JPH0899088A - Production of electrolytic ionic water - Google Patents

Production of electrolytic ionic water

Info

Publication number
JPH0899088A
JPH0899088A JP23731894A JP23731894A JPH0899088A JP H0899088 A JPH0899088 A JP H0899088A JP 23731894 A JP23731894 A JP 23731894A JP 23731894 A JP23731894 A JP 23731894A JP H0899088 A JPH0899088 A JP H0899088A
Authority
JP
Japan
Prior art keywords
diaphragm
ionized water
compound
value
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23731894A
Other languages
Japanese (ja)
Inventor
Masakatsu Urairi
正勝 浦入
Tomoyuki Murakami
知之 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP23731894A priority Critical patent/JPH0899088A/en
Publication of JPH0899088A publication Critical patent/JPH0899088A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE: To produce electrolytic ionic water by using a diaphragm suitable for the production of electrolytic ionic water, more precisely, a diaphragm having sufficient hydrophilicity and having oxidation resistance, alkali resistance and long-term stable heat resistance. CONSTITUTION: A cathode chamber and an anode chamber are partitioned by a diaphragm and DC voltage is applied across the electrodes installed in both chambers to produce electrolytic ionic water. In this method, as the diaphragm, a hydrophilic porous fluoroplastic film having infrared absorption resulting from a C-O bond in a wave number of 1000-1200cm<-1> and characterized by that an F/C value due to an X-ray photoelectric spectral method is 0.1-1.5 and an O/C value is 0.1-1.0 is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電解イオン水の製造に
好適な隔膜を用いて電解イオン水を製造する方法、さら
に詳しくは、十分な親水性を有すると共に、耐酸性と耐
アルカリ性、長期間安定な耐熱性を有する隔膜を使用し
た電解イオン水の製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing electrolytic ionized water by using a diaphragm suitable for producing electrolytic ionized water, and more specifically, it has sufficient hydrophilicity, acid resistance, alkali resistance, and long resistance. The present invention relates to a method for producing electrolyzed ionic water using a diaphragm having stable heat resistance for a period of time.

【0002】[0002]

【従来の技術】アルカリイオンを含有する飲料水は健康
上有益であり、酸性水は美容効果があると一般に認識さ
れている。そこで家庭用、業務用に電解イオン水を製造
する装置が市販されている。電気透析によりアルカリ飲
料水を製造する装置としては、特開昭48−42562
号公報、特開昭59−92090号公報等にその構造が
記載されており、電解槽の陽極室及び陰極室に原水を入
れ、両極室の電極に直流電圧を所定時間印加して透析を
行い、陰極室でアルカリ飲料水を製造する所謂バッチタ
イプや、両極室への原水の供給口を水道蛇口へ連結し、
原水を供給しつつ透析し、陰極室の排出口より飲料水を
連続的に取水するようにした連続タイプが提案されてい
る。従来、かかる原水と生成したアルカリイオン水や酸
性水を仕切る隔膜として、素焼き板やポリエチレン、ポ
リプロピレン、アセテート等のイオン透過性の多孔質膜
が使用されている。疎水性の隔膜の場合は親水性のモノ
マーやポリマーをコーティング、架橋等の方法で親水化
されている。
BACKGROUND OF THE INVENTION It is generally recognized that drinking water containing alkaline ions is beneficial for health and acidic water has cosmetic effects. Therefore, a device for producing electrolytic ionized water for household and business use is commercially available. An apparatus for producing alkaline drinking water by electrodialysis is disclosed in Japanese Patent Laid-Open No. 48-42562.
JP-A-59-92090 and the like describe the structure. Raw water is put in the anode chamber and the cathode chamber of the electrolytic cell, and a DC voltage is applied to the electrodes of both electrode chambers for a predetermined time to perform dialysis. , A so-called batch type for producing alkaline drinking water in the cathode chamber, or connecting the raw water supply port to both electrode chambers to a water tap,
A continuous type has been proposed in which raw water is dialyzed while being supplied, and drinking water is continuously taken from the discharge port of the cathode chamber. Conventionally, a bisque plate, an ion-permeable porous membrane such as polyethylene, polypropylene, or acetate has been used as a diaphragm that separates the raw water from the generated alkaline ionized water or acidic water. In the case of a hydrophobic diaphragm, it is hydrophilized by coating a hydrophilic monomer or polymer and crosslinking.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、原水と
して使用される水道水中に残存する塩素が、電解中に活
性塩素になったり、塩素ガスとなって、隔膜の親水性コ
ーティング層あるいは隔膜自体に悪影響を与え、親水特
性の劣化や隔膜の脆弱化を起こすという問題があった。
However, chlorine remaining in tap water used as raw water becomes active chlorine or chlorine gas during electrolysis, which adversely affects the hydrophilic coating layer of the diaphragm or the diaphragm itself. There is a problem that the hydrophilic property is deteriorated and the diaphragm is weakened.

