JPH0897455A - Thin film solar cell - Google Patents

Thin film solar cell

Info

Publication number
JPH0897455A
JPH0897455A JP6228550A JP22855094A JPH0897455A JP H0897455 A JPH0897455 A JP H0897455A JP 6228550 A JP6228550 A JP 6228550A JP 22855094 A JP22855094 A JP 22855094A JP H0897455 A JPH0897455 A JP H0897455A
Authority
JP
Japan
Prior art keywords
film
electrode layer
transparent
layer
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6228550A
Other languages
Japanese (ja)
Other versions
JP3214252B2 (en
Inventor
Yujiro Watanuki
勇次郎 綿貫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP22855094A priority Critical patent/JP3214252B2/en
Publication of JPH0897455A publication Critical patent/JPH0897455A/en
Application granted granted Critical
Publication of JP3214252B2 publication Critical patent/JP3214252B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE: To form a uniformly rough surface having a high adhesion by inserting a light scattering polymer film between a second transparent electrode layer and a moistureproof film. CONSTITUTION: On one side of a plastic film substrate 1 a first electrode layer 2, thin film semiconductor layer 3 and second transparent electrode layer 4 are laminated. On the other side a third electrode layer 5 is formed and connected through throughholes to the layer 2 or 4. A light scattering polymer film having a rough surface is formed on the layer 4 of a solar cell and this laminate is held between a transparent moistureproof film 81 through a transparent adhesive agent layer 71 and moistureproof film 82 through an adhesive agent layer 72 formed on a third electrode layer 5. The layers 71 and 72 use nylon-12, etc. The film 6 is made by polymerizing a polymethyl methacrylate (PMMA) resin with a polymer different in refractive index and hardening so as to form a rough surface. Thus a uniformly rough surface having a high adhesion to the electrode layer or moistureproof film can be formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、可とう性基板を用い、
光の有効利用を行うために、光の入射面を凹凸した薄膜
太陽電池に関する。
BACKGROUND OF THE INVENTION The present invention uses a flexible substrate,
The present invention relates to a thin-film solar cell in which an incident surface of light is uneven in order to make effective use of light.

【0002】[0002]

【従来の技術】太陽電池はクリーンなエネルギーとして
注目されており、その技術の進歩はめざましいものがあ
る。特に、シリコンを主材料とした光電変換層は大面積
の成膜が容易で低価格であるため、それを用いた薄膜太
陽電池に対する期待は大きい。従来の太陽電池は透明ガ
ラス基板上に凹凸化した酸化錫、酸化インジウム等の透
明電極を形成し、この上に結晶型およびアモルファス半
導体層、電極層を順次形成して表面反射率を低下させる
方法が知られている。また、逆に、基板上に金属電極層
を形成し、これを凹凸化し、この上に結晶型およびアモ
ルファス半導体層、電極層を順次形成する方法も知られ
ている。このようなガラス基板を用いた場合は、厚型で
重く、割れやすいという欠点をもち、また屋外の屋根等
への設置の際の作業性の改良等の理由により、薄型・軽
量化の要望が強くなっている。これらの要望に対し、可
とう性のあるプラスチックフィルムおよび薄膜金属フィ
ルムを基板に用いたフレキシブルタイプの薄膜太陽電池
の実用化が進みつつある。このようなフレキシブルタイ
プの薄膜太陽電池は、長尺基板上に連続的に成膜できる
ため、生産性の点でもすぐれている利点をもつ。
2. Description of the Related Art Solar cells have been attracting attention as clean energy, and their technological progress has been remarkable. In particular, since a photoelectric conversion layer mainly made of silicon can be easily formed into a large area and is inexpensive, a thin film solar cell using the photoelectric conversion layer is highly expected. A conventional solar cell is a method in which a transparent electrode made of uneven tin oxide, indium oxide or the like is formed on a transparent glass substrate, and a crystalline type and amorphous semiconductor layer and an electrode layer are sequentially formed on the transparent electrode to reduce the surface reflectance. It has been known. On the contrary, a method is also known in which a metal electrode layer is formed on a substrate, the metal electrode layer is made uneven, and a crystalline type and amorphous semiconductor layer and an electrode layer are sequentially formed on the metal electrode layer. When such a glass substrate is used, it is thick and heavy, and has the drawback of being easily broken, and due to reasons such as improved workability when installed on an outdoor roof, etc., there is a demand for thinner and lighter products. It's getting stronger. To meet these demands, a flexible type thin film solar cell using a flexible plastic film and a thin film metal film as a substrate is being put into practical use. Such a flexible thin-film solar cell has an advantage in that it can be formed into a film continuously on a long substrate, and thus has excellent productivity.

