく、その要旨を逸脱しない範囲で種々変更可能であ
る。
Although the present invention has been specifically described above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention.

【0056】例えば、鋼板端部の温度を予測計算するた
めに用いる式は、前記実施例に示したものに限定されな
い。
For example, the equation used for predictive calculation of the temperature of the steel sheet edge is not limited to the one shown in the above embodiment.

【0057】[0057]

【発明の効果】以上説明したとおり、本発明によれば、
同一の被圧延材をパス毎に方向を変更して圧延する場合
に、圧延機の噛込時からその板厚を高精度に制御するこ
とができる。
As described above, according to the present invention,
When the same material to be rolled is rolled by changing the direction for each pass, the plate thickness can be controlled with high accuracy even after the rolling mill is engaged.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る第1実施例に適用される圧延ライ
ンを示す概略構成図
FIG. 1 is a schematic configuration diagram showing a rolling line applied to a first embodiment according to the present invention.

【図2】第1実施例の制御対象である圧延鋼板の温度計
算範囲を示す斜示図
FIG. 2 is an oblique view showing a temperature calculation range of a rolled steel sheet that is a control target of the first embodiment.

【図3】ロール開度の補正方法を定性的に示す線図FIG. 3 is a diagram qualitatively showing a roll opening correction method.

【図4】本発明に係る第2実施例に適用される圧延ライ
ンを示す概略構成図
FIG. 4 is a schematic configuration diagram showing a rolling line applied to a second embodiment according to the present invention.

【図5】第2実施例の制御対象である圧延鋼板の温度計
算範囲を示す斜示図
FIG. 5 is an oblique view showing a temperature calculation range of a rolled steel sheet that is a control target of the second embodiment.

【図6】第2実施例による温度の計算手順を示すフロー
チャート
FIG. 6 is a flowchart showing a temperature calculation procedure according to the second embodiment.

【図7】鋼板の先端と後端で温度が異なることを説明す
るための線図
FIG. 7 is a diagram for explaining that the temperature differs between the front end and the rear end of the steel plate.

【符号の説明】[Explanation of symbols]

1…加熱炉 2…搬送テーブル 3…デスケーリングデバイス 4…圧延機 5…正パス 6…逆パス 7…前方転回テーブル 8…後方転回テーブル 1 ... Heating furnace 2 ... Conveying table 3 ... Descaling device 4 ... Rolling machine 5 ... Forward path 6 ... Reverse path 7 ... Forward turning table 8 ... Backward turning table

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B21B 39/20 A 8315−4E B21B 37/12 111 F (72)発明者 八尋 和広 岡山県倉敷市水島川崎通一丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 岡村 勇 岡山県倉敷市水島川崎通一丁目(番地な し) 川崎製鉄株式会社水島製鉄所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location B21B 39/20 A 8315-4E B21B 37/12 111 F (72) Inventor Kazuhiro Yahiro Kurashiki City, Okayama Prefecture Mizushima Kawasaki Dori 1-chome (without street number) Kawasaki Steel Co., Ltd. Mizushima Steel Works (72) Inventor Isamu Okamura Mizushima Kawasaki Dori 1-chome (without street number) Kawasaki Steel Co., Ltd. Mizushima Steel Mfg.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】被圧延材をパス毎に方向を変えて圧延する
際の圧延機による板厚制御方法において、 被圧延材の噛込端部の温度を、該端部が圧延機に噛み込
まれる前に予測計算し、その予測温度に基づいて圧延機
噛込時の圧延荷重を算出し、該圧延荷重からロール開度
を決定し、該ロール開度を圧延機に設定することを特徴
とする圧延機による板厚制御方法。
1. A method for controlling a plate thickness by a rolling mill when rolling a material to be rolled by changing the direction for each pass, wherein the temperature of the biting end of the material to be rolled is determined by determining the temperature at the biting end of the material to be rolled into the rolling mill. The calculation is performed before the rolling temperature is calculated, the rolling load when the rolling mill is bitten based on the predicted temperature is calculated, the roll opening is determined from the rolling load, and the rolling opening is set in the rolling mill. Method for controlling plate thickness by rolling mill.
【請求項2】請求項1において、 被圧延材を順方向と逆方向に交互に圧延することを特徴
とする圧延機による板厚制御方法。
2. The plate thickness control method according to claim 1, wherein the material to be rolled is alternately rolled in a forward direction and a reverse direction.
【請求項3】請求項1において、 被圧延材を縦方向と共に横方向にも圧延することを特徴
とする圧延機による板厚制御方法。
3. The plate thickness control method according to claim 1, wherein the material to be rolled is rolled not only vertically but also laterally.
JP6234912A 1994-09-29 1994-09-29 Method for controlling thickness with rolling mill Pending JPH0899110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6234912A JPH0899110A (en) 1994-09-29 1994-09-29 Method for controlling thickness with rolling mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6234912A JPH0899110A (en) 1994-09-29 1994-09-29 Method for controlling thickness with rolling mill

Publications (1)

Publication Number Publication Date
JPH0899110A true JPH0899110A (en) 1996-04-16

Family

ID=16978240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6234912A Pending JPH0899110A (en) 1994-09-29 1994-09-29 Method for controlling thickness with rolling mill

Country Status (1)

Country Link
JP (1) JPH0899110A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007216278A (en) * 2006-02-17 2007-08-30 Nippon Steel Corp Equipment of rolling steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007216278A (en) * 2006-02-17 2007-08-30 Nippon Steel Corp Equipment of rolling steel
JP4585465B2 (en) * 2006-02-17 2010-11-24 新日本製鐵株式会社 Steel rolling equipment

Similar Documents

Publication Publication Date Title
JP4701742B2 (en) Metal strip shape prediction method, shape determination method based on predicted shape, and shape correction method
US6269668B1 (en) Cold tandem rolling method and cold tandem rolling mill
WO2016046945A1 (en) Flatness control device
JP6481677B2 (en) Steel sheet residual stress estimation method, steel sheet manufacturing method, steel sheet residual stress estimation apparatus, and steel sheet manufacturing equipment
JPH0899110A (en) Method for controlling thickness with rolling mill
JP4123582B2 (en) Steel plate shape prediction method and apparatus
KR100832969B1 (en) Method for estimating and preventing width deviation of strip in strip roll process
JP2786760B2 (en) Prediction method of rolling temperature of steel sheet in hot rolling
JP3300208B2 (en) Learning control method in process line
JP4269394B2 (en) Steel plate shape prediction method
JP2001252709A (en) Method for temperature on outlet side of finishing mill for hot rolling
JP2002143913A (en) Hot rolling method
JP6569655B2 (en) Reduction leveling control device and reduction leveling control method
JP2007283353A (en) Method of rolling metal sheet
JP6627609B2 (en) Cooling control method and cooling device
KR102281202B1 (en) Apparatus for controlling thickness of steel sheet
KR100832968B1 (en) Method for estimating and preventing width deviation of strip in strip roll process
JPH11104718A (en) Rolling method of reversible rolling mill
JP3518504B2 (en) How to set cooling conditions for steel sheets
JPS6110834Y2 (en)
JP2587528B2 (en) Estimating method of charging temperature of heating slab to heating furnace
JP2004034032A (en) Method for controlling edge drop in tandem cold- rolling
JP3558010B2 (en) Steel sheet manufacturing method
JP2017177135A (en) Draft levelling control device and draft levelling control method
JP6601451B2 (en) Rolling mill control method, rolling mill control apparatus, and hot rolled steel sheet manufacturing method