【0004】[0004]

【課題を解決するための手段】本発明は、かかる従来技
術の問題点を解決するためになされたもので、電解イオ
ン水の製造用の隔膜として、光化学的処理を施した特定
の親水性多孔質フッ素樹脂フィルム、即ち多孔質フッ素
樹脂フィルムの表面はもとより内部組織表面に、後述す
る特定の化合物を用いて光化学反応により親水基を導入
したフィルムを使用することにより、疎水性の多孔質フ
ッ素樹脂フィルムに十分な親水性が付与され、水道水中
の塩素及びその誘導体に対して安定であり、高温での使
用にも長時間耐えうる電解イオン水の製造法を提供すも
のである。
SUMMARY OF THE INVENTION The present invention has been made to solve the problems of the prior art. As a diaphragm for the production of electrolyzed ionic water, a specific hydrophilic porous material that has been subjected to photochemical treatment is used. Porous fluororesin film, that is, a porous fluororesin film obtained by introducing a hydrophilic group by a photochemical reaction using a specific compound described below on the surface of the internal tissue as well as the surface of the porous fluororesin film Provided is a method for producing electrolyzed ionized water, which imparts sufficient hydrophilicity to a film, is stable to chlorine and its derivatives in tap water, and can withstand use at high temperatures for a long time.

【0005】即ち本発明は、陰極室と陽極室を隔膜で仕
切り、両極室に設けた電極に直流電圧を印加してアルカ
リ飲料水及び酸性水を含む電解イオン水を製造する方法
において、上記隔膜として、波数1000〜1200c
-1にC−O結合に由来する赤外吸収を有し、且つX線
光電子分光法によるF/Cの値が0.1 〜1.5 及びO/C
の値が0.1 〜1.0 の親水性多孔質フッ素樹脂フィルムを
用いることを特徴とする電解イオン水の製造法に関する
ものであり、また上記の親水性多孔質フッ素樹脂フィル
ムは、多孔質フッ素樹脂フィルムにフッ素原子との結合
エネルギーが539kJ/mol以上の原子と親水基を
有する化合物を接触させた状態で紫外線を照射して得ら
れたフィルムを用いるのが好ましいものである。
That is, the present invention provides a method for producing electrolytic ionic water containing alkaline drinking water and acidic water by partitioning the cathode chamber and the anode chamber with a diaphragm and applying a DC voltage to the electrodes provided in the bipolar chamber. As the wave number 1000-1200c
m −1 has an infrared absorption derived from a C—O bond, and has an F / C value of 0.1 to 1.5 and an O / C by X-ray photoelectron spectroscopy.
The present invention relates to a method for producing electrolyzed ionized water, which comprises using a hydrophilic porous fluororesin film having a value of 0.1 to 1.0, and the hydrophilic porous fluororesin film described above is a porous fluororesin film. It is preferable to use a film obtained by irradiating with ultraviolet rays in a state where an atom having a binding energy with a fluorine atom of 539 kJ / mol or more and a compound having a hydrophilic group are in contact with each other.

【0006】本発明における多孔質フッ素樹脂フィルム
は、ポリテトラフルオロエチレン(PTFE)、ポリフ
ッ化ビニリデン(PVdF)、テトラフルオロエチレン
−パーフルオロアルキルビニルエーテル共重合体(PF
A)、テトラフルオロエチレン−ヘキサフルオロプロピ
レン共重合体(FEP)、テトラフルオロエチレン−エ
チレン共重合体(ETFE)、ポリクロロトリフルオロ
エチレン(CTFE)等からなる疎水性膜であり、特に
耐薬品性、耐熱性等の点からPTFEが好ましく、焼成
品もしくは未焼成品の何れも使用しうる。また0.01〜2
0μm 、特に0.05〜5μmの孔径を有するフィルムが好
適に用いられる。なお、多孔質フッ素樹脂フィルムは種
々の方法で得ることができる。例えば、PTFEフィル
ムは特公昭58−25332号公報、特公昭51−18
991号公報、特公昭42−13560号公報等に記載
された延伸法、あるいは特公昭42−4974号公報に
記載された起泡剤を用いる方法等によって得ることがで
きる。
The porous fluororesin film in the present invention is made of polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PF).
A), a hydrophobic film made of tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-ethylene copolymer (ETFE), polychlorotrifluoroethylene (CTFE), etc., and particularly chemical resistance In terms of heat resistance and the like, PTFE is preferable, and either a baked product or an unbaked product can be used. Also 0.01-2
A film having a pore size of 0 μm, particularly 0.05 to 5 μm is preferably used. The porous fluororesin film can be obtained by various methods. For example, PTFE films are disclosed in Japanese Patent Publication No. 58-25332 and Japanese Patent Publication No. 51-18.
It can be obtained by a stretching method described in Japanese Patent Publication No. 991, Japanese Patent Publication No. 42-13560, etc., or a method using a foaming agent described in Japanese Patent Publication No. 42-4974, etc.