【0003】[0003]

【発明が解決しようとする課題】基板上に形成する電極
層の表面に凹凸構造を形成する場合、電極層と基板との
密着性も良好に保つ必要がある。金属酸化物からなる透
明電極を基板上に形成して表面に良好な凹凸形状を持た
せるためには、成膜温度を200℃以上にして金属酸化
物の結晶成長を促進しなければならない。有機材料を用
いた可撓性基板でこのような基板温度に耐えるために
は、基板に適した材質が極めて限られる。また、良好な
凹凸形状を表面に形成するためには、透明電極の厚さに
数百nm以上、例えばガラス基板上にSnO2 層を形成
する場合は700nm以上が必要である。しかし、可撓
性基板の場合、そのような厚い透明導電膜を形成する
と、基板との膨張係数の違いによる曲がりや、透明導電
膜自体が剥離してしまう問題が生ずる。さらに、金属酸
化物層の膜厚が厚くなるにつれて、これを電気的に分離
することが難しくなる。凹凸形状を金属薄膜上に形成す
る場合にも同様な問題が存在する。一方、電極層でなく
基板を構成する高分子材料中に微粒子を大量に混ぜて基
板表面にこの手の凹凸形状を形成しようとすると、基板
の物性が変化してしまう。このため、基板の割れなどが
発生し良好な可撓性基板を作成することが出来ない。
When an uneven structure is formed on the surface of an electrode layer formed on a substrate, it is necessary to maintain good adhesion between the electrode layer and the substrate. In order to form a transparent electrode made of a metal oxide on a substrate so as to have a good uneven shape on the surface, it is necessary to promote the crystal growth of the metal oxide at a film forming temperature of 200 ° C. or higher. In order to withstand such a substrate temperature in a flexible substrate using an organic material, the material suitable for the substrate is extremely limited. Further, in order to form a good uneven shape on the surface, the thickness of the transparent electrode needs to be several hundreds nm or more, for example, 700 nm or more when the SnO 2 layer is formed on the glass substrate. However, in the case of a flexible substrate, when such a thick transparent conductive film is formed, there arises a problem that the transparent conductive film itself is peeled off due to a difference in expansion coefficient from the substrate. Furthermore, as the thickness of the metal oxide layer increases, it becomes difficult to electrically separate the metal oxide layer. The same problem exists when the uneven shape is formed on the metal thin film. On the other hand, if a large amount of fine particles are mixed in the polymer material that constitutes the substrate rather than the electrode layer to form such a concavo-convex shape on the substrate surface, the physical properties of the substrate will change. For this reason, cracking of the substrate occurs and a good flexible substrate cannot be produced.

【0004】本発明の目的は、以上に挙げた問題点を解
決し、可撓性基板などの絶縁性基板表面上に密着性良好
に成膜した透明電極層表面に光学的に良好な凹凸形状を
形成して光電変換率を向上させた薄膜太陽電池を提供す
ることにある。
An object of the present invention is to solve the above-mentioned problems, and to form an optically excellent uneven shape on the surface of a transparent electrode layer formed with good adhesion on the surface of an insulating substrate such as a flexible substrate. To provide a thin-film solar cell having an improved photoelectric conversion rate.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、可とう性基板上に少なくとも第一電極
層、光電変換半導体層、透明第二電極層が積層され、接
着剤層を介して防湿フィルムにより挟着された薄膜太陽
電池において、透明第二電極層と防湿フィルムの間に光
散乱重合体膜が挿入されたものとする。光散乱重合体膜
は、透明第二電極層に接しているか、防湿フィルムに接
していることが良い。また、光散乱重合体膜が2層で、
1層は透明第二電極層に接し、他の1層は防湿フィルム
に接していることも良い。
In order to achieve the above-mentioned object, the present invention provides a flexible substrate having at least a first electrode layer, a photoelectric conversion semiconductor layer, and a transparent second electrode layer laminated on each other to form an adhesive agent. In the thin-film solar cell sandwiched by the moisture-proof film via the layers, it is assumed that the light-scattering polymer film is inserted between the transparent second electrode layer and the moisture-proof film. The light-scattering polymer film is preferably in contact with the transparent second electrode layer or the moisture-proof film. Also, the light-scattering polymer film has two layers,
It is also possible that one layer is in contact with the transparent second electrode layer and the other one layer is in contact with the moisture-proof film.

【0006】[0006]

【作用】光入射側の透明第二電極層とその上の透明防湿
フィルム裏面との間に0.1〜数μmの凹凸形状をもつ光
散乱重合体膜を挿入することにより、電極層面あるいは
防湿フィルム面との密着性が極めて強く、均一な凹凸形
状を形成することができる。
[Function] By inserting a light-scattering polymer film having a concavo-convex shape of 0.1 to several μm between the transparent second electrode layer on the light-incident side and the back surface of the transparent moisture-proof film thereon, the electrode layer surface or the moisture-proof film is protected. Adhesion to the film surface is extremely strong, and a uniform uneven shape can be formed.

【0007】このようにして凹凸形状を形成することに
より、入射側での光の反射率を低くするとができ、微粒
子混合等による従来の方法で凹凸形状を形成した場合と
同様な要因によって特性の向上が可能となる。なお、透
明防湿フィルム表面側に光散乱重合体膜を形成すること
が考えられるが、反射率、耐候性等の面から期待できな
いので好ましくない。
By forming the uneven shape in this way, it is possible to reduce the reflectance of light on the incident side, and the characteristics similar to those in the case where the uneven shape is formed by a conventional method such as mixing of fine particles may cause a characteristic change. It is possible to improve. Although it is conceivable to form a light-scattering polymer film on the surface side of the transparent moisture-proof film, it is not preferable because it cannot be expected in terms of reflectance, weather resistance and the like.

【0008】[0008]

【実施例】以下、本発明の実施例を共通の部分に同一の
符号を付した図を引用して説明する。図1、図2、図3
は、それぞれ下記に述べる本発明の実施例1、実施例
2、実施例3の薄膜太陽電池の構造を示す断面図であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings in which common portions are given the same reference numerals. 1, 2, and 3
FIG. 3 is a cross-sectional view showing the structures of thin film solar cells of Example 1, Example 2 and Example 3 of the present invention, which will be described below.

【0009】図1においては、可とう性のあるプラスチ
ックフィルム基板1の一面上に金属からなる第一電極層
2、pin接合を有する薄膜半導体層3、ITOなどか
らなる透明な第二電極層4が積層され、他面側には、例
えば特願平5−67976号明細書に記載されている第
三電極層5が形成され、基板1に明けられた図示しない
貫通孔を通じて第一電極層2あるいは第二電極層4と接
続されている。このような構造の太陽電池セルの第二電
極層4の上に凹凸形状をもつ光散乱重合体膜6が形成さ
れている。さらに、その光散乱重合体膜6の上に透明接
着剤層71を介した透明防湿フィルム81と、第三電極
層5の上に接着剤層72を介した防湿フィルム82とに
より挟着されている。
In FIG. 1, a first electrode layer 2 made of metal, a thin film semiconductor layer 3 having a pin junction, and a transparent second electrode layer 4 made of ITO or the like are provided on one surface of a flexible plastic film substrate 1. Are laminated, and the third electrode layer 5 described in, for example, Japanese Patent Application No. 5-67976 is formed on the other surface side, and the first electrode layer 2 is formed through a through hole (not shown) formed in the substrate 1. Alternatively, it is connected to the second electrode layer 4. The light-scattering polymer film 6 having an uneven shape is formed on the second electrode layer 4 of the solar cell having such a structure. Further, the light-scattering polymer film 6 is sandwiched by a transparent moisture-proof film 81 with a transparent adhesive layer 71 interposed therebetween, and a moisture-proof film 82 with an adhesive layer 72 interposed on the third electrode layer 5. There is.