【0007】これらの多孔質フッ素樹脂フィルムは、本
発明による光化学的処理前にはPFA以外は実質的にC
−O結合に由来する赤外吸収は観察されず、一方XPS
法によるF/C値及びO/C値の概数は、それぞれPT
FE(2.0 、0 ) 、PVdF(1.0、0 ) 、PFA(2.0、
0.2 以下) 、FEP(2.0、0 ) 、ETFE(1.0、0 )、
CTFE(1.5、0 ) を有している。本発明において好ま
しい光化学的処理は、上記の多孔質フッ素樹脂フィルム
にフッ素原子との結合エネルギーが539kJ/mol
以上の原子と親水基を有する化合物を接触させた状態で
紫外線を照射して、波数1000〜1200cm-1にC
−O結合に由来する赤外吸収を有し、且つXPS法によ
るF/Cの値が0.1〜1.5 及びO/Cの値が0.1 〜1.0
の親水性多孔質フッ素樹脂フィルムとするものである。
処理操作は、使用する前記の化合物にもよるが通常、波
長150〜270nmの紫外線を6J/cm2 以上、好
ましくは6〜500J/cm2 のエネルギー強度で照射
するのがよい。
These porous fluororesin films are essentially C except for PFA before the photochemical treatment according to the present invention.
No infrared absorption due to —O bond was observed, while XPS
Approximate F / C and O / C values by the method are PT
FE (2.0, 0), PVdF (1.0, 0), PFA (2.0,
0.2 or less), FEP (2.0, 0), ETFE (1.0, 0),
It has CTFE (1.5,0). The photochemical treatment preferable in the present invention is such that the above porous fluororesin film has a binding energy of 539 kJ / mol with a fluorine atom.
Ultraviolet rays are radiated in a state where the above-mentioned atom and the compound having a hydrophilic group are in contact with each other, and C is applied at a wave number of 1000 to 1200 cm -1 .
Has infrared absorption derived from —O bond, and has F / C value of 0.1 to 1.5 and O / C value of 0.1 to 1.0 by XPS method.
Of the hydrophilic porous fluororesin film.
Processing operations are usually depending on the compound used, the ultraviolet rays having a wavelength of 150~270nm 6J / cm 2 or more, and it is preferably irradiated at an energy intensity of 6~500J / cm 2.

【0008】本発明に用いる化合物は、フッ素原子との
結合エネルギーが539kJ/mol以上の原子と親水
基を有する化合物であり、該原子の電気陰性度が2.5
以下があることが好ましい。これらの化合物としては、
アルミニウム(フッ素原子との結合エネルギー:671
kJ/mol、電気陰性度:1.5)、ホウ素(745
kJ/mol、2.0)、カルシウム(560kJ/m
ol、1.0)、バリウム(581kJ/mol、1.
2)、リチウム(580kJ/mol、1.0)、水素
(566kJ/mol、2.1)等の原子と親水基を有
する、例えば水酸化アルミニウム、ホウ酸、ホウ酸アン
モニウム、水酸化リチウム、水酸化カルシウム、水酸化
バリウム、アルミニウムエトキシド、蟻酸、酢酸等の化
合物を用いることができる。本発明においては、これら
化合物の水溶液が好ましく用いられ、特に親水基を有す
るアルミニウム化合物、ホウ素化合物またはリチウム化
合物の水溶液であることが好ましい。また、溶質の溶解
度を上げるために、水酸化ナトリウム、水酸化カリウム
等のアルカリ塩を添加してもよい。
The compound used in the present invention is a compound having an atom having a binding energy with a fluorine atom of 539 kJ / mol or more and a hydrophilic group, and the electronegativity of the atom is 2.5.
Preferably there are: These compounds include
Aluminum (bonding energy with fluorine atom: 671
kJ / mol, electronegativity: 1.5), boron (745
kJ / mol, 2.0), calcium (560 kJ / m)
ol, 1.0), barium (581 kJ / mol, 1.
2), having an atomic group such as lithium (580 kJ / mol, 1.0) and hydrogen (566 kJ / mol, 2.1) and a hydrophilic group, for example, aluminum hydroxide, boric acid, ammonium borate, lithium hydroxide, water. Compounds such as calcium oxide, barium hydroxide, aluminum ethoxide, formic acid and acetic acid can be used. In the present invention, an aqueous solution of these compounds is preferably used, and an aqueous solution of an aluminum compound, a boron compound or a lithium compound having a hydrophilic group is particularly preferable. Further, an alkali salt such as sodium hydroxide or potassium hydroxide may be added to increase the solubility of the solute.