【0010】図2においては、光散乱重合体膜6が透明
接着剤層71と透明防湿フィルム81との間に挿入さ
れ、図3においては光散乱重合体膜6が透明接着剤層7
1の両側に挿入されている。フィルム状絶縁基板1は電
極層および非晶質半導体層が200℃前後で成膜される
ため耐熱性が要求される。したがって、耐熱性を有する
プラスチックフィルムとして、ポリイミド、ポリエーテ
ルイミド、ポリサルホン、ポリエーテルサルホン、ポリ
フェニレンサルファイド、パラ系アラミド、ポリエーテ
ルケトンあるいは、ふっ素系全般のフィルムが挙げられ
るが、特にポリイミド、パラ系アラミド、ふっ素系全般
のフィルムが好適である。しかし、薄膜型の金属フィル
ムとしてステンレス鋼、ニッケル、銅等の箔を用い、表
面に耐熱性絶縁膜を被着してもよい。あるいは、第一電
極層を兼ねる導電性基板としてそのまま用いることもで
きる。薄膜半導体層3は一般的に成膜されるpin接合
を有する非晶質シリコンを主体とした薄膜である。電極
層2、4、5としては、それぞれ金属膜、透明導電膜、
金属膜がスパッタ等の手段により形成される。
In FIG. 2, the light-scattering polymer film 6 is inserted between the transparent adhesive layer 71 and the transparent moisture-proof film 81, and in FIG. 3, the light-scattering polymer film 6 is the transparent adhesive layer 7.
It is inserted on both sides of 1. The film-shaped insulating substrate 1 is required to have heat resistance because the electrode layer and the amorphous semiconductor layer are formed at about 200 ° C. Therefore, as the plastic film having heat resistance, polyimide, polyetherimide, polysulfone, polyethersulfone, polyphenylene sulfide, para-type aramid, polyetherketone, or a fluorine-based film in general, but especially polyimide, para-type Aramid and fluorine-based films are suitable. However, a foil of stainless steel, nickel, copper or the like may be used as the thin film metal film, and a heat resistant insulating film may be applied to the surface. Alternatively, it can be used as it is as a conductive substrate which also serves as the first electrode layer. The thin film semiconductor layer 3 is a thin film mainly composed of amorphous silicon having a pin junction which is generally formed. The electrode layers 2, 4, and 5 are a metal film, a transparent conductive film, and
A metal film is formed by means such as sputtering.

【0011】光入射側の防湿フィルム81には、透明
で、かつ水分透過率の小さいプラスチックフィルムが用
いられ、本発明によりアクリル樹脂 (ポリメチルメタア
クリレート) フィルム8の表面がふっ素系PVDF樹脂
により覆われたフィルムが用いられる。アクリル樹脂8
中には、紫外線吸収剤として、ベンゾフェノン系、ベン
ゾトリアゾール系、アクリレート系、サリチレート系な
どのものが添加される。
As the moisture-proof film 81 on the light incident side, a transparent plastic film having a low water permeability is used. According to the present invention, the surface of the acrylic resin (polymethylmethacrylate) film 8 is covered with a fluorine-based PVDF resin. The broken film is used. Acrylic resin 8
A benzophenone type, a benzotriazole type, an acrylate type, a salicylate type, or the like is added as an ultraviolet absorber.

【0012】光入射側と反対面の防湿フィルム82は、
必ずしも透明である必要はなく、たとえば、上記フィル
ムの他にアルミニウム等の金属箔をプラスチックフィル
ムでサンドイッチしたもので、プラスチックフィルム自
体は若干水分透過率の大きいものでも、プラスチックフ
ィルムでサンドイッチされた金属箔により、侵入してく
る水分を遮断するものを用いることができる。
The moisture-proof film 82 on the side opposite to the light incident side is
It does not necessarily have to be transparent. For example, in addition to the above films, a metal foil made of aluminum or the like is sandwiched with a plastic film. Even if the plastic film itself has a slightly high water permeability, a metal foil sandwiched with the plastic film is used. Therefore, it is possible to use a material that blocks invading water.

【0013】接着剤層71、72に用いられる材料は、
ナイロン−12、ポリビニルアルコール (PVA) 、ポ
リビニルブチラール (PVB) 、ポリオレフィン系でエ
チレン−酢酸ビニル共重合体 (EVA) 、塩化ビニル共
重合体、プロピレン共重合体、アクリロニトリル共重合
体等が挙げられる。光散乱重合体膜6は、ポリメチルメ
タアクリレート (PMMA) 、メタアクリル酸メチル
(MMA) 、アクリル酸エチル、エチレン、プロピレ
ン、アクリルニトリル、スチレン、塩化ビニル、酢酸ビ
ニル、マレイン酸等の単量体および重合体を用い、例え
ば、相溶性の異なる単量体の共重合、あるいはPMMA
樹脂と屈折率の異なる重合体を少量のMMA単量体に溶
解し、それを重合させることにより、固化した際に凹凸
形状を持たせたものである。
The materials used for the adhesive layers 71 and 72 are
Nylon-12, polyvinyl alcohol (PVA), polyvinyl butyral (PVB), polyolefin-based ethylene-vinyl acetate copolymer (EVA), vinyl chloride copolymer, propylene copolymer, acrylonitrile copolymer and the like can be mentioned. The light-scattering polymer film 6 is made of polymethylmethacrylate (PMMA), methylmethacrylate.
(MMA), ethyl acrylate, ethylene, propylene, acrylonitrile, styrene, vinyl chloride, vinyl acetate, maleic acid and other monomers and polymers are used, for example, copolymerization of monomers having different compatibility, or PMMA
A polymer having a refractive index different from that of a resin is dissolved in a small amount of MMA monomer and polymerized to give an uneven shape when solidified.

【0014】実施例1 図1に示すこの実施例は、請求項2の実施例である。フ
ィルム基板1として、ポリイミドフィルム (東レデュポ
ン社製、商品名:カプトン) を用い、第一電極層2はA
g膜、薄膜半導体層3としてpin接合を有する非晶質
シリコン膜、第二電極層4はITO膜、絶縁性基板1の
裏側に第三電極層5として、Ag膜をそれぞれ所定の装
置により形成し、太陽電池セルとした。
Embodiment 1 This embodiment shown in FIG. 1 is an embodiment of claim 2. A polyimide film (manufactured by Toray DuPont, trade name: Kapton) is used as the film substrate 1, and the first electrode layer 2 is A
g film, an amorphous silicon film having a pin junction as the thin film semiconductor layer 3, an ITO film as the second electrode layer 4, and an Ag film as the third electrode layer 5 on the back side of the insulating substrate 1 by a predetermined device. Then, it was used as a solar cell.

【0015】引き続き、少量のアクリルニトリル重合体
をメタアクリ酸メチル単量体に溶解して重合させ、この
重合溶液を第二電極層4上に塗布して固化させることに
より約2μmの大きさの凹凸形状をもつ光散乱重合体膜
6を形成した。その後、接着剤層71、72をEVAに
より400μm膜厚に形成し、防湿フィルム71、72
として、50μm膜厚のポリフェニレンサルファイドフ
ィルム(東レ社製、商品名:トレリナ) を用いて、前記
太陽電池セル両側にセットし、130℃の温度で10分
間真空加熱加圧条件でラミネートして、薄膜太陽電池を
作製した。
Subsequently, a small amount of an acrylonitrile polymer is dissolved in a methyl methacrylate monomer to be polymerized, and this polymerized solution is applied onto the second electrode layer 4 and solidified to form an unevenness of about 2 μm. A light-scattering polymer film 6 having a shape was formed. After that, the adhesive layers 71 and 72 are formed to a thickness of 400 μm by EVA, and the moisture-proof films 71 and 72 are formed.
As a thin film, a polyphenylene sulfide film (manufactured by Toray Industries, Inc., trade name: Torelina) having a thickness of 50 μm was set on both sides of the solar cell, and laminated at a temperature of 130 ° C. for 10 minutes under vacuum heating and pressing conditions. A solar cell was produced.

【0016】実施例2 図2に示すこの実施例は、請求項3の実施例である。こ
の薄膜太陽電池では、実施例1の第二電極層4上の光散
乱重合体膜6の位置を、透明防湿フィルム81の裏面側
に変更した以外は実施例1と同様にして薄膜太陽電池を
作製した。
Embodiment 2 This embodiment shown in FIG. 2 is an embodiment of claim 3. In this thin-film solar cell, a thin-film solar cell was prepared in the same manner as in Example 1 except that the position of the light-scattering polymer film 6 on the second electrode layer 4 in Example 1 was changed to the back surface side of the transparent moisture-proof film 81. It was made.