【0009】本発明においては、上記化合物を多孔質フ
ッ素樹脂フィルムに接触させた状態で紫外線が照射され
るが、上記化合物の水溶液を含浸、塗布などにより多孔
質の内部組織表面に浸透するように接触させるのがよ
い。また、多孔質フッ素樹脂フィルムはそれ自体疎水性
であるため、上記の含浸、塗布工程をより円滑に行う前
処理として、プラズマ(H2 、O2 、Ar、CO2 、A
ir、H2 O等)、エキシマレーザ、低圧水銀ランプ、電
子線、放射線、エキシマランプ等の照射を行って多孔質
フッ素樹脂フィルムの表面を親水化することもできる。
In the present invention, the compound is irradiated with ultraviolet rays in a state of being brought into contact with the porous fluororesin film, but it may be impregnated with an aqueous solution of the compound so as to penetrate the surface of the porous internal tissue. Good contact. In addition, since the porous fluororesin film itself is hydrophobic, plasma (H 2 , O 2 , Ar, CO 2 , A) is used as a pretreatment for performing the above impregnation and coating steps more smoothly.
Ir, H 2 O, etc.), an excimer laser, a low-pressure mercury lamp, an electron beam, radiation, an excimer lamp, or the like may be applied to make the surface of the porous fluororesin film hydrophilic.

【0010】紫外線光源としては、紫外線を照射するこ
とにより多孔質フッ素樹脂フィルムのC−F結合(53
9kJ/mol)を1光子または少量ではあるが2光子
で切断するものであればよく、C−F結合を切断するフ
ォトンエネルギーは、波長が270nm以下が好まし
い。しかし、波長が短すぎるとフッ素樹脂フィルムによ
る光の吸収が強いので、光化学反応が生じるためのの十
分なエネルギーがフィルム厚さ方向に達しにくくなる。
従って、波長が150〜270nmの紫外線であること
が好ましい。紫外線光源は低圧水銀ランプ、高圧水銀ラ
ンプ、YAGレーザ(4倍波)、メタルハライドラン
プ、エキシマランプ等を用いることができるが、特に低
圧水銀ランプ(波長185nm、254nm)、エキシ
マランプ(波長222nm)が好ましい。
As the ultraviolet light source, the C—F bond (53
9 kJ / mol) may be cut with one photon or with a small amount of two photons, and the photon energy for cutting the C—F bond preferably has a wavelength of 270 nm or less. However, if the wavelength is too short, light is strongly absorbed by the fluororesin film, so that sufficient energy for causing a photochemical reaction is difficult to reach in the film thickness direction.
Therefore, it is preferable that the ultraviolet rays have a wavelength of 150 to 270 nm. As the ultraviolet light source, a low-pressure mercury lamp, a high-pressure mercury lamp, a YAG laser (fourth harmonic), a metal halide lamp, an excimer lamp, or the like can be used. preferable.

【0011】かかる光源からの紫外線を照射することに
より、多孔質フッ素樹脂フィルムのC−F結合(539
kJ/mol)を切断する。この際、フッ素原子との結
合エネルギーがC−F結合(539kJ/mol)以上
の原子を存在させることにより、切断されたフッ素原子
は前記原子と結合し、トラップされる。フッ素原子は電
気陰性度が4.0と大きいので、炭素原子(電気陰性
度:2.5)より小さい原子を存在させることでC−F
間の再結合を阻むことができる。また、その原子とフッ
素原子との結合は、その結合エネルギーがC−F結合よ
り高いので、再切断されにくい。従って、多孔質フッ素
樹脂フィルムのフッ素原子の一部を親水基と置換するこ
とができる。
By irradiating ultraviolet rays from such a light source, the CF bond (539
cJ / mol) is cut. At this time, by allowing an atom having a bond energy with the fluorine atom of C—F bond (539 kJ / mol) or more to exist, the cleaved fluorine atom bonds with the atom and is trapped. The electronegativity of the fluorine atom is as large as 4.0, so that the presence of atoms smaller than the carbon atom (electronegativity: 2.5) causes CF
It is possible to prevent reconnection between them. The bond energy between the atom and the fluorine atom is higher than that of the C—F bond, so that the bond is not easily broken again. Therefore, a part of the fluorine atoms of the porous fluororesin film can be replaced with the hydrophilic group.

【0012】かかる親水化処理により、セパレータ細孔
表面の多孔質フッ素樹脂のポリマーの主鎖、側鎖或いは
末端にC−OH、C−COOH、C−O−C等のC−O
結合を有する親水基が導入されるため、親水性であって
耐アルカリ性、耐酸性にも優れたものとなる。ここで細
孔表面とは、セパレータの多孔を構成している表面及び
内部組織表面を含む意味であって、上記の親水化処理に
よると親水化される部分は、セパレータ表面のみならず
内部組織表面に形成される特徴を有している。
By such hydrophilic treatment, C—O such as C—OH, C—COOH, and C—O—C is attached to the main chain, side chain or terminal of the polymer of the porous fluororesin on the surface of the separator pores.
Since a hydrophilic group having a bond is introduced, it is hydrophilic and has excellent alkali resistance and acid resistance. Here, the term "pore surface" means a surface that constitutes the porosity of the separator and an internal tissue surface, and the portion that is hydrophilized by the above hydrophilization treatment is not only the separator surface but also the internal tissue surface. It is characterized by being formed in.

【0013】以上の光化学的処理により得られる親水性
多孔質フッ素樹脂フィルムは、赤外吸収法により波数1
000〜1200cm-1にC−O結合に由来する赤外吸
収が存在し、且つXPS法において、F/C値が0.1 〜
1.5 及びO/C値が0.1 〜1.0 の範囲とされる。F/C
値が0.1 より小さく、O/C値が1.0 より大きすぎると
フッ素樹脂本来の特性が失われ、またF/C値が1.5 よ
り大きく、O/C値が0.1 より小さすぎると親水性が劣
る傾向が現れる。
The hydrophilic porous fluororesin film obtained by the above photochemical treatment has a wave number of 1 by infrared absorption method.
000 to 1200 cm −1 has an infrared absorption derived from a C—O bond, and has an F / C value of 0.1 to 10 in the XPS method.
The value of 1.5 and the O / C value are in the range of 0.1 to 1.0. F / C
If the value is smaller than 0.1 and the O / C value is larger than 1.0, the original properties of the fluororesin are lost, and if the F / C value is larger than 1.5 and the O / C value is smaller than 0.1, the hydrophilicity tends to be poor. Appears.

【0014】本発明の電解イオン水の製造法は、陰極室
と陽極室を隔膜で仕切り、両極室に設けた電極に直流電
圧を印加してアルカリ飲料水及び酸性水を含む電解イオ
ン水を製造する装置において、隔膜として前記の親水化
処理された多孔質フッ素樹脂フィルムが使用され、電解
イオン水を製造するものである。
In the method for producing electrolytic ionized water of the present invention, the cathode chamber and the anode chamber are partitioned by a diaphragm, and a DC voltage is applied to the electrodes provided in both electrode chambers to produce electrolytic ionized water containing alkaline drinking water and acidic water. In the apparatus described above, the hydrophilic fluoropolymer film is used as a diaphragm to produce electrolytically ionized water.

【0015】[0015]

【発明の効果】本発明においては、電解イオン水製造用
の隔膜として、波数1000〜1200cm-1にC−O
結合に由来する赤外吸収を有し、且つX線光電子分光法
によるF/Cの値が0.1 〜1.5 及びO/Cの値が0.1 〜
1.0 の親水性多孔質フッ素樹脂フィルムを用いるもので
あり、その好ましい製法は多孔質フッ素樹脂フィルムに
フッ素原子との結合エネルギーが539kJ/mol以
上の原子と親水基を有する化合物を接触させた状態で紫
外線を照射して得られる。その為、疎水性の強い多孔質
フッ素樹脂フィルムの表面のみならず内部組織表面も親
水化処理されており、電解液を十分に吸収保持できると
共に、耐酸化性や耐アルカリ性を有し、高温でも安定
で、長期的に性能を維持できるため、良質かつ安定した
性能を有する電解イオン水を製造することが出来る。
In the present invention, as a diaphragm for the production of electrolytic ionized water, C--O at a wave number of 1000 to 1200 cm -1 is used.
It has an infrared absorption derived from a bond and has an F / C value of 0.1 to 1.5 and an O / C value of 0.1 to X determined by X-ray photoelectron spectroscopy.
A hydrophilic porous fluororesin film of 1.0 is used, and the preferred production method is a state in which a compound having a hydrophilic group and an atom having a binding energy with a fluorine atom of 539 kJ / mol or more is brought into contact with the porous fluororesin film. Obtained by irradiating ultraviolet rays. Therefore, not only the surface of the porous fluororesin film having strong hydrophobicity, but also the surface of the internal tissue has been subjected to a hydrophilic treatment, which can sufficiently absorb and retain the electrolytic solution, and also has oxidation resistance and alkali resistance, and even at high temperatures. Since it is stable and can maintain the performance for a long period of time, it is possible to produce electrolytic ionized water having good quality and stable performance.

【0016】[0016]

【実施例】図1は本発明における電解イオン水の製造法
の実例を示すフローシートであり、電解槽7の陰極1及
び陽極2の相互は隔膜3により仕切られて陰極室及び陽
極室が形成され、、陰極1側にpHセンサー8が設けら
れている。市水蛇口からの水道水4は浄化フィルター5
(例えば、精密濾過膜、活性炭層等)を経て、陰極室及
び陽極室へ所定量が投入されるが、必要により保健有効
薬剤6(例えば、乳酸カルシウム、亜硫酸カルシウム、
塩化カルシウム、塩化カリウム等)を陽極室へ添加する
ように配管を設けることができる。かかる装置におい
て、陰極1及び陽極2に直流電圧を印加して電解を行う
が、電解により生成したアルカリイオン水はpHセンサ
ー8でpHを測定し、所定のpHとなるように両電極間
の電圧及び通電時間を調整する。かかる操作の後、陰極
室からアルカリイオン水9及び陽極室から酸性水10を
それぞれ取り出す。上記のフローシートでは回分方式を
示しているが、陰極室から取り出したアルカリイオン水
9の一部を循環ポンプにより陰極室へ循環させる連続方
式とすることもできる。
EXAMPLE FIG. 1 is a flow sheet showing an example of a method for producing electrolyzed ionized water according to the present invention. A cathode chamber and an anode chamber of an electrolytic cell 7 are partitioned from each other by a diaphragm 3 to form a cathode chamber and an anode chamber. The pH sensor 8 is provided on the cathode 1 side. Tap water 4 from city water tap is a purification filter 5
A predetermined amount is put into the cathode chamber and the anode chamber through (for example, a microfiltration membrane, an activated carbon layer, etc.), and if necessary, a health-effective drug 6 (for example, calcium lactate, calcium sulfite,
Piping can be provided to add (calcium chloride, potassium chloride, etc.) to the anode chamber. In such an apparatus, a DC voltage is applied to the cathode 1 and the anode 2 to perform electrolysis. The pH of the alkaline ionized water produced by electrolysis is measured by the pH sensor 8 and the voltage between both electrodes is adjusted to a predetermined pH. And adjust the energization time. After this operation, alkaline ionized water 9 is taken out from the cathode chamber and acidic water 10 is taken out from the anode chamber, respectively. Although the above flow sheet shows a batch system, a continuous system in which a part of the alkaline ionized water 9 taken out from the cathode chamber is circulated to the cathode chamber by a circulation pump can also be used.

【0017】実施例1 ポリテトラフルオロエチレン(PTFE)多孔質フィル
ム(日東電工株式会社製、商品名NTF1122 、公称孔径0.
2 μm)を、メタノール中及び水中に順次10分ずつ浸漬
し、さらに4.1重量%のホウ酸水溶液に10分浸漬
し、細孔内にホウ酸水溶液を含浸させた。このフィルム
に出力650Wの低圧水銀ランプ(オーク(株)製;VU
V-65B-22-21 、波長185nm、254nm )で60秒
照射した後、純水で洗浄し、風乾して、電解イオン水の
製造に有用な隔膜を得た。XPS法により分析したとこ
ろ、上記の光化学的処理前の多孔質フィルムはF/C=
2.0、O/C=0.01であったが、処理後の隔膜は
F/C=0.28、O/C=0.19となり、Fの比率
が減少し、Oが増加していることが確認された。また、
波形解析を行ったところ、−CF2 −結合(292e
V)のC原子数を100とすると、−C−O−結合(2
86eV)が80、−C=O結合(288eV)が16
であり、親水基が存在していることが確認された。処理
前にはそれらの官能基は存在しなかった。また、処理後
の隔膜の赤外線吸収スペクトルからは、波数1000〜
1200cm-1にC−O結合に由来する赤外吸収が見ら
れた。この隔膜は、本来疎水性であるPTFE多孔質フ
ィルムが上記の光化学的処理により親水化されたもので
あって、90℃の熱水に7日間浸漬した後も寸法変化は
殆どなく、十分な親水性を維持していた。図1の装置に
この隔膜を使用して、pH9のアルカリイオン水を造水
した。初期の造水能力(単位時間当たりのアルカリイオ
ン水造水量)に比べ、5m3 造水後の造水能力は2%低
下していたが、隔膜を取り出し調べたところ親水性には
変化がなかった。
Example 1 Polytetrafluoroethylene (PTFE) porous film (manufactured by Nitto Denko KK, trade name NTF1122, nominal pore size of 0.
2 μm) was successively dipped in methanol and water for 10 minutes each, and further dipped in a 4.1 wt% boric acid aqueous solution for 10 minutes to impregnate the pores with the boric acid aqueous solution. This film has a low pressure mercury lamp with an output of 650 W (Oak Co., Ltd .; VU
After irradiation with V-65B-22-21 (wavelength: 185 nm, 254 nm) for 60 seconds, the membrane was washed with pure water and air-dried to obtain a diaphragm useful for producing electrolytic ionized water. When analyzed by XPS method, the above porous film before photochemical treatment had F / C =
Although 2.0 and O / C = 0.01, the diaphragm after treatment had F / C = 0.28 and O / C = 0.19, and the ratio of F decreased and O increased. Was confirmed. Also,
Waveform analysis revealed that -CF 2 -bonding (292e
If the number of C atoms in V) is 100, then —C—O— bond (2
86 eV) is 80, and -C = O bond (288 eV) is 16
It was confirmed that a hydrophilic group was present. Prior to treatment, those functional groups were absent. In addition, from the infrared absorption spectrum of the treated diaphragm, the wave number of 1000-
Infrared absorption derived from the C—O bond was observed at 1200 cm −1 . This diaphragm is a PTFE porous film that is originally hydrophobic and has been hydrophilized by the photochemical treatment described above. There is almost no dimensional change even after being immersed in hot water at 90 ° C for 7 days, and it is sufficiently hydrophilic. She maintained her sex. Using this diaphragm in the apparatus of FIG. 1, alkaline ionized water having a pH of 9 was produced. Compared to the initial water production capacity (alkaline ionized water production amount per unit time), the water production capacity after 5 m 3 water production decreased by 2%, but when the membrane was taken out and examined, there was no change in hydrophilicity. It was

【0018】比較例 隔膜として、親水性ポリマー(ポリビニルピロリドン)
をコーティングして親水化処理を行ったポリプロピレン
多孔膜を用いて、実施例1と同様にしてアルカリイオン
水を造水した。pH9のアルカリイオン水を5m3 造水
後は初期に比べ造水能力が約2割低下しており、隔膜を
取り出し調べたところ面積的に約1割が疎水化してい
た。
Comparative Example As a diaphragm, a hydrophilic polymer (polyvinylpyrrolidone)
Alkaline ionized water was made in the same manner as in Example 1 by using a polypropylene porous membrane coated with and subjected to a hydrophilic treatment. After 5 m 3 of alkaline ionized water having a pH of 9 was prepared, the water production capacity was reduced by about 20% compared to the initial stage, and when the diaphragm was taken out and examined, about 10% of the area was hydrophobized.

【0019】実施例2 ホウ酸水溶液の代わりに、水酸化アルミニウム4重量%
と水酸化ナトリウム10重量%を含む水溶液を用いた以
外は実施例1と同様にして、電解イオン水の製造用の隔
膜を得た。実施例1と同様の隔膜の評価及び造水試験を
行った結果を表1に示す。
Example 2 4% by weight of aluminum hydroxide was used instead of the boric acid aqueous solution.
A diaphragm for producing electrolytic ionized water was obtained in the same manner as in Example 1 except that an aqueous solution containing 10% by weight of sodium hydroxide was used. Table 1 shows the results of the same evaluation of the diaphragm and the water production test as in Example 1.

【0020】実施例3 ホウ酸水溶液の代わりに、10重量%の蟻酸水溶液を用
いた以外は実施例1と同様にして、電解イオン水の製造
用の隔膜を得た。実施例1と同様の隔膜の評価及び造水
試験を行った結果を表1に示す。
Example 3 A diaphragm for producing electrolyzed ionized water was obtained in the same manner as in Example 1 except that a 10 wt% formic acid aqueous solution was used instead of the boric acid aqueous solution. Table 1 shows the results of the same evaluation of the diaphragm and the water production test as in Example 1.

【0021】実施例4 ホウ酸水溶液の代わりに、20重量%の水酸化リチウム
水溶液を用いた以外は実施例1と同様にして、電解イオ
ン水の製造用の隔膜を得た。実施例1と同様の隔膜の評
価及び造水試験を行った結果を表1に示す。
Example 4 A diaphragm for producing electrolytic ionized water was obtained in the same manner as in Example 1 except that a 20 wt% lithium hydroxide aqueous solution was used instead of the boric acid aqueous solution. Table 1 shows the results of the same evaluation of the diaphragm and the water production test as in Example 1.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における電解イオン水の製造例を示すフ
ローシートである。 1:陰極 2:陽極 3:隔膜 4:水道水 5:浄化フィルター 7:電解槽 9:アルカリイオン水 10:酸性水
FIG. 1 is a flow sheet showing an example of producing electrolytic ionized water in the present invention. 1: Cathode 2: Anode 3: Diaphragm 4: Tap water 5: Purification filter 7: Electrolyzer 9: Alkaline ionized water 10: Acidic water

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 陰極室と陽極室を隔膜で仕切り、両極室
に設けた電極に直流電圧を印加してアルカリ飲料水及び
酸性水を含む電解イオン水を製造する方法において、上
記隔膜として、波数1000〜1200cm-1にC−O
結合に由来する赤外吸収を有し、且つX線光電子分光法
によるF/Cの値が0.1 〜1.5 及びO/Cの値が0.1 〜
1.0 の親水性多孔質フッ素樹脂フィルムを用いることを
特徴とする電解イオン水の製造法
1. A method for producing electrolytic ionized water containing alkaline drinking water and acidic water by partitioning a cathode chamber and an anode chamber with a diaphragm, and applying a DC voltage to electrodes provided in both electrode chambers, wherein the diaphragm has a wave number. C-O at 1000 to 1200 cm -1
It has an infrared absorption derived from a bond and has an F / C value of 0.1 to 1.5 and an O / C value of 0.1 to X determined by X-ray photoelectron spectroscopy.
Method for producing electrolyzed ionized water characterized by using a hydrophilic porous fluororesin film of 1.0
【請求項2】 波数1000〜1200cm-1にC−O
結合に由来する赤外吸収を有し、且つX線光電子分光法
によるF/Cの値が0.1 〜1.5 及びO/Cの値が0.1 〜
1.0 の親水性多孔質フッ素樹脂フィルムが、多孔質フッ
素樹脂フィルムにフッ素原子との結合エネルギーが53
9kJ/mol以上の原子と親水基を有する化合物を接
触させた状態で紫外線を照射して得られたものであるこ
とを特徴とする請求項1に記載の電解イオン水の製造法
2. CO at a wave number of 1000 to 1200 cm -1
It has an infrared absorption derived from a bond and has an F / C value of 0.1 to 1.5 and an O / C value of 0.1 to X determined by X-ray photoelectron spectroscopy.
A hydrophilic porous fluororesin film of 1.0 has a binding energy of 53 with a fluorine atom in the porous fluororesin film.
The method for producing electrolyzed ionized water according to claim 1, which is obtained by irradiating with ultraviolet light in a state where a compound having a hydrophilic group and an atom of 9 kJ / mol or more are in contact with each other.
【請求項3】 化合物がアルミニウム化合物、ホウ素化
合物、リチウム化合物、水素化合物である請求項2に記
載の電解イオン水の製造法。
3. The method for producing electrolytic ionized water according to claim 2, wherein the compound is an aluminum compound, a boron compound, a lithium compound, or a hydrogen compound.
【請求項4】 紫外線として波長150〜270nmを
有する光源を使用する請求項2に記載の電解イオン水の
製造法。
4. The method for producing electrolyzed ionized water according to claim 2, wherein a light source having a wavelength of 150 to 270 nm as ultraviolet rays is used.
JP23731894A 1994-09-30 1994-09-30 Production of electrolytic ionic water Pending JPH0899088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23731894A JPH0899088A (en) 1994-09-30 1994-09-30 Production of electrolytic ionic water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23731894A JPH0899088A (en) 1994-09-30 1994-09-30 Production of electrolytic ionic water

Publications (1)

Publication Number Publication Date
JPH0899088A true JPH0899088A (en) 1996-04-16

Family

ID=17013597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23731894A Pending JPH0899088A (en) 1994-09-30 1994-09-30 Production of electrolytic ionic water

Country Status (1)

Country Link
JP (1) JPH0899088A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009535433A (en) * 2006-04-03 2009-10-01 インテグリス・インコーポレーテッド Atmospheric pressure microwave plasma treated porous membrane

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009535433A (en) * 2006-04-03 2009-10-01 インテグリス・インコーポレーテッド Atmospheric pressure microwave plasma treated porous membrane
US8668093B2 (en) 2006-04-03 2014-03-11 Entegris, Inc. Atmospheric pressure microwave plasma treated porous membranes
JP2014057956A (en) * 2006-04-03 2014-04-03 Entegris Inc Atmospheric pressure microwave plasma treated porous membrane
US8789708B2 (en) 2006-04-03 2014-07-29 Entegris, Inc. Atmospheric pressure microwave plasma treated porous membranes

Similar Documents

Publication Publication Date Title
EP0185228B1 (en) Multi-layered diaphragm for electrolysis
FR2463200A1 (en) ELECTRODE COMPRISING A HYDROPHILIC SURFACE POLYMER, ELECTROLYTIC CELL OBTAINED AND METHOD OF OBTAINING HALOGEN
JPS6134515B2 (en)
JP2005539117A (en) Process for making graft copolymers useful in membranes
US4602045A (en) Cation-exchange resins and use as membranes in electrolytic cells
WO2013180072A1 (en) Diaphragm for alkaline water electrolysis
JPS58176221A (en) Production of coated electrolytic ion exchange membrane
WO2018084220A1 (en) Solid polymer film electrode
EP0229321B1 (en) Method for producing an alkali metal hydroxide and electrolytic cell useful for the method
JPH0899088A (en) Production of electrolytic ionic water
EP0922789B1 (en) Shut-down process for membrane electrolytic cell with oxygen reducing cathode
JPH11121020A (en) Manufacture of ion exchange membrane usable as separator in fuel cell
US4316790A (en) Cation exchange membranes
JPH0845788A (en) Capacitor
JPH02133448A (en) Production of hydrophilic porous film
JP3511117B2 (en) Cation exchange membrane for electrolysis and method for producing high-purity potassium hydroxide
JP2004188375A (en) Fluorine-containing cation exchange membrane and salt electrolyzing method
JPH11106553A (en) Method for hydrophilizing porous fluoro resin membrane
JPH06327950A (en) Filtration membrane for liquid its production and filter used therefor
JP3340501B2 (en) Method for producing hydrophilic fluororesin porous membrane
JPH0338227A (en) Preparation of porous polymer membrane
JPH0616842A (en) Irradiation of ion exchange membrane to increase current efficiency and decrease power consumption
JPH09246103A (en) Capacitor and method for manufacturing separator using it
US4430186A (en) Electrolytic cell with improved hydrogen evolution cathode
JPS5893728A (en) Ion-exchange membrane