【0017】実施例3 図3に示すこの実施例は、請求項4の実施例で、実施例
1の第二電極層4上と実施例2の透明防湿フィルム71
の裏面側とにそれぞれ凹凸形状をもつ光散乱重合体膜6
を形成し、それ以外は実施例1と同様にして薄膜太陽電
池を作製した。 比較例 光散乱重合体膜6を除いた以外は実施例1と同様にして
従来構造の薄膜太陽電池を作製した。
Example 3 This example shown in FIG. 3 is an example of claim 4, which is on the second electrode layer 4 of Example 1 and the transparent moisture-proof film 71 of Example 2.
Light-scattering polymer film 6 having irregularities on the back side of the
Was formed, and a thin film solar cell was prepared in the same manner as in Example 1 except for the above. Comparative Example A thin film solar cell having a conventional structure was produced in the same manner as in Example 1 except that the light scattering polymer film 6 was omitted.

【0018】上記実施例1〜3、比較例とも太陽電池の
電極より外部へリード線を引き出し、特性評価できる構
造となっている。以上の実施例1〜3、比較例の初期電
気特性を測定した結果、比較例に比べ実施例1〜3では
約1割変換効率が向上していた。また、実施例では凹凸
形状の効果で反射率が低下して電流の増加が観測され
た。さらに、同時に作製した外部リード線なしの薄膜太
陽電池を切断して、剥離試験を行った結果、比較例では
比較的簡単に剥離したが、実施例では剥離しにくかっ
た。
In each of the above Examples 1 to 3 and Comparative Example, a lead wire is drawn out from the electrode of the solar cell to the outside so that characteristics can be evaluated. As a result of measuring the initial electrical characteristics of the above Examples 1 to 3 and Comparative Example, about 10% conversion efficiency was improved in Examples 1 to 3 as compared with Comparative Example. Further, in the example, it was observed that the reflectance decreased due to the effect of the uneven shape and the current increased. Furthermore, the thin film solar cell without an external lead wire produced at the same time was cut and a peeling test was performed. As a result, the comparative example peeled relatively easily, but the example did not peel easily.

【0019】以上から、本発明の実施例の薄膜太陽電池
は、比較例に比べ初期特性が向上し、密着性が優れてい
ることが分かる。なお、以上の実施例では基板表面に第
三電極層を形成した薄膜太陽電池に実施例しているが、
基板一面上にのみ構成される薄膜太陽電池、即ち第三電
極層を有しない薄膜太陽電池に適用しても有効であるこ
とは明白である。
From the above, it can be seen that the thin-film solar cells of the examples of the present invention have improved initial characteristics and superior adhesion as compared with the comparative examples. In the above examples, the example is a thin film solar cell in which the third electrode layer is formed on the surface of the substrate,
It is obvious that the present invention is also effective when applied to a thin film solar cell configured only on one surface of a substrate, that is, a thin film solar cell having no third electrode layer.

【0020】[0020]

【発明の効果】本発明によれば、太陽電池への入射光の
表面反射率を低下させるために表面の防湿フィルムと透
明第二電極層との間に凹凸形状をもつ光散乱重合体膜を
挿入することにより、光散乱重合体膜が防湿フィルムと
も、第二電極層とも密着性が良好であるため、光電変換
効率の向上した薄膜太陽電池も高い良品率で製造するこ
とが可能になった。
According to the present invention, a light-scattering polymer film having an uneven shape is formed between the moisture-proof film on the surface and the transparent second electrode layer in order to reduce the surface reflectance of incident light to the solar cell. By inserting, since the light-scattering polymer film has good adhesion to both the moisture-proof film and the second electrode layer, it has become possible to manufacture thin-film solar cells with improved photoelectric conversion efficiency at a high yield rate. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の薄膜太陽電池の構造を示す
断面図
FIG. 1 is a sectional view showing the structure of a thin-film solar cell according to an embodiment of the present invention.

【図2】本発明の別の実施例の薄膜太陽電池の構造を示
す断面図
FIG. 2 is a sectional view showing the structure of a thin film solar cell according to another embodiment of the present invention.

【図3】本発明のさらに別の実施例の薄膜太陽電池の構
造を示す断面図
FIG. 3 is a sectional view showing the structure of a thin-film solar cell according to still another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 フィルム基板 2 第一電極層 3 薄膜半導体層 4 透明第二電極層 5 第三電極層 6 光散乱重合体膜 71 透明接着剤層 72 接着剤層 81 透明防湿フィルム 82 防湿フィルム 1 film substrate 2 first electrode layer 3 thin film semiconductor layer 4 transparent second electrode layer 5 third electrode layer 6 light scattering polymer film 71 transparent adhesive layer 72 adhesive layer 81 transparent moisture-proof film 82 moisture-proof film

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】可とう性基板上に少なくとも第一電極層、
光電変換半導体層、透明第二電極層が積層され、接着剤
層を介して防湿フィルムにより挟着されたものにおい
て、透明第二電極層と防湿フィルムの間に光散乱重合体
膜が挿入されたことを特徴とする薄膜太陽電池。
1. At least a first electrode layer on a flexible substrate,
A photoelectric conversion semiconductor layer and a transparent second electrode layer are laminated and sandwiched by a moisture-proof film via an adhesive layer, and a light-scattering polymer film is inserted between the transparent second electrode layer and the moisture-proof film. A thin film solar cell characterized by the above.
【請求項2】光散乱重合体膜が透明第二電極層に接して
いる請求項1記載の薄膜太陽電池。
2. The thin film solar cell according to claim 1, wherein the light-scattering polymer film is in contact with the transparent second electrode layer.
【請求項3】光散乱重合体膜が防湿フィルムに接してい
る請求項1記載の薄膜太陽電池。
3. The thin-film solar cell according to claim 1, wherein the light-scattering polymer film is in contact with the moisture-proof film.
【請求項4】光散乱重合体膜が2層で、1層は透明第二
電極層に接し、他の1層は防湿フィルムに接している請
求項1記載の薄膜太陽電池。
4. The thin-film solar cell according to claim 1, wherein the light-scattering polymer film has two layers, one layer is in contact with the transparent second electrode layer, and the other one layer is in contact with the moisture-proof film.
JP22855094A 1994-09-26 1994-09-26 Thin film solar cell Expired - Fee Related JP3214252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22855094A JP3214252B2 (en) 1994-09-26 1994-09-26 Thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22855094A JP3214252B2 (en) 1994-09-26 1994-09-26 Thin film solar cell

Publications (2)

Publication Number Publication Date
JPH0897455A true JPH0897455A (en) 1996-04-12
JP3214252B2 JP3214252B2 (en) 2001-10-02

Family

ID=16878136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22855094A Expired - Fee Related JP3214252B2 (en) 1994-09-26 1994-09-26 Thin film solar cell

Country Status (1)

Country Link
JP (1) JP3214252B2 (en)

Also Published As

Publication number Publication date
JP3214252B2 (en) 2001-10-02

Similar Documents

Publication Publication Date Title
US6168851B1 (en) Hot-melt webs, laminates, and laminate making method
JP5381717B2 (en) Manufacturing method of solar cell module
EP1246249A2 (en) Thin-film solar cell module of see-through type
US20080283117A1 (en) Solar Cell Module and Method of Manufacturing Solar Cell Module
KR20070098655A (en) Solar battery module
JP3267738B2 (en) Solar cell module
JP2783918B2 (en) Method for manufacturing photovoltaic device
US20190237603A1 (en) Light redirecting films and its making method and photovoltaic modules
WO2019128939A1 (en) Solar panel
JP3749015B2 (en) Manufacturing method of solar cell
JP2009032779A (en) Thin-film solar cell module
CN218548444U (en) Light fireproof photovoltaic module and photovoltaic power generation system
JPH0897455A (en) Thin film solar cell
JP2003249670A (en) Solar battery for flexible display, display device and electronic book
JP2021512505A (en) Solar cell module
TW201924076A (en) Solar cell module
JP2000307136A (en) Solar cell cover film
JP2889719B2 (en) Method for manufacturing photovoltaic device
JP2012204460A (en) Solar battery backside sheet and solar battery module using the same
JP2001127320A (en) Solar cell module
US20190237601A1 (en) Device, solar cell module, making method and installing method
JP2001257369A (en) Photoelectric transducer and its manufacturing method
JP2752188B2 (en) Photovoltaic device and manufacturing method thereof
CN217323929U (en) Packaging adhesive film
US20230006085A1 (en) Light redirecting film

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080727

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080727

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090727

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090727

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090727

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090727

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees