JPH0894928A - Image transmission optical system - Google Patents
Image transmission optical systemInfo
- Publication number
- JPH0894928A JPH0894928A JP25730494A JP25730494A JPH0894928A JP H0894928 A JPH0894928 A JP H0894928A JP 25730494 A JP25730494 A JP 25730494A JP 25730494 A JP25730494 A JP 25730494A JP H0894928 A JPH0894928 A JP H0894928A
- Authority
- JP
- Japan
- Prior art keywords
- optical system
- image
- aspherical
- lens
- spherical aberration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Lenses (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、硬性部を有する内視
鏡、医療用硬性鏡、工業用硬性鏡、固体撮像素子等を内
蔵するビデオスコープ、ビデオ硬性鏡に用いる像伝達光
学系に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an endoscope having a rigid portion, a medical rigid scope, an industrial rigid scope, a videoscope incorporating a solid-state image sensor, and an image transmission optical system used for the video rigid scope. Is.
【0002】[0002]
【従来の技術】像伝送光学系の従来例として図33に示
すような構成の特開昭51−68242号公報に記載さ
れた光学系が知られている。この像伝送光学系は、対物
レンズOによる物体像をフィールドレンズF中に結像
し、これを各リレーレンズRにより順次結像して行く構
成である。又各リレーレンズRとフィールドレンズFの
間にはガラスブロックBが配置されている。この像伝送
光学系は、リレーレンズRにより発生する負の非点収差
Δmと正の像面湾曲ΔsをガラスブロックBで発生する
正の非点収差Δmと負の像面湾曲で打消して収差を減少
させている。又ガラスブロックBの配置によりガラスブ
ロックの屈折率をnとすると明るさをn2倍にするよう
にしている。2. Description of the Related Art As a conventional example of an image transmission optical system, there is known an optical system described in Japanese Patent Application Laid-Open No. 51-68242, which is constructed as shown in FIG. This image transmission optical system is configured such that an object image formed by the objective lens O is formed in the field lens F, and then formed by the relay lenses R in sequence. Further, a glass block B is arranged between each relay lens R and field lens F. In this image transmission optical system, the negative astigmatism Δm and the positive field curvature Δs generated by the relay lens R are canceled by the positive astigmatism Δm and the negative field curvature generated by the glass block B, and aberration is generated. Is decreasing. Further, by disposing the glass block B, the brightness is made n 2 times as large as the refractive index of the glass block is n.
【0003】しかし、この従来例では、リレーレンズR
で発生する負の球面収差をガラスブロックBにより補正
することは出来ず、像伝送回数の増加に伴い大になって
行く。However, in this conventional example, the relay lens R
The negative spherical aberration that occurs in 1 cannot be corrected by the glass block B, and becomes large as the number of image transmissions increases.
【0004】上記従来の像伝送光学系の1回リレーを行
なうリレーレンズは、図34に示す構成で下記のデータ
ーを有する。 f=-12.577 ,Fナンバー=9.39 ,像高=0.7 r1 =∞ d1 =3.0000 n1 =1.51633 ν1 =64.15 r2 =-3.8560 d2 =1.3000 r3 =∞ d3 =24.0000 n2 =1.51633 ν2 =64.15 r4 =∞ d4 =1.0000 r5 =8.0840 d5 =1.0000 n3 =1.69895 ν3 =30.12 r6 =3.3990 d6 =3.0000 n4 =1.58900 ν4 =48.61 r7 =-13.7800 d7 =1.0000 r8 =∞ d8 =24.0000 n5 =1.51633 ν5 =64.15 r9 =∞ d9 =1.0500 r10=10.1050 d10=3.0000 n6 =1.51633 ν6 =64.15 r11=∞ この1回リレーのリレーレンズの球面収差は図35に示
す通りであり、又3次および5次の球面収差係数は下記
の通りである。The relay lens for performing the one-time relay of the above-mentioned conventional image transmission optical system has the following data with the configuration shown in FIG. f = -12.577, F-number = 9.39, the image height = 0.7 r 1 = ∞ d 1 = 3.0000 n 1 = 1.51633 ν 1 = 64.15 r 2 = -3.8560 d 2 = 1.3000 r 3 = ∞ d 3 = 24.0000 n 2 = 1.51633 ν 2 = 64.15 r 4 = ∞ d 4 = 1.0000 r 5 = 8.0840 d 5 = 1.0000 n 3 = 1.69895 ν 3 = 30.12 r 6 = 3.3990 d 6 = 3.0000 n 4 = 1.58900 ν 4 = 48.61 r 7 = -13.7800 d 7 = 1.0000 r 8 = ∞ d 8 = 24.0000 n 5 = 1.51633 ν 5 = 64.15 r 9 = ∞ d 9 = 1.0500 r 10 = 10.1050 d 10 = 3.0000 n 6 = 1.51633 ν 6 = 64.15 r 11 = ∞ this 1 The spherical aberration of the relay lens of the spiral relay is as shown in FIG. 35, and the third-order and fifth-order spherical aberration coefficients are as follows.
【0005】 K 3次の球面収差係数 K 5次の球面収差係数 1 0.00000 1 0.00000 2 0.00000 2 0.00000 3 −0.00001 3 0.00000 4 0.00006 4 0.00000 5 −0.00178 5 −0.00002 6 0.00207 6 0.00011 7 −0.00060 7 0.00000 8 0.00006 8 0.00000 9 −0.00001 9 0.00000 10 0.00000 10 0.00000 11 0.00000 11 0.00000 トータル −0.00021 トータル 0.00009 図35からわかるように、NAの増加に伴いd線の負の
球面収差が増大し、像伝送回数が増加するとこの負の球
面収差が加算され負の方向に大になる。例えば像伝送回
数が5回になると球面収差は図36のようになる。K 3rd-order spherical aberration coefficient K 5th-order spherical aberration coefficient 1 0.00000 1 0.00000 2 0.00000 2 0.00000 3 -0.00001 3 0.00000 4 0.00006 4 0.00000 5-0.00178 5-0.00002 6 0.00207 6 0.00011 7 -0.00060 7 0.00000 8 0.00006 8 0.00000 9 -0.00001 9 0.00000 10 0.00000 10 0 As shown in FIG. 35, as the NA increases, the negative spherical aberration of the d-line increases, and as the number of times of image transmission increases, the negative spherical aberration of 0.000000 11 0.00000 11 0.00000 total −0.00021 total 0.00009 The spherical aberration of is added and becomes large in the negative direction. For example, when the number of image transmissions is 5, spherical aberration becomes as shown in FIG.
【0006】又前記の3次の球面収差係数からわかるよ
うに、リレーレンズRの各面r5,r6 ,r7 の収差係
数の和はマイナスであり、フィールドレンズF(r1 ,
r 2 ;r10,r11)、ガラスブロックB(r3 ,r4 ;
r8 ,r9 )には、リレーレンズRの各面の負の球面収
差係数を補正する作用は有していない。また5次の収差
係数の和はプラスであり、NAの増加にともない球面収
差がプラス側へ若干曲がっているのはこの高次の収差係
数のためである。It can be seen from the above-mentioned third-order spherical aberration coefficient.
Sea urchin, each surface of relay lens RFive, R6 , R7 Aberration of
The sum of the numbers is negative, and the field lens F (r1 ,
r 2 ; RTen, R11), Glass block B (r3 , RFour ;
r8 , R9 ) Is the negative spherical surface convergence of each surface of the relay lens R.
It has no function of correcting the difference coefficient. 5th order aberration
The sum of the coefficients is positive, and the spherical surface convergence increases with the increase of NA.
The difference slightly bends to the positive side is due to this higher-order aberration
Because of the numbers.
【0007】ここで収差係数について説明する。ザイデ
ルの収差係数を次の式(a),(b)のように定義す
る。これは汎用レンズ設計プログラムACCOS−Vで
用いられているものと同じものである。ただしACCO
S−Vでは、物体距離をOB,マージナル光線の開口数
をNA,第1面より物体側の媒質の屈折率をn0 とした
時、近軸光線の第1面における光線高H0 が H0 =OB×tan {sin-1 (NA/n0 )} にて決まるのに対して、本願においては H0 =OB×NA/n0 にて決まる。したがって、本願においては後者で決まる
H0 をもって近軸追跡を行なって各収差を求めている。 メリジオナル光線(X’=0)に対して ΔY=(SA3)H’+(CMA3)Y’H’2 +{3(AST3)+(PTZ3)}Y’2 H’+(DIS3)Y’3 +(SA5)H’5 +(CMA5)Y’H4 +(TOBSA)Y’2 H’3 +(ELCMA)Y’3 H’2 +{5(AST5)+(PTZ5)}Y’4 H’+(DIS5)Y’5 +(SA7)H’7 ・・・・・(a) サジタル光線(Y’=0)に対して ΔZ=(SA3)H’3 +{(AST3)+(PTZ3)}Z’2 H’ +(SA5)H’5 +(SOBSA)Z’2 H’3 +{(AST5)+(PTZ5)}Z’4 H’+(SA7)H’7 ・・・・・(b) 上記の式(a)はメリジオナル光線に対して近軸像点
(収差がない時の像点)と実際の像点とのずれをΔYと
したもので、Y’は最大像高で規格化した像面における
近軸主光線の入射位置、H’は瞳面における瞳径で規格
化したマージナル光線の入射位置である。またSA3,
SA5,SA7は夫々3次,5次,7次の球面収差、C
MA3,CMA5は夫々3次,5次のタンジェンシャル
コマ、AST3,AST5は夫々3次,5次の非点収
差、PTZ3,PTZ5は夫々3次,5次のペッツバー
ル和、DIS3,DIS5は3次,5次の歪曲収差、T
OBSAは5次の斜方向のタンジェンシャル球面収差、
ELCMAは5次の楕円コマ、SOBSAは5次の斜方
向のサジタル球面収差である。The aberration coefficient will be described here. The Seidel aberration coefficient is defined by the following equations (a) and (b). This is the same as that used in the general-purpose lens design program ACCOS-V. However, ACCO
In SV, when the object distance is OB, the numerical aperture of the marginal ray is NA, and the refractive index of the medium on the object side of the first surface is n 0 , the ray height H 0 of the paraxial ray on the first surface is H. While 0 = OB × tan {sin −1 (NA / n 0 )}, it is determined by H 0 = OB × NA / n 0 in the present application. Therefore, in the present application, paraxial tracking is performed with H 0 determined by the latter to obtain each aberration. ΔY = (SA3) H ′ + (CMA3) Y′H ′ 2 + {3 (AST3) + (PTZ3)} Y ′ 2 H ′ + (DIS3) Y ′ 3 for the meridional ray (X ′ = 0) + (SA5) H '5 + (CMA5) Y'H 4 + (TOBSA) Y' 2 H '3 + (ELCMA) Y' 3 H '2 + {5 (AST5) + (PTZ5)} Y' 4 H '+ (DIS5) Y' 5 + (SA7) H ' 7 (a) For sagittal ray (Y' = 0) ΔZ = (SA3) H ' 3 + {(AST3) + (PTZ3 )} Z '2 H' + (SA5) H '5 + (SOBSA) Z' 2 H '3 + {(AST5) + (PTZ5)} Z' 4 H '+ (SA7) H' 7 ···· (B) In the above equation (a), the deviation between the paraxial image point (image point when there is no aberration) and the actual image point for the meridional ray is ΔY, and Y ′ is the maximum image height. In the image plane standardized by The incident position of the paraxial chief ray, H ′ is the incident position of the marginal ray normalized by the pupil diameter on the pupil plane. Also SA3
SA5 and SA7 are spherical aberrations of the 3rd, 5th and 7th orders, respectively, and C
MA3 and CMA5 are 3rd and 5th tangential coma respectively, AST3 and AST5 are 3rd and 5th astigmatism respectively, PTZ3 and PTZ5 are 3rd and 5th order Petzval sums, and DIS3 and DIS5 are 3rd order. , 5th-order distortion, T
OBSA is the tangential spherical aberration of the 5th oblique direction,
ELCMA is a fifth-order elliptical coma, and SOBSA is a fifth-order oblique sagittal spherical aberration.
【0008】近年、硬性鏡においては、光源の明るさの
向上や接眼側に着脱できるテレビカメラの感度の向上が
めざましく、使用環境によっては、明るすぎてテレビモ
ニター上で像が白くとんでしまう現象が起こる。この点
を改良するために、例えば接眼側に着脱可能なテレビカ
メラ内にオートアイリス機構を組込んだものが知られて
いる。このオートアイリス機構によりテレビカメラの撮
像素子に到達する光の明るさがあるレベル以上になると
絞りが自動的に絞り込まれて被写界深度や解像力がよく
なるようになっている。特に硬性鏡は、被写体に近づく
と被写体からの反射光が強くなり絞り込みが必要にな
る。ここでオートアイリス機構が働くと、常に明るさが
最適に保たれるだけでなく被写界深度が増し近くの被写
体にピントが合い易くなる。In recent years, in the case of a rigid endoscope, the brightness of the light source is improved and the sensitivity of the television camera which can be attached to and detached from the eyepiece is remarkably improved. Depending on the environment of use, the image is too bright and the image appears white on the TV monitor. Happens. In order to improve this point, there is known, for example, one in which an auto iris mechanism is incorporated in a television camera which is detachable on the eyepiece side. With this auto iris mechanism, when the brightness of the light reaching the image pickup element of the television camera exceeds a certain level, the diaphragm is automatically narrowed down to improve the depth of field and the resolution. Particularly in the case of a rigid endoscope, the light reflected from the subject becomes stronger as it approaches the subject, and it is necessary to narrow down the aperture. When the auto iris mechanism works here, not only the brightness is always kept optimal, but also the depth of field increases and it becomes easier to focus on a nearby subject.
【0009】ここで前記の従来のリレーレンズで像伝送
回数が5回の場合の球面収差とMTFを図36に示す。
この図36において、(A),(a)は絞り開放、
(B),(b)は明るさ1/2 、(C),(c)は明るさ
1/4 の場合を示す。又(A),(B),(C)は球面収
差カーブ、(a),(b),(c)はMTFを示す。図
36の(a),(b),(c)において縦軸にコントラ
スト(解像力)、横軸にピント像面をとっており、像面
上の任意の周波数の特性を示している。図36の(a)
では周波数100本/mmのコントラストは、ピント像
面−0.37で最大の約67%であり、このピント像面
に対応する被写体距離が最もピントが合い易い状態にな
る。この図に示すように、図34に示すリレーレンズは
負の球面収差が発生しておりかつNAの増加に伴いより
負の方向に大になる。したがってオートアイリス機能を
組込んだ場合、MTFからわかるようにピント像面は絞
り込むにつれて夫々−0.37、−0.32、−0.2
7のように移動する。FIG. 36 shows the spherical aberration and the MTF in the case where the number of image transmissions is 5 in the conventional relay lens described above.
In FIG. 36, (A) and (a) are aperture open,
(B) and (b) are brightness 1/2, (C) and (c) are brightness
The case of 1/4 is shown. Further, (A), (B) and (C) show spherical aberration curves, and (a), (b) and (c) show MTF. 36 (a), (b), and (c), the vertical axis represents the contrast (resolution) and the horizontal axis represents the focus image plane, showing the characteristics of any frequency on the image plane. FIG. 36 (a)
In contrast, the contrast at a frequency of 100 lines / mm is about 67%, which is the maximum at a focus image plane of -0.37, and the subject distance corresponding to this focus image plane is in the state of being most easily focused. As shown in this figure, in the relay lens shown in FIG. 34, negative spherical aberration occurs, and it becomes larger in the negative direction as the NA increases. Therefore, when the auto iris function is incorporated, as can be seen from the MTF, the focus image plane is reduced by -0.37, -0.32, -0.2, respectively, as it is narrowed down.
Move like 7.
【0010】硬性鏡に装着されるテレビカメラにピント
調整機能が備えられていればもとのピント位置に調整で
きるが、硬性鏡の場合、被写体距離が頻繁に変わるため
オートアイリス機構も頻繁に作動し、いちいちピント調
整を行なうのは面倒である。そのため一般には、このピ
ント像面の移動に対してピント調整は行なわれず、被写
界深度が移動する。つまり、図36のような球面収差を
有する光学系の場合、絞り込みによって、−0.37か
ら−0.27へ移動したピント像面は、像側のピント像
面を変えないとするとベスト位置から遠点に被写界深度
が移動する。そのため、オートアイリス機構によって絞
り込んでも近い被写体にピントが合いやすくなると言う
効果は得られず、近点のピントが不十分になる。かつ遠
点では被写界深度が十分であっても絞り込んでいるため
明るさは不充分になる。If the TV camera attached to the rigid endoscope has a focus adjustment function, the original focus position can be adjusted, but in the case of the rigid endoscope, the subject distance changes frequently, so the auto iris mechanism also operates frequently. It is troublesome to adjust the focus one by one. Therefore, in general, focus adjustment is not performed with respect to the movement of the focus image plane, and the depth of field moves. That is, in the case of the optical system having the spherical aberration as shown in FIG. 36, the focus image plane moved from −0.37 to −0.27 by the stop down is the best position unless the focus image plane on the image side is changed. The depth of field moves to the far point. Therefore, the effect of making it easier to focus on a close subject even if the aperture is narrowed down by the auto iris mechanism is not obtained, and the near point is insufficiently focused. At the far point, the brightness is insufficient because the aperture is narrowed down even if the depth of field is sufficient.
【0011】他の従来例として図37に示す特開昭61
−20015号公報に記載されたものが知られている。
この従来例は、特開昭51−68242号公報とほぼ同
じ構成であるが第1の棒状レンズの射出側の面r2 と第
2の棒状レンズr7 の入射側の面がいずれも凸面であ
る。したがってこれら二つの面の正の屈折力がリレーレ
ンズの機能の一部を分担しているので、リレーレンズに
かかる負担が小さくなる。このため特開昭51−682
42号公報の従来例よりも球面収差を良好に補正するこ
とが出来る。Another conventional example is shown in FIG.
The one described in Japanese Patent Publication No. 200015 is known.
This conventional example has almost the same structure as that of Japanese Patent Laid-Open No. 51-68242, but both the exit side surface r 2 of the first rod-shaped lens and the entrance side surface of the second rod-shaped lens r 7 are convex. is there. Therefore, since the positive refracting powers of these two surfaces share part of the function of the relay lens, the load on the relay lens is reduced. For this reason, JP-A-51-682
Spherical aberration can be corrected better than in the conventional example of Japanese Patent Laid-Open No.
【0012】下記のデーターは、特開昭61−2001
5号に記載されたレンズデーターとこのレンズ系の球面
収差係数である。 f=31.50 ,Fナンバー=5.30 ,像高=1.0 r1 =13.7150 d1 =17.8700 n1 =1.62004 ν1 =36.25 r2 =-13.7150 d2 =4.6400 r3 =12.3380 d3 =3.2000 n2 =1.62004 ν2 =36.25 r4 =-7.4710 d4 =1.5000 n3 =1.80518 ν3 =25.43 r5 =7.4710 d5 =3.2000 n4 =1.62004 ν4 =36.25 r6 =-12.3380 d6 =4.6400 r7 =13.7150 d7 =17.8700 n5 =1.62004 ν5 =36.25 r8 =-13.7150 3次の球面収差係数 5次の球面収差係数 1 −0.00014 1 0.00000 2 0.00000 2 0.00000 3 −0.00117 3 −0.00001 4 0.00129 4 0.00003 5 0.00129 5 0.00003 6 −0.00117 6 0.00001 7 0.00000 7 0.00000 8 −0.00014 8 0.00000 トータル −0.00002 トータル 0.00004 上記のリレーレンズの3次および5次の球面収差係数の
和はほぼ0であり、これは棒状レンズの面r2 ,r7 が
屈折力を分担しかつ高次の球面収差の曲がりが生じない
領域で3次の球面収差の補正を可能にした。又棒状レン
ズの面r2 ,r7 自身も収差が発生しないようになって
おり、像伝達光学系全体での球面収差がほぼ0になるよ
うにしている。この従来例の球面収差は図38に示す通
りである。The following data can be found in JP-A-61-2001.
The lens data described in No. 5 and the spherical aberration coefficient of this lens system. f = 31.50, F-number = 5.30, the image height = 1.0 r 1 = 13.7150 d 1 = 17.8700 n 1 = 1.62004 ν 1 = 36.25 r 2 = -13.7150 d 2 = 4.6400 r 3 = 12.3380 d 3 = 3.2000 n 2 = 1.62004 ν 2 = 36.25 r 4 = -7.4710 d 4 = 1.5000 n 3 = 1.80518 ν 3 = 25.43 r 5 = 7.4710 d 5 = 3.2000 n 4 = 1.62004 ν 4 = 36.25 r 6 = -12.3380 d 6 = 4.6400 r 7 = 13.7150 d 7 = 17.8700 n 5 = 1.62004 ν 5 = 36.25 r 8 = -13.7150 Third-order spherical aberration coefficient 5th-order spherical aberration coefficient 1 −0.00014 1 0.00000 2 0.00000 2 0.00000 3 −0. 001 17 3 -0.00001 4 0.00129 4 0.00003 5 0.00129 5 0.00003 6 -0.00117 6 0.00001 7 0.00000 7 0.00000 8 -0.000148 0.00000 Total- 0.00002 Total Sum of .00004 third and fifth order spherical aberration coefficient of the relay lens is almost 0, which is bent surface r 2, r 7 of the rod-shaped lens is spherical aberration to and higher share power It is possible to correct the third-order spherical aberration in a region where it does not occur. Also, the surfaces r 2 and r 7 of the rod-shaped lens do not generate aberrations themselves, so that the spherical aberration of the entire image transfer optical system is almost zero. The spherical aberration of this conventional example is as shown in FIG.
【0013】しかし、この従来例は、非点収差、像面湾
曲、球面収差を良好に補正しているが、棒状両凸レンズ
は、次の理由から製作コストが高くつく。即ち、曲面を
有する棒状レンズは平面よりも加工の段取りに時間を要
し、曲面を持つ棒状レンズは平面よりも一度に多くの棒
状レンズを加工できない。又両凸棒状レンズの中心肉厚
が厚いため、光学軸が偏芯しやすく、高精度が要求され
る。つまり片方の面の傾きにより他の面では光学軸が大
きくずれるため傾きの精度が極めて高くなければならな
い。However, although this conventional example favorably corrects astigmatism, field curvature, and spherical aberration, the rod-shaped biconvex lens is expensive to manufacture for the following reasons. That is, a bar-shaped lens having a curved surface requires more time for processing than a flat surface, and a bar-shaped lens having a curved surface cannot process more bar-shaped lenses at a time than a flat surface. Further, since the central wall thickness of the biconvex rod lens is large, the optical axis is easily decentered, and high precision is required. In other words, the inclination of one surface causes the optical axis of the other surface to be greatly deviated, and therefore the inclination accuracy must be extremely high.
【0014】図39は、他の従来例を示すもので、上記
の欠点を除くため、図39のように図37に示す棒状レ
ンズを2分又は3分することが考えられるが、部品点数
が多くなり又接合が多くなり工程が増え製作コストが増
大し好ましくない。FIG. 39 shows another conventional example. In order to eliminate the above-mentioned drawbacks, it is conceivable to divide the rod-shaped lens shown in FIG. 37 into two or three minutes as in FIG. 39, but the number of parts is reduced. This is not preferable because the number of connections increases, the number of connections increases, the number of processes increases, and the manufacturing cost increases.
【0015】以上述べたように、従来の像伝送光学系
は、ガラスブロックを用いることにより非点収差、像面
湾曲は良好に補正し得るが球面収差の補正が十分ではな
い。更に棒状両凸レンズの場合、球面収差も補正出来る
が製作コストが高くなる欠点がある。As described above, the conventional image transmission optical system can satisfactorily correct the astigmatism and the field curvature by using the glass block, but the spherical aberration is not sufficiently corrected. Further, in the case of a rod-shaped biconvex lens, spherical aberration can be corrected, but there is a drawback that the manufacturing cost becomes high.
【0016】[0016]
【発明が解決しようとする課題】本発明は非点収差,像
面湾曲,球面収差を良好に補正すると共に製造コストの
安い像伝送光学系を提供するものである。SUMMARY OF THE INVENTION The present invention provides an image transmission optical system which is excellent in correction of astigmatism, field curvature and spherical aberration and which is inexpensive to manufacture.
【0017】[0017]
【課題を解決するための手段】本発明の像伝送光学系
は、複数のレンズにて構成されていて、瞳近傍に球面収
差を補正する非球面を少なくとも一つ設けたことを特徴
としている。The image transmission optical system of the present invention is characterized by comprising a plurality of lenses and providing at least one aspherical surface for correcting spherical aberration in the vicinity of the pupil.
【0018】更に球面収差を補正する非球面は次の条件
(1)を満足する位置に設けることが望ましい。Further, it is desirable that the aspherical surface for correcting spherical aberration is provided at a position satisfying the following condition (1).
【0019】(1) 0.2<D/L<0.8 ただし、Lは1回伝送あたりの物体側の像から伝送像の
結像側の像までの距離、Dは前記物体側の像から前記非
球面までの距離である。(1) 0.2 <D / L <0.8 where L is the distance from the image on the object side per transmission to the image on the image forming side of the transmitted image, and D is the image on the object side. To the aspherical surface.
【0020】条件(1)において、D/Lが0.2より
も小さくなるか、0.8よりも大きくなるとマージナル
光線高が低くなり非球面による球面収差の補正が出来な
くなり好ましくない。In the condition (1), if D / L is smaller than 0.2 or larger than 0.8, the height of the marginal ray is lowered and the spherical aberration cannot be corrected by the aspherical surface, which is not preferable.
【0021】本発明の像伝送光学系は、例えば後に示す
第1の実施例である図1に示すような構成を基本構成と
するもので、物体側の像1から瞳位置Qを経て観察側の
像2へ向けて順に平凸レンズL1 と非球面レンズLASP
と平凸レンズL2 とにて構成され、平凸レンズL1 と非
球面レンズLASP とは接合されている。The image transmission optical system of the present invention has a basic configuration as shown in FIG. 1, which is a first embodiment to be described later, for example, and is from the image 1 on the object side through the pupil position Q to the observation side. Towards the image 2 of the plano-convex lens L 1 and aspherical lens L ASP
And a plano-convex lens L 2, and the plano-convex lens L 1 and the aspherical lens L ASP are cemented together.
【0022】この図1に示す光学系の球面収差は図14
に示す通りで、NAの増加に伴いd線の球面収差は0に
保たれている。この光学系の3次の球面収差係数は、球
面で発生する球面収差の和−0.002を非球面にて+
0.00198の球面収差を発生させることにより、又
5次の球面収差係数は、球面で発生する球面収差の和
0.00118を非球面で発生する球面収差−0.00
127により補正している。The spherical aberration of the optical system shown in FIG. 1 is shown in FIG.
As shown in, the spherical aberration of the d-line is maintained at 0 as the NA increases. For the third-order spherical aberration coefficient of this optical system, the sum of the spherical aberrations generated on the spherical surface −0.002 is +
By generating a spherical aberration of 0.00198, the 5th-order spherical aberration coefficient has a sum 0.00118 of spherical aberrations generated on the spherical surface and a spherical aberration −0.00 on the aspherical surface.
It is corrected by 127.
【0023】上記のように球面収差がNAによらずほぼ
一定であるため従来の像伝送光学系の欠点である、明る
さ絞りを絞り込んだ時に生ずるピント移動は起こらな
い。As described above, since the spherical aberration is almost constant regardless of NA, the focus movement that occurs when the aperture stop is stopped, which is a drawback of the conventional image transmission optical system, does not occur.
【0024】また図1に示す光学系は、従来の像伝送光
学系のように棒状両凸レンズを用いていないため製作コ
ストが高くなることがない。又非球面レンズは、近年、
ガラスを過熱して融かした後に非球面の型に流し込み圧
力をかけて成形する方法が多く用いられており、短時間
に多量に精度よく製作する技術が確立されている。した
がって非球面レンズのコストは比較的安く、像伝送光学
系の他の研磨レンズのコストからみれば、非球面レンズ
によるコスト増加の比率は僅かであり、コスト高になる
ことはない。又非球面レンズは、ガラスに限ることなく
プラスチックでもよい。Further, the optical system shown in FIG. 1 does not use a rod-shaped biconvex lens unlike the conventional image transmission optical system, so that the manufacturing cost does not increase. In addition, aspherical lenses have been used in recent years.
A method in which glass is heated and melted and then poured into an aspherical mold to apply pressure to form the glass is often used, and a technique for producing a large amount of the glass in a short time with high accuracy has been established. Therefore, the cost of the aspherical lens is relatively low, and in view of the cost of the other polishing lenses of the image transmission optical system, the ratio of the cost increase by the aspherical lens is small and the cost does not increase. The aspherical lens is not limited to glass and may be plastic.
【0025】本発明における球面収差を補正するための
非球面は、光が屈折率の高い媒質から屈折率の低い媒質
へ進む場合は、低次の非球面係数が負であり、高次の非
球面係数が正であることが望ましい。つまり下記の式に
て表わされる非球面において、B,E,F,G,・・・
である。 The aspherical surface for correcting spherical aberration in the present invention has a negative low-order aspherical coefficient when light travels from a medium having a high refractive index to a medium having a low refractive index, and a high-order non-spherical surface. It is desirable that the spherical coefficient is positive. That is, on the aspherical surface represented by the following formula, B, E, F, G, ...
Is.
【0026】ここで、x,yは光軸をx軸にとり、像の
方向を正の方向とし、非球面と光軸との交点を原点とし
てx軸に直交する方向をy軸とした時の座標値、Cは光
軸近傍で非球面と接する円の曲率半径Rの逆数、Pは非
球面の形状をあらわすパラメーター、B,E,F,G,
・・・は夫々2次,4次,6次,8次,・・・の非点収
差係数である。又次数が増えるにつれて低次から高次と
呼び、本発明における最低次は4次であって2次は含ま
ない。Here, x and y have the optical axis as the x-axis, the image direction is the positive direction, the intersection of the aspherical surface and the optical axis is the origin, and the direction orthogonal to the x-axis is the y-axis. Coordinates, C is the reciprocal of the radius of curvature R of the circle that is in contact with the aspheric surface near the optical axis, P is a parameter that represents the shape of the aspheric surface, and B, E, F, G,
... are second-order, fourth-order, sixth-order, eighth-order, ... Astigmatism coefficients, respectively. Further, as the order increases, the order is called low order to high order, and the lowest order in the present invention is the fourth order and does not include the second order.
【0027】従来の非球面を用いない球面レンズのみの
光学系の場合、NAが増加し瞳近傍のレンズの光線が通
る領域が大になるにしたがい負の球面収差が発生する。
これを補正するためには、瞳近傍に負のパワーをもたせ
て正の球面収差がNAの増加に伴い増加するようにしな
ければならない。In the case of a conventional optical system using only a spherical lens that does not use an aspherical surface, negative spherical aberration occurs as the NA increases and the area through which the ray of the lens passes near the pupil increases.
In order to correct this, it is necessary to give negative power to the vicinity of the pupil so that positive spherical aberration increases as NA increases.
【0028】したがって、非球面の形状としては、光軸
から離れるにつれてつまり周辺に行くにつれて、屈折率
の低い媒質の方へ曲がる形状が好ましい。これを非球面
係数を表わす式にあてはめると、屈折率の高い媒質から
屈折率の低い媒質へ光が進む場合は、x軸方向の座標は
yの値の増加に伴い正にならなければならず、低次の非
球面係数、例えば4次の非球面係数Eは正であることが
望ましい。一方この低次の非球面係数だけでは、正の球
面収差の値を負にもって行くことは出来るが球面収差の
正の方向の曲がりを補正することは出来ない。これを調
整するためには、高次の非球面係数例えば6次の非球面
係数F、8次の非球面係数Gが負であることが望まし
い。これによって曲がりのない0に近い球面収差を達成
することが出来る。Therefore, as the shape of the aspherical surface, a shape that bends toward the medium having a low refractive index as the distance from the optical axis, that is, toward the periphery is preferable. If this is applied to the equation expressing the aspherical coefficient, when light travels from a medium having a high refractive index to a medium having a low refractive index, the coordinate in the x-axis direction must become positive as the value of y increases. , The low-order aspherical coefficient, for example, the fourth-order aspherical coefficient E is preferably positive. On the other hand, with only this low-order aspherical coefficient, it is possible to bring the value of positive spherical aberration to a negative value, but it is not possible to correct the curvature of the spherical aberration in the positive direction. In order to adjust this, it is desirable that the high-order aspherical surface coefficient, for example, the 6th-order aspherical surface coefficient F and the 8th-order aspherical surface coefficient G are negative. As a result, it is possible to achieve spherical aberration close to 0 without any bending.
【0029】逆に屈折率の低い媒質から屈折率の高い媒
質へ光が進む時には、x軸方向の座標値はyの値の増加
に伴い負にならなければならず、上記とは逆の理由によ
り低次の非球面係数は負、高次の非球面係数は正である
ことが望ましい。On the contrary, when light travels from a medium having a low refractive index to a medium having a high refractive index, the coordinate value in the x-axis direction must become negative as the value of y increases, which is the reason opposite to the above. Therefore, it is desirable that the low-order aspherical coefficient is negative and the high-order aspherical coefficient is positive.
【0030】また、2次の非球面係数は、光軸近傍での
非球面と接する円の曲率半径Cと同じくy2 の係数であ
り、この円の曲率半径を変える役割しかもたず球面であ
るため非球面として球面収差の補正に関与しないので2
次の非球面係数Bは低次の表現のなかには含まない。The second-order aspherical surface coefficient is a coefficient of y 2 like the radius of curvature C of a circle in contact with the aspherical surface in the vicinity of the optical axis, and has a role of changing the radius of curvature of this circle and is a spherical surface. Therefore, it does not contribute to the correction of spherical aberration as an aspherical surface.
The following aspherical coefficient B is not included in the low-order expressions.
【0031】以上のことから、本発明で用いる球面収差
を補正する作用をもつ非球面は、次の条件を満足するこ
とが望ましい。From the above, it is desirable that the aspherical surface having a function of correcting spherical aberration used in the present invention satisfies the following condition.
【0032】(A)屈折率の高い媒質から屈折率の低い
媒質へ光が進む場合 (2) E>0 , F<0 , G<0 (B)屈折率の低い媒質から屈折率の高い媒質へ光が進
む場合 (3) E<0 , F>0 , G<0 本発明の光学系において、次の条件(4)を満足するこ
とが望ましい。(A) When light travels from a medium having a high refractive index to a medium having a low refractive index (2) E> 0, F <0, G <0 (B) A medium having a low refractive index to a medium having a high refractive index When light travels to (3) E <0, F> 0, G <0 In the optical system of the present invention, it is desirable to satisfy the following condition (4).
【0033】 (4) 0.00001≦|(A×n)/(NA’×N)| ただし、Aは非球面係数のうち最も数値の大きい係数、
nは非球面レンズの屈折率、NA’は像伝送光学系の射
出側の開口数、Nは伝送回数である。(4) 0.00001 ≦ | (A × n) / (NA ′ × N) | where A is the coefficient having the largest numerical value among the aspherical coefficients,
n is the refractive index of the aspherical lens, NA 'is the numerical aperture on the exit side of the image transmission optical system, and N is the number of transmissions.
【0034】上記条件(4)はn,NA’,Nを加味し
て非球面係数Aを規格化したものである。ここで屈折率
nは非球面係数Aに反比例し、像伝送系の射出NA’
は、非球面係数Aに比例する。又伝送回数Nは非球面係
数Aに比例する。このことから|(A×n)/(NA’
×N)|と規格化すれば、この値は0.00001以上
であることが望ましい。The above condition (4) is a condition in which the aspherical surface coefficient A is standardized in consideration of n, NA 'and N. Here, the refractive index n is inversely proportional to the aspherical coefficient A, and the exit NA ′ of the image transmission system is
Is proportional to the aspherical coefficient A. The number of transmissions N is proportional to the aspherical surface coefficient A. From this, | (A × n) / (NA '
XN) |, it is desirable that this value be 0.00001 or more.
【0035】上記の|(A×n)/(NA’×N)|が
0.00001よりも小さくなるとAが小さすぎて球面
収差の補正が不足し、NA’が大きいにも拘らずAが小
さく球面収差の補正が不足し、伝送回数Nが大きいにも
拘らずAが小さいため球面収差補正が不足する。When the above | (A × n) / (NA ′ × N) | becomes smaller than 0.00001, A is too small to correct spherical aberration, and although NA ′ is large, A is large. The correction of spherical aberration is small and the correction of spherical aberration is insufficient because A is small despite the large number of transmissions N.
【0036】又、本発明光学系のレンズタイプとして
は、図34に示す従来例のように、外径の数倍の長さの
ロッド棒(ガララスブロック)を交互に配置し、その間
に凹レンズと凸レンズとを接合した正の接合レンズを配
置した構成とし、この接合レンズの近傍つまり瞳の近傍
に球面収差を補正する非球面を少なくとも一つ設けるこ
とが望ましい。この光学系のロッド棒は、視野レンズと
接合してもよく、その場合図1に示す構成になる。この
場合、瞳近傍の非球面レンズをロッド棒との接合レンズ
にすれば、ロッド棒が両凸レンズになり、従来例で述べ
たように製作上コスト高になり好ましくない。As the lens type of the optical system of the present invention, as in the conventional example shown in FIG. 34, rod rods (galaras blocks) having a length several times the outer diameter are alternately arranged, and a concave lens is provided therebetween. It is desirable that a positive cemented lens in which a convex lens and a convex lens are cemented is disposed, and at least one aspherical surface that corrects spherical aberration is provided near this cemented lens, that is, near the pupil. The rod rod of this optical system may be joined to the field lens, in which case the configuration shown in FIG. 1 is obtained. In this case, if the aspherical lens in the vicinity of the pupil is used as a cemented lens with the rod rod, the rod rod becomes a biconvex lens, which is not preferable because the manufacturing cost becomes high as described in the conventional example.
【0037】本発明の像伝送光学系が複数回からなる像
伝送光学系の場合、最も像側のリレーレンズの瞳近傍に
球面収差を補正する非球面を少なくとも一つ設けること
が望ましい。本発明の像伝送光学系は、非球面レンズの
有無により球面収差の補正には影響があるが他の収差に
はほとんど影響がない。このことは、例えば後に示す第
1の実施例の収差カーブを見れば明らかである。つまり
図示する収差カーブのうち図15の13回リレーで非球
面のある場合と図16の非球面のない場合とで、球面収
差以外はほとんど変りがない。そのため、従来の複数リ
レーを行なう像伝送光学系を有する硬性鏡において、少
なくとも一つ球面収差を補正する非球面を用いれば、各
リレーレンズで発生する球面収差の和を一つの非球面で
補正することが出来る。この場合非球面を設ける位置と
しては、像伝送光学系中の瞳近傍であればどこでもよい
が、最も像側のリレーレンズに非球面を用いれば、非球
面を含む部品の交換が容易であるため望ましい。In the case where the image transmission optical system of the present invention comprises a plurality of image transmission optical systems, it is desirable to provide at least one aspherical surface for correcting spherical aberration near the pupil of the relay lens closest to the image side. In the image transmission optical system of the present invention, the presence or absence of an aspherical lens affects the correction of spherical aberration, but has little effect on other aberrations. This is clear from, for example, the aberration curve of the first embodiment shown later. That is, among the illustrated aberration curves, there is almost no change other than spherical aberration between the case where the 13-time relay in FIG. 15 has an aspherical surface and the case where there is no aspherical surface in FIG. 16. Therefore, in a conventional rigid mirror having an image transmission optical system that performs multiple relays, if at least one aspherical surface that corrects spherical aberration is used, the sum of spherical aberrations that occur in each relay lens is corrected by one aspherical surface. You can In this case, the position where the aspherical surface is provided may be anywhere near the pupil in the image transmission optical system, but if an aspherical surface is used for the relay lens closest to the image side, the parts including the aspherical surface can be easily replaced. desirable.
【0038】[0038]
【実施例】次に本発明の像伝送光学系の実施例について
述べる。EXAMPLES Next, examples of the image transmission optical system of the present invention will be described.
【0039】本発明の第1の実施例は、図1に示す構成
で、物体側の像1から像側の像にむけて順に、平凸レン
ズL1 と非球面レンズLASP と、接合レンズLC と、平
凸レンズL2 とからなっている。The first embodiment of the present invention has the configuration shown in FIG. 1, and has a plano-convex lens L 1 , an aspherical lens L ASP, and a cemented lens L in order from the image 1 on the object side to the image on the image side. It is composed of C and a plano-convex lens L 2 .
【0040】この第1の実施例のレンズデーターおよび
球面収差係数は下記の通りである。 f=1659.091 ,Fナンバー=5.167 ,像高=1.0000 倍率=-0.9996 ,物体距離=-1.8349 r1 =8.6830 d1 =18.0459 n1 =1.62004 ν1 =36.25 r2 =∞ d2 =2.0000 n2 =1.62004 ν2 =36.25 r3 =1947.1576(非球面)d3 =1.1835 r4 =6.4803 d4 =0.4587 n3 =1.80610 ν3 =40.95 r5 =2.9606 d5 =1.3761 n4 =1.65160 ν4 =58.52 r6 =-11.5959 d6 =0.8257 r7 =∞ d7 =20.0459 n5 =1.62004 ν5 =36.25 r8 =-8.6830 非球面係数 R=1947.1576,P=1.0000,B=0 ,E=0.18121 ×10-3 F=-0.53495×10-4,G=-0.92529×10-5 3次の球面収差係数 5次の球面収差係数 K (球面) (非球面) K (球面) (非球面) 1 -0.00016 0.00000 1 0.00000 0.00000 2 0.00000 0.00000 2 0.00000 0.00000 3 0.00046 0.00198 3 0.00000 -0.00127 4 -0.01187 0.00000 4 -0.00039 0.00000 5 0.01318 0.00000 5 0.00166 0.00000 6 -0.00391 0.00000 6 -0.00009 0.00000 7 0.00045 0.00000 7 0.00000 0.00000 8 -0.00016 0.00000 8 0.00000 0.00000 トータル -0.00200 0.00198 トータル 0.00118 -0.00127 この第1の実施例においては、図1に示し又上記データ
ーを有する光学系は、N=1の像伝送回数が1回の場合
であって、図14に示すように球面収差が良好に補正さ
れている。この図1に示すレンズ系は、同じものを複数
用いて複数回リレーの光学系としてもよいが、非球面の
形状を最適化することにより、複数回リレーの光学系で
あるが非球面は一つのみで収差を良好に補正することが
出来る。The lens data and spherical aberration coefficient of the first embodiment are as follows. f = 1659.091, F-number = 5.167, image height = 1.0000 magnification = -0.9996, object distance = -1.8349 r 1 = 8.6830 d 1 = 18.0459 n 1 = 1.62004 ν 1 = 36.25 r 2 = ∞ d 2 = 2.0000 n 2 = 1.62004 ν 2 = 36.25 r 3 = 1947.1576 (aspherical surface) d 3 = 1.1835 r 4 = 6.4803 d 4 = 0.4587 n 3 = 1.80610 ν 3 = 40.95 r 5 = 2.9606 d 5 = 1.3761 n 4 = 1.65160 ν 4 = 58.52 r 6 = -11.5959 d 6 = 0.8257 r 7 = ∞ d 7 = 20.0459 n 5 = 1.62004 ν 5 = 36.25 r 8 = -8.6830 aspherical coefficient R = 1947.1576, P = 1.0000, B = 0, E = 0.18121 × 10 - 3 F = -0.53495 × 10 -4 , G = -0.92529 × 10 -5 3rd-order spherical aberration coefficient 5th-order spherical aberration coefficient K (spherical surface) (aspherical surface) K (spherical surface) (aspherical surface) 1 -0.00016 0.00000 1 0.00000 0.00000 2 0.00000 0.00000 2 0.00000 0.00000 3 0.00046 0.00198 3 0.00000 -0.00127 4 -0.01187 0.00000 4 -0.00039 0.00000 5 0.01318 0.00000 5 0.00166 0.00000 6 -0.00391 0.00000 6 -0.0000 9 0.00000 7 0.00045 0.00000 7 0.00000 0.00000 8 -0.00016 0.00000 8 0.00000 0.00000 Total -0.00200 0.00198 Total 0.00118 -0.00127 In this first embodiment, the optical system shown in FIG. 1 and having the above data has an image of N = 1. In the case where the number of transmissions is one, the spherical aberration is well corrected as shown in FIG. The lens system shown in FIG. 1 may be an optical system for multiple relays by using the same lens, but by optimizing the shape of the aspherical surface, the optical system is a multiple relay optical system, but the aspherical surface is Aberration can be corrected well with only one.
【0041】図2は上記第1の実施例でN=2の場合
で、後ろ側のリレーレンズにのみ非球面(面r10が非球
面)を設け、この非球面を下記データーのように最適化
することにより、全体の球面収差を良好に補正すること
が出来る。 f=-829.106 ,Fナンバー=-5.167 ,像高=1.0000 倍率=0.9991 ,物体距離=-1.8349 r1 =8.6830 d1 =20.0459 n1 =1.62004 ν1 =36.25 r2 =∞ d2 =1.1835 r3 =6.4803 d3 =0.4587 n2 =1.80610 ν2 =40.95 r4 =2.9606 d4 =1.3761 n3 =1.65160 ν3 =58.52 r5 =-11.5959 d5 =0.8257 r6 =∞ d6 =20.0459 n4 =1.62004 ν4 =36.25 r7 =-8.6830 d7 =3.6700 r8 =8.6830 d8 =18.0459 n5 =1.62004 ν5 =36.25 r9 =∞ d9 =2.0000 n6 =1.62004 ν6 =36.25 r10=972.8287(非球面)d10=1.1835 r11=6.4803 d11=0.4587 n7 =1.80610 ν7 =40.95 r12=2.9606 d12=1.3761 n8 =1.65160 ν8 =58.52 r13=-11.5959 d13=0.8257 r14=∞ d14=20.0459 n9 =1.62004 ν9 =36.25 r15=-8.6830 非球面係数 R=972.8287,P=1.0000,B=0 ,E=0.36021 ×10-3 F=-0.10514×10-3,G=-0.18814×10-4 第1の実施例において、リレー回数つまり1回のリレー
のリレーレンズの数を増やす場合の例として、夫々N=
3〜7および13の場合、図2に示すN=2の例におけ
る像側のリレーレンズ(非球面を有するリレーレンズ)
を最も像側に配置してその前に図2に示すN=2の例に
おける物体側のリレーレンズ(図1に示すリレーレン
ズ)を、N=3の場合二つ、N=4の場合は三つのよう
に配置した合計三つ、四つのリレーレンズにて構成する
場合、非球面を上記のデーターのような形状にすればよ
い。このようにしてN=13とした場合の光学系の収差
状況は、図15に示す通りである。又比較のため13回
リレーの光学系で非球面を用いない同じ構成の光学系の
場合の収差状況は図16に示す通りで、本発明の光学系
は球面収差が極めて良好に補正されていることがわか
る。尚他の収差は図15と図16とでほとんど変化がな
いこともわかる。FIG. 2 shows the case of N = 2 in the first embodiment, in which only the rear relay lens is provided with an aspherical surface (surface r 10 is an aspherical surface), and this aspherical surface is optimized as shown in the following data. By making the difference, it is possible to satisfactorily correct the entire spherical aberration. f = -829.106, F number = -5.167, image height = 1.0000 magnification = 0.9991, object distance = -1.8349 r 1 = 8.6830 d 1 = 20.0459 n 1 = 1.62004 ν 1 = 36.25 r 2 = ∞ d 2 = 1.1835 r 3 = 6.4803 d 3 = 0.4587 n 2 = 1.80610 ν 2 = 40.95 r 4 = 2.9606 d 4 = 1.3761 n 3 = 1.65160 ν 3 = 58.52 r 5 = -11.5959 d 5 = 0.8257 r 6 = ∞ d 6 = 20.0459 n 4 = 1.62004 ν 4 = 36.25 r 7 = -8.6830 d 7 = 3.6700 r 8 = 8.6830 d 8 = 18.0459 n 5 = 1.62004 ν 5 = 36.25 r 9 = ∞ d 9 = 2.0000 n 6 = 1.62004 ν 6 = 36.25 r 10 = 972.8287 (aspherical) d 10 = 1.1835 r 11 = 6.4803 d 11 = 0.4587 n 7 = 1.80610 ν 7 = 40.95 r 12 = 2.9606 d 12 = 1.3761 n 8 = 1.65160 ν 8 = 58.52 r 13 = -11.5959 d 13 = 0.8257 r 14 = ∞ d 14 = 20.0459 n 9 = 1.62004 ν 9 = 36.25 r 15 = -8.6830 Aspheric coefficient R = 972.8287, P = 1.0000, B = 0, E = 0.36021 × 10 -3 F = -0.10514 × 10 -3 , G = -0.18814 × 10 -4 In one embodiment, as an example of a case of increasing the number of relay times, that one relay of the relay lens, respectively N =
In the case of 3 to 7 and 13, the image side relay lens (relay lens having an aspherical surface) in the example of N = 2 shown in FIG.
Is arranged closest to the image side, and two object-side relay lenses (relay lenses shown in FIG. 1) in the example of N = 2 shown in FIG. When the relay lens is composed of three and four relay lenses arranged in three, the aspherical surface may be shaped like the above data. The aberration situation of the optical system when N = 13 in this way is as shown in FIG. Further, for comparison, the aberration situation in the case of an optical system of the same configuration which does not use an aspherical surface in the optical system of the 13-time relay is as shown in FIG. 16, and the optical system of the present invention has extremely well corrected spherical aberration. I understand. It can also be seen that the other aberrations hardly change between FIGS.
【0042】この第1の実施例は、球面収差が良好に補
正されており、図17(A),(B),(C)に示すよ
うにNAの変化による球面収差の変化はほとんどなく、
又(a),(b),(c)のようにピント像面の移動が
ほとんどない。In the first embodiment, the spherical aberration is satisfactorily corrected, and as shown in FIGS. 17 (A), (B) and (C), there is almost no change in the spherical aberration due to the change in NA,
Further, unlike (a), (b), and (c), there is almost no movement of the focus image plane.
【0043】又、リレー回数が3以上の場合も、例えば
リレー回数3の時は、図1に示す1回リレーのリレーレ
ンズを三つ並べることにより像伝送光学系を構成するこ
とが出来る。その場合も最適な面形状の一つの非球面に
より光学系全体の球面収差を良好に補正出来る。この非
球面の形状は、Nの値により、下記のデーター(基準球
面の曲率半径R,非球面係数等)にて表わされるものが
最適である。 N=3 R=573.0870,P=1.0000,B=0 ,E=0.53657 ×10-3 F=-0.15460×10-3,G=-0.28727×10-4 N=4 R=442.8588,P=1.0000,B=0 ,E=0.71100 ×10-3 F=-0.20206×10-3,G=-0.39109×10-4 N=5 R=360.9311,P=1.0000,B=0 ,E=0.88320 ×10-3 F=-0.24725×10-3,G=-0.50004×10-4 N=6 R=304.6391,P=1.0000,B=0 ,E=0.10531 ×10-2 F=-0.29002×10-3,G=-0.61492×10-4 N=7 R=263.5803,P=1.0000,B=0 ,E=0.12204 ×10-2 F=-0.32982×10-3,G=-0.73773×10-4 N=13 R=146.0485,P=1.0000,B=0 ,E=0.21749 ×10-2 F=-0.50640×10-3,G=-0.16524×10-3 この第1の実施例のD/Lおよび|(A×n)/(N
A’×N)|の値は下記の通りである。 D/L=0.46 |(A×n)/(NA’×N)|=|(E×n)/(NA’×N)| =0.000304(N=1) =0.000280(N=13) 第2の実施例は、図3に示す構成で、非球面レンズL
APS が平凸レンズL2に接合されている点において第1
の実施例と異なっている。この第2の実施例のデーター
は下記の通りである。 f=1670.276 ,Fナンバー=5.167 ,像高=1.0000 倍率=1.0000 ,物体距離=-1.8349 r1 =8.6830 d1 =20.0459 n1 =1.62004 ν1 =36.25 r2 =∞ d2 =1.1835 r3 =6.4803 d3 =0.4587 n2 =1.80610 ν2 =40.95 r4 =2.9606 d4 =1.3761 n3 =1.65160 ν3 =58.52 r5 =-11.5959 d5 =0.8257 r6 =∞(非球面) d6 =2.0000 n4 =1.62004 ν4 =36.25 r7 =∞ d7 =18.0459 n5 =1.62004 ν5 =36.25 r8 =-8.6830 非球面係数 R=∞,P=1.0000,B=0 ,E=-0.18055×10-3,F=0.52624 ×10-4 G=0.94550 ×10-5 3次の球面収差係数 5次の球面収差係数 K (球面) (非球面) K (球面) (非球面) 1 -0.00016 0.00000 1 0.00000 0.00000 2 0.00045 0.00000 2 0.00000 0.00000 3 -0.01182 0.00000 3 -0.00039 0.00000 4 0.01316 0.00000 4 0.00165 0.00000 5 -0.00393 0.00000 5 -0.00009 0.00000 6 0.00045 0.00197 6 0.00000 -0.00126 7 0.00000 0.00000 7 0.00000 0.00000 8 -0.00015 0.00000 8 0.00000 0.00000 トータル -0.00200 0.00197 トータル 0.00117 -0.00126 又N=2の2回リレーレンズで、非球面を一つのみ用い
た実施例を図4に示す。この図4に示す実施例のデータ
ーは下記の通りで非球面は、面r13に設けられその形状
は、データー中に示す通りである。 f=-835.063 ,Fナンバー=-5.167 ,像高=1.0000 倍率=1.0000 ,物体距離=-1.8349 r1 =8.6830 d1 =20.0459 n1 =1.62004 ν1 =36.25 r2 =∞ d2 =1.1835 r3 =6.4803 d3 =0.4587 n2 =1.80610 ν2 =40.95 r4 =2.9606 d4 =1.3761 n3 =1.65160 ν3 =58.52 r5 =-11.5959 d5 =0.8257 r6 =∞ d6 =20.0459 n4 =1.62004 ν4 =36.25 r7 =-8.6830 d7 =3.6700 r8 =8.6830 d8 =20.0459 n5 =1.62004 ν5 =36.25 r9 =∞ d9 =1.1835 r10=6.4803 d10=0.4587 n6 =1.80610 ν6 =40.95 r11=2.9606 d11=1.3761 n7 =1.65160 ν7 =58.52 r12=-11.5959 d12=0.8257 r13=∞(非球面) d13=2.0000 n8 =1.62004 ν8 =36.25 r14=∞ d14=18.0459 n9 =1.62004 ν9 =36.25 r15=-8.6830 非球面係数 R=∞,P=1.0000,B=0 ,E=-0.36161×10-3,F=0.10537 ×10-3 G=0.18999 ×10-4 又この第2の実施例も図3のリレーレンズを用いN=3
〜7および13の像伝送光学系を構成する場合、一つの
非球面により球面収差を良好に補正するためには、夫々
下記のデーターの通りの非球面形状とすればよい。 N=3 R=∞,P=1.0000,B=0 ,E=-0.54339×10-3,F=0.15807 ×10-3 G=0.28767 ×10-4 N=4 R=∞,P=1.0000,B=0 ,E=-0.72554×10-3,F=0.21056 ×10-3 G=0.38775 ×10-4 N=5 R=∞,P=1.0000,B=0 ,E=-0.90812×10-3,F=0.26266 ×10-3 G=0.49124 ×10-4 N=6 R=∞,P=1.0000,B=0 ,E=-0.10911×10-2,F=0.31417 ×10-3 G=0.59907 ×10-4 N=7 R=∞,P=1.0000,B=0 ,E=-0.12744×10-2,F=0.36489 ×10-3 G=0.71217 ×10-4 N=13 R=∞,P=1.0000,B=0 ,E=-0.23789×10-2,F=0.64017 ×10-3 G=0.15624 ×10-3 この第2の実施例のD/Lおよび|(A×n)/(N
A’×N)|の値は下記の通りである。 D/L=0.54 |(A×n)/(NA’×N)|=|(E×n)/(NA’×N)| =0.000302(N=1) =0.000306(N=13) この第2の実施例の図3に示す光学系の収差状況は図1
8に示す通りであり、又N=13の光学系の収差状況は
図19の通りである。又N=13の光学系で非球面を用
いない光学系の収差状況は図20の通りである。Also, when the number of relays is three or more, for example, when the number of relays is three, the image transmission optical system can be constructed by arranging three relay lenses of the one-time relay shown in FIG. Also in this case, the spherical aberration of the entire optical system can be satisfactorily corrected by one aspherical surface having the optimum surface shape. The shape of this aspherical surface is optimally represented by the following data (radius of curvature R of the reference spherical surface, aspherical surface coefficient, etc.) depending on the value of N. N = 3 R = 573.0870, P = 1.0000, B = 0, E = 0.53657 × 10 −3 F = −0.15460 × 10 −3 , G = −0.28727 × 10 −4 N = 4 R = 442.8588, P = 1.0000, B = 0, E = 0.71100 × 10 -3 F = -0.20206 × 10 -3 , G = -0.39109 × 10 -4 N = 5 R = 360.9311, P = 1.0000, B = 0, E = 0.88320 × 10 -3 F = -0.24725 × 10 -3 , G = -0.50004 × 10 -4 N = 6 R = 304.6391, P = 1.0000, B = 0, E = 0.10531 × 10 -2 F = -0.29002 × 10 -3 , G = -0.61492 × 10 -4 N = 7 R = 263.5803, P = 1.0000, B = 0, E = 0.12204 × 10 -2 F = -0.32982 × 10 -3 , G = -0.73773 × 10 -4 N = 13 R = 146.0485, P = 1.0000, B = 0, E = 0.21749 × 10 −2 F = −0.50640 × 10 −3 , G = −0.16524 × 10 −3 D / L of this first embodiment and | (A × n ) / (N
The value of A ′ × N) | is as follows. D / L = 0.46 | (A × n) / (NA ′ × N) | = | (E × n) / (NA ′ × N) | = 0.000304 (N = 1) = 0.000280 ( N = 13) The second example has the configuration shown in FIG.
First in that the APS is cemented to the plano-convex lens L 2 .
Is different from the embodiment described above. The data for this second example are as follows. f = 1670.276, F-number = 5.167, image height = 1.0000 magnification = 1.0000, object distance = -1.8349 r 1 = 8.6830 d 1 = 20.0459 n 1 = 1.62004 ν 1 = 36.25 r 2 = ∞ d 2 = 1.1835 r 3 = 6.4803 d 3 = 0.4587 n 2 = 1.80610 ν 2 = 40.95 r 4 = 2.9606 d 4 = 1.3761 n 3 = 1.65160 ν 3 = 58.52 r 5 = -11.5959 d 5 = 0.8257 r 6 = ∞ ( aspherical) d 6 = 2.0000 n 4 = 1.62004 ν 4 = 36.25 r 7 = ∞ d 7 = 18.0459 n 5 = 1.62004 ν 5 = 36.25 r 8 = -8.6830 aspherical coefficient R = ∞, P = 1.0000, B = 0, E = -0.18055 × 10 - 3 , F = 0.52624 × 10 -4 G = 0.94550 × 10 -5 3rd-order spherical aberration coefficient 5th-order spherical aberration coefficient K (spherical surface) (aspherical surface) K (spherical surface) (aspherical surface) 1 -0.00016 0.00000 1 0.00000 0.00000 2 0.00045 0.00000 2 0.00000 0.00000 3 -0.01182 0.00000 3 -0.00039 0.00000 4 0.01316 0.00000 4 0.00165 0.00000 5 -0.00393 0.00000 5 -0.00009 0.00000 6 0.00045 0.00197 6 0.00000 -0.00126 7 0.00000 0.00000 7 0.00000 0.00000 8 -0.00015 0.00000 8 0.00000 0.00000 Total -0.00200 0.00197 Total 0.00117 -0.00126 Also, FIG. 4 shows an example in which a double relay lens with N = 2 and only one aspherical surface is used. The data of the embodiment shown in FIG. 4 are as follows, and the aspherical surface is provided on the surface r 13 and the shape thereof is as shown in the data. f = -835.063, F-number = -5.167, image height = 1.0000 magnification = 1.0000, object distance = -1.8349 r 1 = 8.6830 d 1 = 20.0459 n 1 = 1.62004 ν 1 = 36.25 r 2 = ∞ d 2 = 1.1835 r 3 = 6.4803 d 3 = 0.4587 n 2 = 1.80610 ν 2 = 40.95 r 4 = 2.9606 d 4 = 1.3761 n 3 = 1.65160 ν 3 = 58.52 r 5 = -11.5959 d 5 = 0.8257 r 6 = ∞ d 6 = 20.0459 n 4 = 1.62004 v 4 = 36.25 r 7 = -8.6830 d 7 = 3.6700 r 8 = 8.6830 d 8 = 20.0459 n 5 = 1.62004 v 5 = 36.25 r 9 = ∞ d 9 = 1.1835 r 10 = 6.4803 d 10 = 0.4587 n 6 = 1.80610 ν 6 = 40.95 r 11 = 2.9606 d 11 = 1.3761 n 7 = 1.65160 ν 7 = 58.52 r 12 = -11.5959 d 12 = 0.8257 r 13 = ∞ (aspherical surface) d 13 = 2.0000 n 8 = 1.62004 ν 8 = 36.25 r 14 = ∞ d 14 = 18.0459 n 9 = 1.62004 ν 9 = 36.25 r 15 = -8.6830 Aspherical surface coefficient R = ∞, P = 1.0000, B = 0, E = -0.36161 × 10 -3 , F = 0.10537 × 10 − 3 G = 0.18999 × 10 -4 also this 2 embodiment also using a relay lens of FIG. 3 N = 3
In the case where the image transmission optical systems of 7 to 13 are constructed, in order to satisfactorily correct the spherical aberration by one aspherical surface, the aspherical shape as shown in the following data may be adopted. N = 3 R = ∞, P = 1.0000, B = 0, E = −0.54339 × 10 −3 , F = 0.158807 × 10 −3 G = 0.28767 × 10 −4 N = 4 R = ∞, P = 1.0000, B = 0, E = -0.72554 x 10 -3 , F = 0.21056 x 10 -3 G = 0.38775 x 10 -4 N = 5 R = ∞, P = 1.0000, B = 0, E = -0.908 812 x 10 -3 , F = 0.26266 × 10 -3 G = 0.49124 × 10 -4 N = 6 R = ∞, P = 1.0000, B = 0, E = -0.10911 × 10 -2 , F = 0.31417 × 10 -3 G = 0.59907 × 10 -4 N = 7 R = ∞, P = 1.0000, B = 0, E = -0.12744 × 10 -2 , F = 0.36489 × 10 -3 G = 0.71217 × 10 -4 N = 13 R = ∞, P = 1.0000 , B = 0, E = -0.23789 × 10 -2 , F = 0.64017 × 10 -3 G = 0.15624 × 10 -3 D / L and | (A × n) / (N of this second embodiment
The value of A ′ × N) | is as follows. D / L = 0.54 | (A × n) / (NA ′ × N) | = | (E × n) / (NA ′ × N) | = 0.000302 (N = 1) = 0.000306 ( N = 13) The aberration situation of the optical system shown in FIG. 3 of the second embodiment is shown in FIG.
As shown in FIG. 8, the aberration status of the optical system with N = 13 is as shown in FIG. FIG. 20 shows the aberration situation of the optical system with N = 13 and no aspherical surface.
【0044】第3の実施例は、図5に示す通りで、接合
レンズのうちの凹レンズを非球面にした点で第1,第2
の実施例と相違する。このように接合レンズの凹レンズ
を非球面レンズにしたのでこの非球面レンズをプラスチ
ックやガラスを光熱高圧にて成形する場合、種々の硝材
の中から選択して成形出来るので好ましい。この第3の
実施例(図5)のデーターは下記の通りである。 f=1670.276 ,Fナンバー=5.167 ,像高=1.0000 倍率=-1.0000 ,物体距離=-1.8349 r1 =8.6830 d1 =20.0459 n1 =1.62004 ν1 =36.25 r2 =∞ d2 =1.1835 r3 =6.4803(非球面) d3 =0.4587 n2 =1.80610 ν2 =40.95 r4 =2.9606 d4 =1.3761 n3 =1.65160 ν3 =58.52 r5 =-11.5959 d5 =0.8257 r6 =∞ d6 =20.0459 n4 =1.62004 ν4 =36.25 r7 =-8.6830 非球面係数 R=6.4803,P=1.0000,B=0 ,E=-0.10287×10-3 F=0.29749 ×10-4,G=0.16726 ×10-5 H=0.13465 ×10-6 3次の球面収差係数 5次の球面収差係数 K (球面) (非球面) K (球面) (非球面) 1 -0.00016 0.00000 1 0.00000 0.00000 2 0.00045 0.00000 2 0.00000 0.00000 3 -0.01182 0.00200 3 -0.00039 -0.00147 4 0.01316 0.00000 4 0.00165 0.00000 5 -0.00393 0.00000 5 -0.00009 0.00000 6 0.00045 0.00000 6 0.00000 0.00000 7 -0.00015 0.00000 7 0.00000 0.00000 トータル -0.00200 0.00200 トータル 0.00117 -0.00147 又第3の実施例N=2つまり二つのリレーレンズよりな
る像伝送光学系の構成は、図6に示す通りで、レンズデ
ーターは下記の通りである。 f=-835.063 ,Fナンバー=-5.167 ,像高=1.0000 倍率=1.0000 ,物体距離=-1.8349 r1 =8.6830 d1 =20.0459 n1 =1.62004 ν1 =36.25 r2 =∞ d2 =1.1835 r3 =6.4803 d3 =0.4587 n2 =1.80610 ν2 =40.95 r4 =2.9606 d4 =1.3761 n3 =1.65160 ν3 =58.52 r5 =-11.5959 d5 =0.8257 r6 =∞ d6 =20.0459 n4 =1.62004 ν4 =36.25 r7 =-8.6830 d7 =3.6700 r8 =8.6830 d8 =20.0459 n5 =1.62004 ν5 =36.25 r9 =∞ d9 =1.1835 r10=6.4803(非球面) d10=0.4587 n6 =1.80610 ν6 =40.95 r11=2.9606 d11=1.3761 n7 =1.65160 ν7 =58.52 r12=-11.5959 d12=0.8257 r13=∞ d13=20.0459 n8 =1.62004 ν8 =36.25 r14=-8.6830 非球面係数 R=6.4803,P=1.0000,B=0 ,E=-0.20554×10-3 F=0.59636 ×10-4,G=0.30581 ×10-5 H=0.34841 ×10-6 更に第3の実施例でN=3,4,5,6,7および13
の各像伝送光学系で用いる非球面の形状は次の通りであ
る。 N=3 R=6.4803,P=1.0000,B=0 ,E=-0.30785×10-3 F=0.89450 ×10-4,G=0.42075 ×10-5 H=0.63869 ×10-6 N=4 R=6.4803,P=1.0000,B=0 ,E=-0.41004×10-3 F=0.11929 ×10-3,G=0.51582 ×10-5 H=0.10017 ×10-5 N=5 R=6.4803,P=1.0000,B=0 ,E=-0.51196×10-3 F=0.14899 ×10-3,G=0.59512 ×10-5 H=0.14352 ×10-5 N=6 R=6.4803,P=1.0000,B=0 ,E=-0.61358×10-3 F=0.17844 ×10-3,G=0.66246 ×10-5 H=0.19378 ×10-5 N=7 R=6.4803,P=1.0000,B=0 ,E=-0.71488×10-3 F=0.20757 ×10-3,G=0.72136 ×10-5 H=0.25089 ×10-5 N=13 R=6.4803,P=1.0000,B=0 ,E=-0.13147×10-2 F=0.37103 ×10-3,G=0.10549 ×10-4 H=0.74590 ×10-5 この第3の実施例のD/Lおよび|(A×n)/(N
A’×N)|の値は下記の通りである。 D/L=0.49 |(A×n)/(NA’×N)|=|(E×n)/(NA’×N)| =0.000192(N=1) =0.000189(N=13) 又図5に示す像伝送光学系の収差状況は図21に示す通
りであり、又第3の実施例においてN=13の像伝送光
学系の収差状況は図22、このN=13の像伝送光学系
と同じ構成で非球面を用いない像伝送光学系の収差状況
は図23に示す通りである。The third embodiment is as shown in FIG. 5, in that the concave lens of the cemented lenses is an aspherical surface.
Is different from the embodiment of FIG. Since the concave lens of the cemented lens is an aspherical lens in this manner, when molding this aspherical lens with photothermal high pressure, it is preferable because it can be selected from various glass materials. The data for this third example (FIG. 5) are as follows. f = 1670.276, F-number = 5.167, image height = 1.0000 magnification = -1.0000, object distance = -1.8349 r 1 = 8.6830 d 1 = 20.0459 n 1 = 1.62004 ν 1 = 36.25 r 2 = ∞ d 2 = 1.1835 r 3 = 6.4803 (aspherical) d 3 = 0.4587 n 2 = 1.80610 ν 2 = 40.95 r 4 = 2.9606 d 4 = 1.3761 n 3 = 1.65160 ν 3 = 58.52 r 5 = -11.5959 d 5 = 0.8257 r 6 = ∞ d 6 = 20.0459 n 4 = 1.62004 ν 4 = 36.25 r 7 = -8.6830 Aspherical surface coefficient R = 6.4803, P = 1.0000, B = 0, E = -0.10287 × 10 −3 F = 0.29749 × 10 −4 , G = 0.16726 × 10 − 5 H = 0.13465 × 10 -6 3rd-order spherical aberration coefficient 5th-order spherical aberration coefficient K (spherical surface) (aspherical surface) K (spherical surface) (aspherical surface) 1 -0.00016 0.00000 1 0.00000 0.00000 2 0.00045 0.00000 2 0.00000 0.00000 3 -0.01182 0.00200 3 -0.00039 -0.00147 4 0.01316 0.00000 4 0.00165 0.00000 5 -0.00393 0.00000 5 -0.00009 0.00000 6 0.00045 0.00000 6 0.00000 0.00000 7 -0.00015 0.00000 7 0.00000 0 .00000 total -0.00200 0.00200 total 0.00117 -0.00147 The third embodiment N = 2, that is, the configuration of the image transmission optical system including two relay lenses is as shown in FIG. 6, and the lens data is as follows. f = -835.063, F-number = -5.167, image height = 1.0000 magnification = 1.0000, object distance = -1.8349 r 1 = 8.6830 d 1 = 20.0459 n 1 = 1.62004 ν 1 = 36.25 r 2 = ∞ d 2 = 1.1835 r 3 = 6.4803 d 3 = 0.4587 n 2 = 1.80610 ν 2 = 40.95 r 4 = 2.9606 d 4 = 1.3761 n 3 = 1.65160 ν 3 = 58.52 r 5 = -11.5959 d 5 = 0.8257 r 6 = ∞ d 6 = 20.0459 n 4 = 1.62004 ν 4 = 36.25 r 7 = -8.6830 d 7 = 3.6700 r 8 = 8.6830 d 8 = 20.0459 n 5 = 1.62004 ν 5 = 36.25 r 9 = ∞ d 9 = 1.1835 r 10 = 6.4803 (aspherical surface) d 10 = 0.4587 n 6 = 1.80610 ν 6 = 40.95 r 11 = 2.9606 d 11 = 1.3761 n 7 = 1.65160 ν 7 = 58.52 r 12 = -11.5959 d 12 = 0.8257 r 13 = ∞ d 13 = 20.0459 n 8 = 1.62004 ν 8 = 36.25 r 14 = -8.6830 Aspherical surface coefficient R = 6.4803, P = 1.0000, B = 0, E = -0.20554 × 10 -3 F = 0.59636 × 10 -4 , G = 0.30581 × 10 -5 H = 0.34841 × 10 -6 In the third embodiment, N = 3, 4, , 6, 7 and 13
The shape of the aspherical surface used in each image transmission optical system is as follows. N = 3 R = 6.4803, P = 1.0000, B = 0, E = -0.30785 × 10 -3 F = 0.89450 × 10 -4 , G = 0.42075 × 10 -5 H = 0.63869 × 10 -6 N = 4 R = 6.4803, P = 1.0000, B = 0, E = -0.41004 × 10 -3 F = 0.11929 × 10 -3 , G = 0.51582 × 10 -5 H = 0.10017 × 10 -5 N = 5 R = 6.4803, P = 1.0000 , B = 0, E = -0.51196 × 10 -3 F = 0.14899 × 10 -3 , G = 0.59512 × 10 -5 H = 0.14352 × 10 -5 N = 6 R = 6.4803, P = 1.0000, B = 0, E = -0.61358 x 10 -3 F = 0.17844 x 10 -3 , G = 0.66246 x 10 -5 H = 0.19378 x 10 -5 N = 7 R = 6.4803, P = 1.0000, B = 0, E = -0.71488 x 10 -3 F = 0.20757 × 10 -3 , G = 0.72136 × 10 -5 H = 0.25089 × 10 -5 N = 13 R = 6.4803, P = 1.0000, B = 0, E = -0.13147 × 10 -2 F = 0.37103 × 10 −3 , G = 0.10549 × 10 −4 H = 0.74590 × 10 −5 D / L and | (A × n) / (N of this third embodiment
The value of A ′ × N) | is as follows. D / L = 0.49 | (A × n) / (NA ′ × N) | = | (E × n) / (NA ′ × N) | = 0.000192 (N = 1) = 0.000189 ( N = 13) The aberration situation of the image transmission optical system shown in FIG. 5 is as shown in FIG. 21, and the aberration situation of the image transmission optical system of N = 13 in the third embodiment is shown in FIG. The aberration situation of the image transmission optical system having the same structure as the image transmission optical system of No. 13 but not using an aspherical surface is as shown in FIG.
【0045】第4の実施例は図7に示す構成で非球面が
接合レンズの接合面である点で第1〜第3の実施例と相
違する。非球面を接合レンズの接合面に設ければ、外観
上は非球面を用いない接合レンズと同じになり、間隔環
を非球面を用いない接合レンズと共通化出来るため好ま
しい。The fourth embodiment differs from the first to third embodiments in that the aspherical surface is the cemented surface of the cemented lens in the configuration shown in FIG. If an aspherical surface is provided on the cemented surface of the cemented lens, the appearance is the same as that of the cemented lens that does not use the aspherical surface, and the spacing ring can be shared with the cemented lens that does not use the aspherical surface, which is preferable.
【0046】この実施例のデーターは下記の通りであ
る。 f=1670.276 ,Fナンバー=5.167 ,像高=1.0000 倍率=-1.0000 ,物体距離=-1.8349 r1 =8.6830 d1 =20.0459 n1 =1.62004 ν1 =36.25 r2 =∞ d2 =1.1835 r3 =6.4803 d3 =0.4587 n2 =1.80610 ν2 =40.95 r4 =2.9606(非球面) d4 =1.3761 n3 =1.65160 ν3 =58.52 r5 =-11.5959 d5 =0.8257 r6 =∞ d6 =20.0459 n4 =1.62004 ν4 =36.25 r7 =-8.6830 非球面係数 R=2.9606,P=1.0000,B=0 ,E=0.57141 ×10-3 F=-0.15892×10-3,G=-0.12437×10-4 H=-0.22055×10-5 3次の球面収差係数 5次の球面収差係数 K (球面) (非球面) K (球面) (非球面) 1 -0.00016 0.00000 1 0.00000 0.00000 2 0.00045 0.00000 2 0.00000 0.00000 3 -0.01182 0.00000 3 -0.00039 0.00000 4 0.01316 0.00200 4 0.00165 -0.00151 5 -0.00393 0.00000 5 -0.00009 0.00000 6 0.00045 0.00000 6 0.00000 0.00000 7 -0.00015 0.00000 7 0.00000 0.00000 トータル -0.00200 0.00200 トータル 0.00117 -0.00151 この第4の実施例のD/Lおよび|(A×n)/(N
A’×N)|の値は下記の通りである。 D/L=0.50 |(A×n)/(NA’×N)|=|(E×n)/(NA’×N)| =0.000975 又、この第4の実施例の収差状況は図24に示す通りで
ある。The data for this example are as follows: f = 1670.276, F-number = 5.167, image height = 1.0000 magnification = -1.0000, object distance = -1.8349 r 1 = 8.6830 d 1 = 20.0459 n 1 = 1.62004 ν 1 = 36.25 r 2 = ∞ d 2 = 1.1835 r 3 = 6.4803 d 3 = 0.4587 n 2 = 1.80610 ν 2 = 40.95 r 4 = 2.9606 ( aspheric surface) d 4 = 1.3761 n 3 = 1.65160 ν 3 = 58.52 r 5 = -11.5959 d 5 = 0.8257 r 6 = ∞ d 6 = 20.0459 n 4 = 1.62004 ν 4 = 36.25 r 7 = -8.6830 Aspheric coefficient R = 2.9606, P = 1.0000, B = 0, E = 0.57141 × 10 -3 F = -0.15892 × 10 -3 , G = -0.12437 × 10 -4 H = -0.22055 × 10 -5 3rd-order spherical aberration coefficient 5th-order spherical aberration coefficient K (spherical surface) (aspherical surface) K (spherical surface) (aspherical surface) 1 -0.00016 0.00000 1 0.00000 0.00000 2 0.00045 0.00000 2 0.00000 0.00000 3 -0.01182 0.00000 3 -0.00039 0.00000 4 0.01316 0.00200 4 0.00165 -0.00151 5 -0.00393 0.00000 5 -0.00009 0.00000 6 0.00045 0.00000 6 0.00000 0.00000 7 -0.00015 0.00000 7 0.00000 0 .00000 total -0.00200 0.00200 total 0.00117 -0.00151 D / L and | (A × n) / (N of the fourth embodiment
The value of A ′ × N) | is as follows. D / L = 0.50 | (A × n) / (NA ′ × N) | = | (E × n) / (NA ′ × N) | = 0.000975 Further, the aberration of the fourth embodiment The situation is as shown in FIG.
【0047】第5の実施例は、図8に示す構成で、非球
面レンズが接合レンズの凸レンズである点で第1〜第4
の実施例と相違する。この実施例も第3の実施例と同様
に非球面レンズをプレスにて成形出来、硝材の選択が容
易である。 f=1670.276 ,Fナンバー=5.167 ,像高=1.0000 倍率=-1.0000 ,物体距離=-1.8349 r1 =8.6830 d1 =20.0459 n1 =1.62004 ν1 =36.25 r2 =∞ d2 =1.1835 r3 =6.4803 d3 =0.4587 n2 =1.80610 ν2 =40.95 r4 =2.9606 d4 =1.3761 n3 =1.65160 ν3 =58.52 r5 =-11.5959(非球面)d5 =0.8257 r6 =∞ d6 =20.0459 n4 =1.62004 ν4 =36.25 r7 =-8.6830 非球面係数 R=-11.5959,P=1.0000,B=0 ,E=0.13975 ×10-3 F=-0.41661×10-4,G=-0.25904×10-5 H=-0.38976×10-6 3次の球面収差係数 5次の球面収差係数 K (球面) (非球面) K (球面) (非球面) 1 -0.00016 0.00000 1 0.00000 0.00000 2 0.00045 0.00000 2 0.00000 0.00000 3 -0.01182 0.00000 3 -0.00039 0.00000 4 0.01316 0.00000 4 0.00165 0.00000 5 -0.00393 0.00200 5 -0.00009 -0.00141 6 0.00045 0.00000 6 0.00000 0.00000 7 -0.00015 0.00000 7 0.00000 0.00000 トータル -0.00200 0.00200 トータル 0.00117 -0.00141 この第5の実施例のD/Lおよび|(A×n)/(N
A’×N)|の値は下記の通りである。 D/L=0.52 |(A×n)/(NA’×N)|=|(E×n)/(NA’×N)| =0.000238(N=1) 又、この第5の実施例の収差状況は図25に示す通りで
ある。The fifth embodiment has the structure shown in FIG. 8, and the aspherical lens is a convex lens of a cemented lens.
Is different from the embodiment of FIG. In this embodiment, like the third embodiment, the aspherical lens can be molded by pressing, and the glass material can be easily selected. f = 1670.276, F-number = 5.167, image height = 1.0000 magnification = -1.0000, object distance = -1.8349 r 1 = 8.6830 d 1 = 20.0459 n 1 = 1.62004 ν 1 = 36.25 r 2 = ∞ d 2 = 1.1835 r 3 = 6.4803 d 3 = 0.4587 n 2 = 1.80610 ν 2 = 40.95 r 4 = 2.9606 d 4 = 1.3761 n 3 = 1.65160 ν 3 = 58.52 r 5 = -11.5959 ( aspherical) d 5 = 0.8257 r 6 = ∞ d 6 = 20.0459 n 4 = 1.62004 ν 4 = 36.25 r 7 = -8.6830 Aspheric surface coefficient R = -11.5959, P = 1.0000, B = 0, E = 0.13975 × 10 -3 F = -0.41661 × 10 -4 , G = -0.25904 × 10 −5 H = −0.38976 × 10 −6 3rd-order spherical aberration coefficient 5th-order spherical aberration coefficient K (spherical surface) (aspherical surface) K (spherical surface) (aspherical surface) 1 -0.00016 0.00000 1 0.00000 0.00000 2 0.00045 0.00000 2 0.00000 0.00000 3 -0.01182 0.00000 3 -0.00039 0.00000 4 0.01316 0.00000 4 0.00165 0.00000 5 -0.00393 0.00200 5 -0.00009 -0.00141 6 0.00045 0.00000 6 0.00000 0.00000 7 -0.00015 0.00000 7 0.00000 0.00000 Total -0.00200 0.00200 Total 0.00117 -0.00141 D / L and | (A × n) / (N of this fifth embodiment
The value of A ′ × N) | is as follows. D / L = 0.52 | (A × n) / (NA ′ × N) | = | (E × n) / (NA ′ × N) | = 0.000238 (N = 1) The aberration situation of the example is as shown in FIG.
【0048】第6の実施例は、図9に示す構成で下記デ
ーターのように非球面レンズの硝材の屈折率がnd =
1.883であって高い屈折率である。例えば第1の実
施例の非球面レンズの屈折率はnd =1.62004で
ある。このように非球面レンズの屈折率を高くしたこと
によって、球面収差を補正するための非球面の球面(基
準球面)からのずれ量が小さくても十分な補正作用が得
られる。このようにずれ量が小であれば、前記のように
成形により非球面を製作する場合、製作が容易になる。 f=673.796 ,Fナンバー=5.167 ,像高=1.0000 倍率=-1.0109 ,物体距離=-1.8349 r1 =8.6830 d1 =18.0459 n1 =1.62004 ν1 =36.25 r2 =∞ d2 =2.0000 n2 =1.88300 ν2 =40.78 r3 =∞(非球面) d3 =1.1835 r4 =6.4803 d4 =0.4587 n3 =1.80610 ν3 =40.95 r5 =2.9606 d5 =1.3761 n4 =1.65160 ν4 =58.52 r6 =-11.5959 d6 =0.8257 r7 =∞ d7 =20.0459 n5 =1.62004 ν5 =36.25 r8 =-8.6830 非球面係数 R=∞,P=1.0000,B=0 ,E=0.13078 ×10-3,F=-0.40897×10-4 G=-0.44690×10-5,H=-0.50061×10-6 3次の球面収差係数 5次の球面収差係数 K (球面) (非球面) K (球面) (非球面) 1 -0.00016 0.00000 1 0.00000 0.00000 2 -0.00007 0.00000 2 0.00000 0.00000 3 0.00054 0.00202 3 0.00000 -0.00138 4 -0.01196 0.00000 4 -0.00040 0.00000 5 0.01323 0.00000 5 0.00167 0.00000 6 -0.00388 0.00000 6 -0.00009 0.00000 7 0.00044 0.00000 7 0.00000 0.00000 8 -0.00017 0.00000 8 0.00000 0.00000 トータル -0.00202 0.00202 トータル 0.00118 -0.00138 この第6の実施例のD/Lおよび|(A×n)/(N
A’×N)|の値は下記の通りである。 D/L=0.46 |(A×n)/(NA’×N)|=|(E×n)/(NA’×N)| =0.000252(N=1) 又、この第6の実施例の収差状況は、図26に示す通り
である。The sixth embodiment has the structure shown in FIG. 9 and the refractive index of the glass material of the aspherical lens is n d =
It has a high refractive index of 1.883. For example, the refractive index of the aspherical lens of the first example is n d = 1.62004. By thus increasing the refractive index of the aspherical lens, a sufficient correction action can be obtained even if the amount of deviation of the aspherical surface for correcting spherical aberration from the spherical surface (reference spherical surface) is small. If the amount of deviation is small as described above, the production becomes easy when the aspherical surface is produced by molding as described above. f = 673.796, F-number = 5.167, image height = 1.0000 magnification = -1.0109, object distance = -1.8349 r 1 = 8.6830 d 1 = 18.0459 n 1 = 1.62004 ν 1 = 36.25 r 2 = ∞ d 2 = 2.0000 n 2 = 1.88300 ν 2 = 40.78 r 3 = ∞ (aspherical surface) d 3 = 1.1835 r 4 = 6.4803 d 4 = 0.4587 n 3 = 1.80610 ν 3 = 40.95 r 5 = 2.9606 d 5 = 1.3761 n 4 = 1.65160 ν 4 = 58.52 r 6 = -11.5959 d 6 = 0.8257 r 7 = ∞ d 7 = 20.0459 n 5 = 1.62004 ν 5 = 36.25 r 8 = -8.6830 aspherical coefficient R = ∞, P = 1.0000, B = 0, E = 0.13078 × 10 - 3 , F = -0.40897 × 10 -4 G = -0.44690 × 10 -5 , H = -0.50061 × 10 -6 3rd-order spherical aberration coefficient 5th-order spherical aberration coefficient K (spherical surface) (aspherical surface) K (spherical surface) ) (Aspherical surface) 1 -0.00016 0.00000 1 0.00000 0.00000 2 -0.00007 0.00000 2 0.00000 0.00000 3 0.00054 0.00202 3 0.00000 -0.00138 4 -0.01196 0.00000 4 -0.00040 0.00000 5 0.01323 0.00000 5 0.00167 0.00000 6 -0.00388 0.0 0000 6 -0.00009 0.00000 7 0.00044 0.00000 7 0.00000 0.00000 8 -0.00017 0.00000 8 0.00000 0.00000 Total -0.00202 0.00202 Total 0.00118 -0.00138 D / L and | (A × n) / (N of the sixth embodiment
The value of A ′ × N) | is as follows. D / L = 0.46 | (A × n) / (NA ′ × N) | = | (E × n) / (NA ′ × N) | = 0.000252 (N = 1) The aberration situation of the example is as shown in FIG.
【0049】第7の実施例は、図10に示す構成であっ
て、下記データーのように非球面レンズの硝材の屈折率
がnd =1.51633であって低い屈折率である点で
第1〜第6の実施例と相違する。一般に屈折率が低い硝
材は、熱による転移点が低いため、成形の際に光熱にし
なくともよいため、成形が容易である。 f=6063.590 ,Fナンバー=5.168 ,像高=1.0000 倍率=-0.9947 ,物体距離=-1.8349 r1 =8.6830 d1 =18.0459 n1 =1.62004 ν1 =36.25 r2 =∞ d2 =2.0000 n2 =1.51633 ν2 =64.15 r3 =∞(非球面) d3 =1.1835 r4 =6.4803 d4 =0.4587 n3 =1.80610 ν3 =40.95 r5 =2.9606 d5 =1.3761 n4 =1.65160 ν4 =58.52 r6 =-11.5959 d6 =0.8257 r7 =∞ d7 =20.0459 n5 =1.62004 ν5 =36.25 r8 =-8.6830 非球面係数 R=∞,P=1.0000,B=0 ,E=0.21824 ×10-3,F=-0.68736×10-4 G=-0.73845×10-5,H=-0.83078×10-6 3次の球面収差係数 5次の球面収差係数 K (球面) (非球面) K (球面) (非球面) 1 -0.00015 0.00000 1 0.00000 0.00000 2 0.00003 0.00000 2 0.00000 0.00000 3 0.00040 0.00199 3 0.00000 -0.00137 4 -0.01174 0.00000 4 -0.00039 0.00000 5 0.01312 0.00000 5 0.00165 0.00000 6 -0.00396 0.00000 6 -0.00009 0.00000 7 0.00046 0.00000 7 0.00000 0.00000 8 -0.00014 0.00000 8 0.00000 0.00000 トータル -0.00199 0.00199 トータル 0.00117 -0.00137 この第7の実施例のD/Lおよび|(A×n)/(N
A’×N)|の値は下記の通りである。 D/L=0.46 |(A×n)/(NA’×N)|=|(E×n)/(NA’×N)| =0.000344 この第7の実施例の収差状況は図27に示す通りであ
る。The seventh embodiment has the structure shown in FIG. 10, and is characterized in that the glass material of the aspherical lens has a low refractive index of n d = 1.51633 as shown in the following data. Different from the first to sixth embodiments. In general, a glass material having a low refractive index has a low transition point due to heat, and therefore it is not necessary to use light heat for molding, and therefore molding is easy. f = 6063.590, F-number = 5.168, image height = 1.0000 magnification = -0.9947, object distance = -1.8349 r 1 = 8.6830 d 1 = 18.0459 n 1 = 1.62004 ν 1 = 36.25 r 2 = ∞ d 2 = 2.0000 n 2 = 1.51633 ν 2 = 64.15 r 3 = ∞ (aspherical surface) d 3 = 1.1835 r 4 = 6.4803 d 4 = 0.4587 n 3 = 1.80610 ν 3 = 40.95 r 5 = 2.9606 d 5 = 1.3761 n 4 = 1.65160 ν 4 = 58.52 r 6 = -11.5959 d 6 = 0.8257 r 7 = ∞ d 7 = 20.0459 n 5 = 1.62004 ν 5 = 36.25 r 8 = -8.6830 aspherical coefficient R = ∞, P = 1.0000, B = 0, E = 0.21824 × 10 - 3 , F = -0.68736 × 10 -4 G = -0.73845 × 10 -5 , H = -0.83078 × 10 -6 3rd-order spherical aberration coefficient 5th-order spherical aberration coefficient K (spherical surface) (aspherical surface) K (spherical surface) ) (Aspherical surface) 1 -0.00015 0.00000 1 0.00000 0.00000 2 0.00003 0.00000 2 0.00000 0.00000 3 0.00040 0.00199 3 0.00000 -0.00137 4 -0.01174 0.00000 4 -0.00039 0.00000 5 0.01312 0.00000 5 0.00165 0.00000 6 -0.00396 0.0 0000 6 -0.00009 0.00000 7 0.00046 0.00000 7 0.00000 0.00000 8 -0.00014 0.00000 8 0.00000 0.00000 Total -0.00199 0.00199 Total 0.00117 -0.00137 D / L and | (A × n) / (N of this seventh embodiment
The value of A ′ × N) | is as follows. D / L = 0.46 | (A × n) / (NA ′ × N) | = | (E × n) / (NA ′ × N) | = 0.000344 The aberration situation of the seventh embodiment is This is as shown in FIG.
【0050】第8の実施例は、図11に示す構成で瞳近
傍の接合レンズが凸レンズと凹レンズと凸レンズの3枚
接合レンズである点で第1,6,7実施例と相違する。
この実施例は、下記の通りのデーターでその収差状況は
図28に示す通りで、この図からわかるように像面湾曲
が他の実施例よりもよく補正されている。 f=5147.091 ,Fナンバー=6.486 ,像高=1.0000 倍率=-1.0000 ,物体距離=-2.0000 r1 =9.6010 d1 =20.0000 n1 =1.51633 ν1 =64.15 r2 =∞ d2 =2.2100 n2 =1.51633 ν2 =64.15 r3 =∞(非球面) d3 =1.8900 r4 =8.2580 d4 =1.1900 n3 =1.65160 ν3 =58.52 r5 =-4.0320 d5 =3.7000 n4 =1.75700 ν4 =47.82 r6 =4.0320 d6 =1.1900 n5 =1.65160 ν5 =58.52 r7 =-8.2580 d7 =1.8900 r8 =∞ d8 =22.2100 n6 =1.51633 ν6 =64.15 r9 =-9.6010 非球面係数 R=∞,P=1.0000,B=0 ,E=0.11897 ×10-3,F=-0.48026×10-4 G=-0.58047×10-5,H=-0.18985×10-10 3次の球面収差係数 5次の球面収差係数 K (球面) (非球面) K (球面) (非球面) 1 -0.00006 0.00000 1 0.00000 0.00000 2 0.00000 0.00000 2 0.00000 0.00000 3 0.00021 0.00090 3 0.00000 -0.00072 4 -0.00530 0.00000 4 -0.00011 0.00000 5 0.00470 0.00000 5 0.00037 0.00000 6 0.00470 0.00000 6 0.00037 0.00000 7 -0.00530 0.00000 7 -0.00014 0.00000 8 0.00021 0.00000 8 0.00000 0.00000 9 -0.00006 0.00000 9 0.00000 0.00000 トータル -0.00090 0.00090 トータル 0.00049 -0.00072 この第8の実施例のN=2の時の像伝送光学系を図12
に示す。又この光学系のレンズデーターは下記の通りで
ある。 f=-2573.546 ,Fナンバー=-6.486 ,像高=1.0000 倍率=1.0000 ,物体距離=-2.0000 r1 =9.6010 d1 =22.2100 n1 =1.51633 ν1 =64.15 r2 =∞ d2 =1.8900 r3 =8.2580 d3 =1.1900 n2 =1.65160 ν2 =58.52 r4 =-4.0320 d4 =3.7000 n3 =1.75700 ν3 =47.82 r5 =4.0320 d5 =1.1900 n4 =1.65160 ν4 =58.52 r6 =-8.2580 d6 =1.8900 r7 =∞ d7 =22.2100 n5 =1.51633 ν5 =64.15 r8 =-9.6010 d8 =4.0000 r9 =9.6010 d9 =20.0000 n6 =1.51633 ν6 =64.15 r10=∞ d10=2.2100 n7 =1.51633 ν7 =64.15 r11=∞(非球面) d11=1.8900 r12=8.2580 d12=1.1900 n8 =1.65160 ν8 =58.52 r13=-4.0320 d13=3.7000 n9 =1.75700 ν9 =47.82 r14=4.0320 d14=1.1900 n10=1.65160 ν10=58.52 r15=-8.2580 d15=1.8900 r16=∞ d16=22.210 n11=1.51633 ν11=64.15 r17=-9.6010 非球面係数 R=∞,P=1.0000,B=0 ,E=0.23765 ×10-3,F=-0.95652×10-4 G=-0.11759×10-4,H=-0.39212×10-10 更に、第8の実施例のN=3,4,5,6,7および1
2の時の像伝送光学系で用いる非球面は、下記の通りの
形状が望ましい。 N=3 R=∞,P=1.0000,B=0 ,E=0.35604 ×10-3,F=-0.14288×10-3 G=-0.17862×10-4,H=-0.60130×10-10 N=4 R=∞,P=1.0000,B=0 ,E=0.47415 ×10-3,F=-0.18970×10-3 G=-0.24116×10-4,H=-0.80905×10-10 N=5 R=∞,P=1.0000,B=0 ,E=0.59197 ×10-3,F=-0.23612×10-3 G=-0.30521×10-4,H=-0.10275×10-9 N=6 R=∞,P=1.0000,B=0 ,E=0.70950 ×10-3,F=-0.28213×10-3 G=-0.37076×10-4,H=-0.12578×10-9 N=7 R=∞,P=1.0000,B=0 ,E=0.82675 ×10-3,F=-0.32774×10-3 G=-0.43782×10-4,H=-0.14856×10-9 N=12 R=∞,P=1.0000,B=0 ,E=0.14086 ×10-2,F=-0.54966×10-3 G=-0.79591×10-4,H=-0.26743×10-9 この第8の実施例のD/Lおよび|(A×n)/(N
A’×N)|の値は下記の通りである。 D/L=0.42 |(A×n)/(NA’×N)|=|(E×n)/(NA’×N)| =0.000234 この実施例のN=12の像伝送光学系の収差状況は、図
29に示す通りであり、又このN=12の像伝送光学系
で非球面を用いない場合の収差状況は、図30に示す通
りである。The eighth embodiment differs from the first, sixth and seventh embodiments in that the cemented lens near the pupil in the configuration shown in FIG. 11 is a three-lens cemented lens consisting of a convex lens, a concave lens and a convex lens.
In this embodiment, the aberration data is as shown in FIG. 28 with the following data, and as can be seen from this figure, the field curvature is corrected better than the other embodiments. f = 5147.091, F-number = 6.486, image height = 1.0000 magnification = -1.0000, object distance = -2.0000 r 1 = 9.6010 d 1 = 20.0000 n 1 = 1.51633 ν 1 = 64.15 r 2 = ∞ d 2 = 2.2100 n 2 = 1.51633 ν 2 = 64.15 r 3 = ∞ (aspherical surface) d 3 = 1.8900 r 4 = 8.2580 d 4 = 1.1900 n 3 = 1.65160 ν 3 = 58.52 r 5 = -4.0320 d 5 = 3.7000 n 4 = 1.75700 ν 4 = 47.82 r 6 = 4.0320 d 6 = 1.1900 n 5 = 1.65160 ν 5 = 58.52 r 7 = -8.2580 d 7 = 1.8900 r 8 = ∞ d 8 = 22.2100 n 6 = 1.51633 ν 6 = 64.15 r 9 = -9.6010 aspherical coefficients R = ∞, P = 1.0000, B = 0, E = 0.11897 × 10 -3 , F = -0.48026 × 10 -4 G = -0.58047 × 10 -5 , H = -0.18985 × 10 -10 Third-order spherical aberration coefficient 5th-order spherical aberration coefficient K (spherical surface) (aspherical surface) K (spherical surface) (aspherical surface) 1 -0.00006 0.00000 1 0.00000 0.00000 2 0.00000 0.00000 2 0.00000 0.00000 3 0.00021 0.00090 3 0.00000 -0.00072 4 -0.00530 0.00000 4 -0.00011 0.00000 5 0.00470 0.00000 5 0.00037 0.00000 6 0.00470 0.00000 6 0.00037 0.00000 7 -0.00530 0.00000 7 -0.00014 0.00000 8 0.00021 0.00000 8 0.00000 0.00000 9 -0.00006 0.00000 9 0.00000 0.00000 Total -0.00090 0.00090 Total 0.00049 -0.00072 N of this eighth embodiment 12 shows the image transmission optical system when = 2.
Shown in. The lens data of this optical system are as follows. f = -2573.546, F-number = -6.486, image height = 1.0000 magnification = 1.0000, object distance = -2.0000 r 1 = 9.6010 d 1 = 22.2100 n 1 = 1.51633 ν 1 = 64.15 r 2 = ∞ d 2 = 1.8900 r 3 = 8.2580 d 3 = 1.1900 n 2 = 1.65160 ν 2 = 58.52 r 4 = -4.0320 d 4 = 3.7000 n 3 = 1.75700 ν 3 = 47.82 r 5 = 4.0320 d 5 = 1.1900 n 4 = 1.65160 ν 4 = 58.52 r 6 = -8.2580 d 6 = 1.8900 r 7 = ∞ d 7 = 22.2100 n 5 = 1.51633 ν 5 = 64.15 r 8 = -9.6010 d 8 = 4.0000 r 9 = 9.6010 d 9 = 20.0000 n 6 = 1.51633 ν 6 = 64.15 r 10 = ∞ d 10 = 2.2100 n 7 = 1.51633 ν 7 = 64.15 r 11 = ∞ ( aspherical) d 11 = 1.8900 r 12 = 8.2580 d 12 = 1.1900 n 8 = 1.65160 ν 8 = 58.52 r 13 = -4.0320 d 13 = 3.7000 n 9 = 1.75700 ν 9 = 47.82 r 14 = 4.0320 d 14 = 1.1900 n 10 = 1.65160 ν 10 = 58.52 r 15 = -8.2580 d 15 = 1.8900 r 16 = ∞ d 16 = 22.210 n 11 = 1.51633 ν 11 = 64.15 r 17 = -9.601 0 Aspheric coefficient R = ∞, P = 1.0000, B = 0, E = 0.23765 × 10 -3 , F = -0.95652 × 10 -4 G = -0.11759 × 10 -4 , H = -0.39212 × 10 -10 , N = 3,4,5,6,7 and 1 of the eighth embodiment
The aspherical surface used in the image transmission optical system in the case of 2 preferably has the following shape. N = 3 R = ∞, P = 1.0000, B = 0, E = 0.35604 × 10 -3 , F = -0.14288 × 10 -3 G = -0.17862 × 10 -4 , H = -0.60130 × 10 -10 N = 4 R = ∞, P = 1.0000, B = 0, E = 0.47415 × 10 -3 , F = -0.18970 × 10 -3 G = -0.24116 × 10 -4 , H = -0.80905 × 10 -10 N = 5 R = ∞, P = 1.0000, B = 0, E = 0.59197 × 10 -3 , F = -0.23612 × 10 -3 G = -0.30521 × 10 -4 , H = -0.10275 × 10 -9 N = 6 R = ∞ , P = 1.0000, B = 0, E = 0.70950 × 10 -3 , F = -0.28213 × 10 -3 G = -0.37076 × 10 -4 , H = -0.12578 × 10 -9 N = 7 R = ∞, P = 1.0000, B = 0, E = 0.82675 × 10 -3 , F = -0.32774 × 10 -3 G = -0.43782 × 10 -4 , H = -0.14856 × 10 -9 N = 12 R = ∞, P = 1.0000 , B = 0, E = 0.14086 × 10 −2 , F = −0.54966 × 10 −3 G = −0.79591 × 10 −4 , H = −0.26743 × 10 −9 D / L of this eighth embodiment and | (A × n) / (N
The value of A ′ × N) | is as follows. D / L = 0.42 | (A * n) / (NA '* N) | = | (E * n) / (NA' * N) | = 0.000234 N = 12 image transmission in this embodiment The aberration situation of the optical system is as shown in FIG. 29, and the aberration situation when the aspherical surface is not used in the image transmission optical system of N = 12 is as shown in FIG.
【0051】第9の実施例は、図13に示す構成で、第
1の実施例のN=3の時の像伝送光学系に対物レンズO
と接眼レンズEとを組合わせた時の硬性鏡全体の光学系
を示す。この実施例において、対物レンズの視野角およ
び接眼レンズの観察倍率は、用途に応じて変え得る。尚
データーには接眼レンズは記載していないが例えば図示
するような接眼レンズが用いられる。The ninth embodiment has the configuration shown in FIG. 13 and has an objective lens O in the image transmission optical system when N = 3 in the first embodiment.
The optical system of the whole rigid endoscope when combining and the eyepiece lens E is shown. In this example, the viewing angle of the objective lens and the observation magnification of the eyepiece can be varied depending on the application. Although the eyepiece is not described in the data, an eyepiece as shown in the figure is used.
【0052】この第9の実施例のレンズデーターおよび
3次,5次の球面収差係数は、下記の通りである。 f=-1.268 ,Fナンバー=-4.979 ,像高=-1.0000 倍率=0.0834 ,物体距離=-14.0000 r1 =∞ d1 =0.3211 n1 =1.76900 ν1 =64.15 r2 =∞ d2 =0.0917 r3 =16.1552 (非球面)d3 =0.4587 n2 =1.78472 ν2 =25.71 r4 =∞ d4 =0.1835 n3 =1.58913 ν3 =61.18 r5 =0.5376 d5 =0.3670 r6 =∞ d6 =1.1744 n4 =1.80610 ν4 =40.95 r7 =∞(絞り) d7 =3.1191 n5 =1.80610 ν5 =40.95 r8 =-2.0349 d8 =0.1376 r9 =7.8670 d9 =1.3761 n6 =1.60311 ν6 =60.70 r10=-1.4610 d10=0.4587 n7 =1.84666 ν7 =23.88 r11=-3.5064 d11=1.0872 r12=-1.7041 d12=0.4587 n8 =1.58144 ν8 =40.75 r13=2.8950 d13=1.1468 n9 =1.72000 ν9 =50.25 r14=-3.2115 d14=4.0596 r15=8.6830 d15=20.0459 n10=1.62004 ν10=36.25 r16=∞ d16=1.1835 r17=6.4803 d17=0.4587 n11=1.80610 ν11=40.95 r18=2.9606 d18=1.3761 n12=1.65160 ν12=58.52 r19=-11.5959 d19=0.8257 r20=∞ d20=20.0459 n13=1.62004 ν13=36.25 r21=-8.6830 d21=1.8349 r22=∞ d22=1.8349 r23=8.6830 d23=20.0459 n14=1.62004 ν14=36.25 r24=∞ d24=1.1835 r25=6.4803 d25=0.4587 n15=1.80610 ν15=40.95 r26=2.9606 d26=1.3761 n16=1.65160 ν16=58.52 r27=-11.5959 d27=0.8257 r28=∞ d28=20.0459 n17=1.62004 ν17=36.25 r29=-8.6830 d29=1.8349 r30=∞ d30=1.8349 r31=8.6830 d31=19.2110 n18=1.62004 ν18=36.25 r32=∞ d32=0.9174 n19=1.78472 ν19=25.71 r33=500.0000(非球面)d33=1.1835 r34=6.4803 d34=0.4587 n20=1.80610 ν20=40.95 r35=2.9606 d35=1.3761 n21=1.65160 ν21=58.52 r36=-11.5959 d36=0.8257 r37=∞ d37=20.0459 n22=1.62004 ν22=36.25 r38=-6.4803 非球面係数 (第3面)R=16.1552 ,P=1.0000,B=0 ,E=0.83264 ×10-1 F=-0.24461×10-1 (第33面)R=500.0000,P=1.0000,B=-0.10000×10-2 E=0.48178 ×10-3,F=-0.16895×10-3 3次の球面収差係数 5次の球面収差係数 K (球面) (非球面) K (球面) (非球面) 1 0.00000 0.00000 1 0.00000 0.00000 2 0.00000 0.00000 2 0.00000 0.00000 3 0.00000 -0.00011 3 0.00000 0.00000 4 0.00000 0.00000 4 0.00000 0.00000 5 0.00207 0.00000 5 0.00015 0.00000 6 -0.00029 0.00000 6 0.00000 0.00000 7 0.00000 0.00000 7 0.00000 0.00000 8 -0.00445 0.00000 8 -0.00017 0.00000 9 0.00000 0.00000 9 0.00000 0.00000 10 0.00327 0.00000 10 0.00023 0.00000 11 -0.00253 0.00000 11 -0.00008 0.00000 12 0.00212 0.00000 12 0.00005 0.00000 13 0.00000 0.00000 13 0.00000 0.00000 14 -0.00045 0.00000 14 -0.00001 0.00000 15 -0.00016 0.00000 15 0.00000 0.00000 16 0.00044 0.00000 16 0.00000 0.00000 17 -0.01167 0.00000 17 -0.00039 0.00000 18 0.01301 0.00000 18 0.00163 0.00000 19 -0.00390 0.00000 19 -0.00009 0.00000 20 0.00045 0.00000 20 0.00000 0.00000 21 -0.00015 0.00000 21 0.00000 0.00000 22 0.00000 0.00000 22 0.00000 0.00000 23 -0.00016 0.00000 23 0.00000 0.00000 24 0.00044 0.00000 24 0.00000 0.00000 25 -0.01162 0.00000 25 -0.00038 0.00000 26 0.01299 0.00000 26 0.00162 0.00000 27 -0.00392 0.00000 27 -0.00009 0.00000 28 0.00046 0.00000 28 0.00000 0.00000 29 -0.00014 0.00000 29 0.00000 0.00000 30 0.00000 0.00000 30 0.00000 0.00000 31 -0.00017 0.00000 31 0.00000 0.00000 32 -0.00005 0.00000 32 0.00000 0.00000 33 0.00055 0.00662 33 0.00000 -0.00505 34 -0.01193 0.00000 34 -0.00040 0.00000 35 0.01320 0.00000 35 0.00166 0.00000 36 -0.00387 0.00000 36 -0.00008 0.00000 37 0.00044 0.00000 37 0.00000 0.00000 38 -0.00022 0.00000 38 0.00000 0.00000 トータル -0.00624 0.00651 トータル 0.00365 -0.00505 この第9の実施例のD/Lおよび|(A×n)/(N
A’×N)|の値は下記の通りである。 D/L=0.46 |(A×n)/(NA’×N)|=|(E×n)/(NA’×N)| =0.000284(N=3) 又この実施例の収差状況は図31に示す通りであり、又
上記実施例において非球面を球面に代えた時の収差状況
は図32の通りである。The lens data and the spherical aberration coefficients of the 3rd and 5th orders of the ninth embodiment are as follows. f = -1.268, F number = -4.979, image height = -1.0000, magnification = 0.0834, object distance = -14.0000 r 1 = ∞ d 1 = 0.3211 n 1 = 1.76900 ν 1 = 64.15 r 2 = ∞ d 2 = 0.0917 r 3 = 16.1552 (aspherical) d 3 = 0.4587 n 2 = 1.78472 ν 2 = 25.71 r 4 = ∞ d 4 = 0.1835 n 3 = 1.58913 ν 3 = 61.18 r 5 = 0.5376 d 5 = 0.3670 r 6 = ∞ d 6 = 1.1744 n 4 = 1.80610 ν 4 = 40.95 r 7 = ∞ (aperture) d 7 = 3.1191 n 5 = 1.80610 ν 5 = 40.95 r 8 = -2.0349 d 8 = 0.1376 r 9 = 7.8670 d 9 = 1.3761 n 6 = 1.60311 ν 6 = 60.70 r 10 = -1.4610 d 10 = 0.4587 n 7 = 1.84666 ν 7 = 23.88 r 11 = -3.5064 d 11 = 1.0872 r 12 = -1.7041 d 12 = 0.4587 n 8 = 1.58144 ν 8 = 40.75 r 13 = 2.8950 d 13 = 1.1468 n 9 = 1.72000 ν 9 = 50.25 r 14 = -3.2115 d 14 = 4.0596 r 15 = 8.6830 d 15 = 20.0459 n 10 = 1.62004 ν 10 = 36.25 r 16 = ∞ d 16 = 1.1835 r 17 = 6.4803 d 17 = 0.4587 n 11 1.80610 ν 11 = 40.95 r 18 = 2.9606 d 18 = 1.3761 n 12 = 1.65160 ν 12 = 58.52 r 19 = -11.5959 d 19 = 0.8257 r 20 = ∞ d 20 = 20.0459 n 13 = 1.62004 ν 13 = 36.25 r 21 = - 8.6830 d 21 = 1.8349 r 22 = ∞ d 22 = 1.8349 r 23 = 8.6830 d 23 = 20.0459 n 14 = 1.62004 ν 14 = 36.25 r 24 = ∞ d 24 = 1.1835 r 25 = 6.4803 d 25 = 0.4587 n 15 = 1.80610 ν 15 = 40.95 r 26 = 2.9606 d 26 = 1.3761 n 16 = 1.65160 ν 16 = 58.52 r 27 = -11.5959 d 27 = 0.8257 r 28 = ∞ d 28 = 20.0459 n 17 = 1.62004 ν 17 = 36.25 r 29 = -8.6830 d 29 = 1.8349 r 30 = ∞ d 30 = 1.8349 r 31 = 8.6830 d 31 = 19.2110 n 18 = 1.62004 ν 18 = 36.25 r 32 = ∞ d 32 = 0.9174 n 19 = 1.78472 ν 19 = 25.71 r 33 = 500.0000 ( aspherical ) d 33 = 1.1835 r 34 = 6.4803 d 34 = 0.4587 n 20 = 1.80610 ν 20 = 40.95 r 35 = 2.9606 d 35 = 1.3761 n 21 = 1.65160 ν 21 = 58.52 r 36 = -11.5959 d 36 = 0.8257 r 37 = ∞ d 37 = 20.0459 n 22 = 1.62004 ν 22 = 36.25 r 38 = -6.4803 Aspherical surface coefficient (third surface) R = 16.1552, P = 1.0000, B = 0, E = 0.83264 × 10 -1 F = -0.24461 × 10 -1 (third surface) R = 500.0000, P = 1.0000, B = -0.10000 × 10 -2 E = 0.48178 × 10 -3 , F = -0.16895 × 10 -3 Third-order spherical aberration Coefficient 5th-order spherical aberration coefficient K (spherical surface) (aspherical surface) K (spherical surface) (aspherical surface) 1 0.00000 0.00000 1 0.00000 0.00000 2 0.00000 0.00000 2 0.00000 0.00000 3 0.00000 -0.00011 3 0.00000 0.00000 4 0.00000 0.00000 4 0.00000 0.00000 5 0.00207 0.00000 5 0.00015 0.00000 6 -0.00029 0.00000 6 0.00000 0.00000 7 0.00000 0.00000 7 0.00000 0.00000 8 -0.00445 0.00000 8 -0.00017 0.00000 9 0.00000 0.00000 9 0.00000 0.00000 10 0.00327 0.00000 10 0.00023 0.00000 11 -0.00253 0.00000 11 -0.00008 0.00000 12 0.00212 0.00000 12 0.00005 0.00000 13 0.00000 0.00000 13 0.00000 0.000 00 14 -0.00045 0.00000 14 -0.00001 0.00000 15 -0.00016 0.00000 15 0.00000 0.00000 16 0.00044 0.00000 16 0.00000 0.00000 17 -0.01167 0.00000 17 -0.00039 0.00000 18 0.01301 0.00000 18 0.00163 0.00000 19 -0.00390 0.00000 19 -0.00009 0.00000 20 0.00045 0.00000 20 0.00000 0.00000 21 -0.00015 0.00000 21 0.00000 0.00000 22 0.00000 0.00000 22 0.00000 0.00000 23 -0.00016 0.00000 23 0.00000 0.00000 24 0.00044 0.00000 24 0.00000 0.00000 25 -0.01162 0.00000 25 -0.00038 0.00000 26 0.01299 0.00000 26 0.00162 0.00000 27 -0.00392 0.00000 27 -0.00009 0.00000 28 0.00046 0.00000 28 0.00000 0.00000 29 -0.00014 0.00000 29 0.00000 0.00000 30 30.000 0.00000 30 0.00000 0.00000 31 -0.00017 0.00000 31 0.00000 0.00000 32 -0.00005 0.00000 32 0.00000 0.00000 33 0.00055 0.00662 33 0.00000 -0.00505 34 -0.01193 0.00000 34 -0.00040 0.00000 35 0.013 20 0.00000 35 0.00166 0.00000 36 -0.00387 0.00000 36 -0.00008 0.00000 37 0.00044 0.00000 37 0.00000 0.00000 38 -0.00022 0.00000 38 0.00000 0.00000 Total -0.00624 0.00651 Total 0.00365 -0.00505 D / L and | (A × n) ) / (N
The value of A ′ × N) | is as follows. D / L = 0.46 | (A * n) / (NA '* N) | = | (E * n) / (NA' * N) | = 0.000284 (N = 3) The aberration situation is as shown in FIG. 31, and the aberration situation when the aspherical surface is replaced by a spherical surface in the above embodiment is as shown in FIG.
【0053】以上述べた各実施例等のデーターにおい
て、r1 ,r2 ,・・・ はレンズ各面の曲率半径、d1 ,
d2 ,・・・ は各レンズの肉厚およびレンズ間隔、n1 ,
n2,・・・ は各レンズの屈折率、ν1 ,ν2 ,・・・ は各
レンズのアッベ数である。又非球面のデーター中Rは基
準球面の曲率半径、球面収差係数のKは面番号である。In the data of the above-described embodiments, r 1 , r 2 , ... Are the radii of curvature of the lens surfaces, and d 1 ,
d 2 , ... Is the thickness and lens spacing of each lens, n 1 ,
n 2 , ... is the refractive index of each lens, and ν 1 , ν 2 , ... Is the Abbe number of each lens. In the aspherical surface data, R is the radius of curvature of the reference spherical surface, and K of the spherical aberration coefficient is the surface number.
【0054】本発明は、特許請求の範囲の各請求項に記
載する像伝送光学系の他に次に記載する各項の像伝送光
学系等も含まれる。The present invention includes not only the image transmission optical system described in each of the claims but also the image transmission optical system of each of the following items.
【0055】(1) 特許性請求の範囲の第3項に記載
した光学系で下記の条件(4)を満足する像伝送光学
系。(1) An image transmission optical system satisfying the following condition (4) with the optical system described in claim 3 of the patentability.
【0056】 (4) 0.00001≦|A×n/NA’×N| ただし、Aは非球面係数E,F,G,H,・・・のうち
の最も数値の大きい係数、nは非球面レンズの屈折率、
NA’は像伝送光学系の射出側の開口数、Nは伝送回数
である。(4) 0.00001 ≦ | A × n / NA ′ × N | where A is the coefficient with the largest numerical value among the aspherical surface coefficients E, F, G, H, ... Refractive index of spherical lens,
NA 'is the numerical aperture on the exit side of the image transmission optical system, and N is the number of transmissions.
【0057】(2) 特許請求の範囲の第1項に記載し
た光学系で、視野レンズを含む外径の数倍の長さを有す
る二つのロッドレンズと両ロッドレンズの間に配置され
た凹レンズと凸レンズとを接合した接合レンズとにて1
回リレーのリレーレンズを構成する像伝送光学系。(2) In the optical system according to the first aspect of the invention, two rod lenses having a length several times the outer diameter including a field lens, and a concave lens arranged between the two rod lenses. 1 with a cemented lens in which a convex lens is cemented
An image transmission optical system that forms the relay lens of a time relay.
【0058】(3) 特許請求の範囲の第1項に記載し
た光学系で、複数回像伝送するリレーレンズよりなり、
各リレーレンズの瞳近傍で発生する球面収差の和を、一
つのリレーレンズの瞳近傍に設けた少なくとも一つの非
球面により補正するようにした像伝送光学系。(3) The optical system according to the first aspect of the invention, which comprises a relay lens that transmits an image a plurality of times,
An image transmission optical system in which the sum of spherical aberrations generated near the pupil of each relay lens is corrected by at least one aspherical surface provided near the pupil of one relay lens.
【0059】(4) 特許請求の範囲の第1項に記載し
た光学系で、複数回像伝送するリレーレンズよりなり、
最も像側のリレーレンズの瞳近傍に球面収差を補正する
非球面を少なくとも一つ設けた像伝送光学系。(4) The optical system according to the first aspect of the invention, which comprises a relay lens that transmits an image a plurality of times,
An image transmission optical system in which at least one aspherical surface for correcting spherical aberration is provided near the pupil of the relay lens closest to the image side.
【0060】[0060]
【発明の効果】本発明は、非球面レンズを効果的に用い
ることによって球面収差、非点収差、像面湾曲の良好に
補正された製作コストの安い像伝送光学系を実現し得る
ようにしたものである。According to the present invention, it is possible to realize an inexpensive image transmission optical system in which spherical aberration, astigmatism, and field curvature are well corrected by effectively using an aspherical lens. It is a thing.
【図1】本発明の第1の実施例のリレー回数1回の像伝
送光学系の断面図FIG. 1 is a sectional view of an image transmission optical system according to a first embodiment of the present invention with one relay.
【図2】本発明の第1の実施例のリレー回数2回の像伝
送光学系の断面図FIG. 2 is a sectional view of an image transmission optical system in which the number of relays is 2 according to the first embodiment of the present invention.
【図3】本発明の第2の実施例のリレー回数1回の像伝
送光学系の断面図FIG. 3 is a cross-sectional view of an image transmission optical system in which the number of relays is 1 according to the second embodiment of the present invention.
【図4】本発明の第2の実施例のリレー回数2回の像伝
送光学系の断面図FIG. 4 is a cross-sectional view of an image transmission optical system in which the number of relays is 2 according to the second embodiment of the present invention.
【図5】本発明の第3の実施例のリレー回数1回の像伝
送光学系の断面図FIG. 5 is a sectional view of an image transmission optical system in which the number of relays is one according to the third embodiment of the present invention.
【図6】本発明の第3の実施例のリレー回数1回の像伝
送光学系の断面図FIG. 6 is a cross-sectional view of an image transmission optical system in which the number of relays is one according to the third embodiment of the present invention.
【図7】本発明の第4の実施例のリレー回数1回の像伝
送光学系の断面図FIG. 7 is a cross-sectional view of an image transmission optical system with one relay according to a fourth embodiment of the present invention.
【図8】本発明の第5の実施例のリレー回数1回の像伝
送光学系の断面図FIG. 8 is a cross-sectional view of an image transmission optical system with one relay according to a fifth embodiment of the present invention.
【図9】本発明の第6の実施例のリレー回数1回の像伝
送光学系の断面図FIG. 9 is a sectional view of an image transmission optical system in which the number of relays is one according to the sixth embodiment of the present invention.
【図10】本発明の第7の実施例のリレー回数1回の像
伝送光学系の断面図FIG. 10 is a cross-sectional view of an image transmission optical system with a single relay according to a seventh embodiment of the present invention.
【図11】本発明の第8の実施例のリレー回数1回の像
伝送光学系の断面図FIG. 11 is a cross-sectional view of an image transmission optical system with a single relay according to an eighth embodiment of the present invention.
【図12】本発明の第8の実施例のリレー回数2回の像
伝送光学系の断面図FIG. 12 is a sectional view of an image transmission optical system according to an eighth embodiment of the present invention with two relays.
【図13】本発明の第9の実施例のリレー回数3回の像
伝送光学系を備えた硬性鏡光学系の断面図FIG. 13 is a sectional view of a rigid endoscope optical system including an image transmission optical system with a relay number of 3 according to a ninth embodiment of the present invention.
【図14】本発明の第1の実施例のリレー回数1回の像
伝送光学系の収差曲線図FIG. 14 is an aberration curve diagram of the image transmission optical system with one relay according to the first embodiment of the present invention.
【図15】本発明の第1の実施例のリレー回数13回の
像伝送光学系の収差曲線図FIG. 15 is an aberration curve diagram of the image transmission optical system with 13 relays according to the first embodiment of the present invention.
【図16】本発明の第1の実施例のリレー回数13回の
光学系で非球面を用いない像伝送光学系の収差曲線図FIG. 16 is an aberration curve diagram of an image transmission optical system that does not use an aspherical surface in the optical system with 13 relays according to the first embodiment of the present invention.
【図17】本発明の第1の実施例の球面収差およびMT
Fを示す図FIG. 17 shows spherical aberration and MT of the first embodiment of the present invention.
Diagram showing F
【図18】本発明の第2の実施例のリレー回数1回の像
伝送光学系の収差曲線図FIG. 18 is an aberration curve diagram of an image transmission optical system with one relay according to the second embodiment of the present invention.
【図19】本発明の第2の実施例のリレー回数13回の
像伝送光学系の収差曲線図FIG. 19 is an aberration curve diagram of the image transmission optical system with 13 relays according to the second embodiment of the present invention.
【図20】本発明の第2の実施例のリレー回数13回の
光学系と同じ構成で非球面を用いない像伝送光学系の収
差曲線図FIG. 20 is an aberration curve diagram of an image transmission optical system having the same configuration as the optical system with 13 relays according to the second embodiment of the present invention and using no aspherical surface.
【図21】本発明の第3の実施例のリレー回数1回の像
伝送光学系の収差曲線図FIG. 21 is an aberration curve diagram of the image transmission optical system with one relay according to the third embodiment of the present invention.
【図22】本発明の第3の実施例のリレー回数13回の
像伝送光学系の収差曲線図FIG. 22 is an aberration curve diagram of an image transmission optical system with 13 relays according to the third embodiment of the present invention.
【図23】本発明の第3の実施例のリレー回数13回の
光学系と同一構成で非球面を用いない像伝送光学系の収
差曲線図FIG. 23 is an aberration curve diagram of an image transmission optical system having the same configuration as the optical system with 13 relays according to the third embodiment of the present invention and using no aspherical surface.
【図24】本発明の第4の実施例の収差曲線図FIG. 24 is an aberration curve diagram for the fourth example of the present invention.
【図25】本発明の第5の実施例の収差曲線図FIG. 25 is an aberration curve diagram of the fifth embodiment of the present invention.
【図26】本発明の第6の実施例の収差曲線図FIG. 26 is an aberration curve diagram for the sixth example of the present invention.
【図27】本発明の第7の実施例の収差曲線図FIG. 27 is an aberration curve diagram for the seventh example of the present invention.
【図28】本発明の第8の実施例のリレー回数1回の像
伝送光学系の収差曲線図FIG. 28 is an aberration curve diagram of an image transmission optical system in which the number of relays is one according to the eighth embodiment of the present invention.
【図29】本発明の第8の実施例のリレー回数12回の
像伝送光学系の収差曲線図FIG. 29 is an aberration curve diagram of an image transmission optical system with 12 relays according to an eighth embodiment of the present invention.
【図30】本発明の第8の実施例のリレー回数12回の
光学系と同一構成で非球面を用いない像伝送光学系FIG. 30 is an image transmission optical system having the same configuration as the optical system with 12 relays according to the eighth embodiment of the present invention but using no aspherical surface.
【図31】本発明の第9の実施例の像伝送光学系を有す
る硬性鏡光学系の収差曲線図FIG. 31 is an aberration curve diagram of a rigid endoscope optical system having an image transmission optical system according to a ninth embodiment of the present invention.
【図32】上記図31の光学系と同一の構成で非球面を
用いない硬性鏡光学系の収差曲線図32 is an aberration curve diagram of a rigid mirror optical system having the same configuration as the optical system of FIG. 31 and using no aspherical surface.
【図33】従来の硬性鏡光学系の構成を示す図FIG. 33 is a diagram showing a configuration of a conventional rigid endoscope optical system.
【図34】図33の光学系で用いられる像伝送光学系の
断面図34 is a sectional view of an image transmission optical system used in the optical system of FIG.
【図35】図34の光学系の球面収差曲線図35 is a spherical aberration curve diagram of the optical system of FIG. 34.
【図36】図34に示すレンズ系でリレー回数が5回の
球面収差およびMTFを示す図36 is a diagram showing spherical aberration and MTF when the number of relays is 5 in the lens system shown in FIG.
【図37】従来の他の像伝送光学系の断面図FIG. 37 is a sectional view of another conventional image transmission optical system.
【図38】図37の光学系の球面収差曲線図38 is a spherical aberration curve diagram of the optical system in FIG. 37.
【図39】従来の更に他の像伝送光学系の断面図FIG. 39 is a sectional view of still another conventional image transmission optical system.
Claims (4)
像のリレーを行なう光学系において、光学系の瞳近傍に
球面収差を補正する非球面を少なくとも一つ設けたこと
を特徴とする像伝送光学系。1. An image transmission optical system comprising at least one aspherical surface for correcting spherical aberration in the vicinity of the pupil of the optical system in an optical system comprising a plurality of lenses and relaying an image at least once. system.
送光学系。 (1) 0.2<D/L<0.8 ただしLは1回伝送あたりの物体側の像から伝送後の結
像側の像までの距離、Dは前記物体側の像から瞳近傍の
非球面までの距離である。2. The image transmission optical system according to claim 1, wherein the following condition (1) is satisfied. (1) 0.2 <D / L <0.8 where L is the distance from the image on the object side to the image on the imaging side after transmission, and D is the distance from the image on the object side to the vicinity of the pupil. It is the distance to the aspherical surface.
式にて表わされ、前記非球面が屈折率の高い媒質から屈
折率の低い媒質へ光が進む場合は低次の非球面係数が正
で高次の非球面係数が負、又屈折率の低い媒質から屈折
率の高い媒質へ光が進む場合は低次の非球面係数が負で
高次の非球面係数が正であることを特徴とする請求項1
の像伝送光学系。 ここでx,yは光軸をx軸にとり像の方向を正方向とし
面と光軸との交点を原点としてx軸に直交する方向をy
軸とした時の座標値、Cは光軸近傍でこの非球面に接す
る円の曲率半径、pは非球面の形状をあらわすパラメー
ター、B,E,F,G,・・・は夫々2次,4次,6
次,8次,・・・の非点収差係数である。3. An aspherical surface for correcting spherical aberration is represented by the following formula, and when the aspherical surface propagates light from a medium having a high refractive index to a medium having a low refractive index, a low-order aspherical surface. The coefficient is positive and the higher-order aspherical coefficient is negative, and when light travels from a medium with a low refractive index to a medium with a high refractive index, the low-order aspherical coefficient is negative and the high-order aspherical coefficient is positive. Claim 1 characterized by the above.
Image transmission optics. Here, x and y are the directions orthogonal to the x axis with the optical axis as the x axis, the image direction as the positive direction, and the origin at the intersection of the plane and the optical axis.
Coordinate values when used as an axis, C is the radius of curvature of a circle in contact with this aspherical surface in the vicinity of the optical axis, p is a parameter that represents the shape of the aspherical surface, B, E, F, G, ... 4th, 6th
Next-order, eighth-order, ... Astigmatism coefficients.
の高い媒質から屈折率の低い媒質へ光が進む場合下記条
件(2)を満足し、又屈折率の低い媒質から屈折率の高
い媒質へ光が進む場合下記条件(3)を満足することを
特徴とする請求項(3)の像伝送光学系。 (2) E>0 , F<0 , G<0 (3) E<0 , F>0 , G>04. When light travels from a medium having a high refractive index to a medium having a low refractive index on an aspherical surface for correcting spherical aberration, the following condition (2) is satisfied, and a medium having a low refractive index changes its refractive index from the medium having a low refractive index. The image transmission optical system according to claim 3, wherein the following condition (3) is satisfied when the light travels to a high medium. (2) E> 0, F <0, G <0 (3) E <0, F> 0, G> 0
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25730494A JPH0894928A (en) | 1994-09-28 | 1994-09-28 | Image transmission optical system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25730494A JPH0894928A (en) | 1994-09-28 | 1994-09-28 | Image transmission optical system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0894928A true JPH0894928A (en) | 1996-04-12 |
Family
ID=17304507
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25730494A Withdrawn JPH0894928A (en) | 1994-09-28 | 1994-09-28 | Image transmission optical system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0894928A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016519341A (en) * | 2013-05-15 | 2016-06-30 | ノバダック テクノロジーズ インコーポレイテッド | High compensation relay system |
WO2017203926A1 (en) * | 2016-05-25 | 2017-11-30 | オリンパス株式会社 | Optical system for hard mirror |
US9877654B2 (en) | 2006-02-07 | 2018-01-30 | Novadaq Technologies Inc. | Near infrared imaging |
US9968244B2 (en) | 2000-07-14 | 2018-05-15 | Novadaq Technologies ULC | Compact fluorescence endoscopy video system |
US10182709B2 (en) | 2002-01-15 | 2019-01-22 | Novadaq Technologies ULC | Filter for use with imaging endoscopes |
US10293122B2 (en) | 2016-03-17 | 2019-05-21 | Novadaq Technologies ULC | Endoluminal introducer with contamination avoidance |
US10768394B2 (en) | 2018-01-22 | 2020-09-08 | Largan Precision Co., Ltd. | Electronic device |
-
1994
- 1994-09-28 JP JP25730494A patent/JPH0894928A/en not_active Withdrawn
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9968244B2 (en) | 2000-07-14 | 2018-05-15 | Novadaq Technologies ULC | Compact fluorescence endoscopy video system |
US10182709B2 (en) | 2002-01-15 | 2019-01-22 | Novadaq Technologies ULC | Filter for use with imaging endoscopes |
US9877654B2 (en) | 2006-02-07 | 2018-01-30 | Novadaq Technologies Inc. | Near infrared imaging |
JP2016519341A (en) * | 2013-05-15 | 2016-06-30 | ノバダック テクノロジーズ インコーポレイテッド | High compensation relay system |
US10293122B2 (en) | 2016-03-17 | 2019-05-21 | Novadaq Technologies ULC | Endoluminal introducer with contamination avoidance |
WO2017203926A1 (en) * | 2016-05-25 | 2017-11-30 | オリンパス株式会社 | Optical system for hard mirror |
US10768394B2 (en) | 2018-01-22 | 2020-09-08 | Largan Precision Co., Ltd. | Electronic device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6353504B1 (en) | Objective lens for endoscope | |
JP2876252B2 (en) | Endoscope objective lens | |
JP4257600B2 (en) | Imaging device and zoom lens | |
US8031409B2 (en) | Imaging lens, optical device thereof, and method for manufacturing imaging lens | |
CN100447610C (en) | Objective lens for endoscope | |
JP4905778B2 (en) | Zoom lens and imaging device | |
JP4869704B2 (en) | Zoom lens | |
JP5373515B2 (en) | Zoom lens and imaging device | |
JP2003270530A (en) | Wide angle lens having aspheric synthetic resin lens | |
JP3728680B2 (en) | Compact wide-angle zoom lens | |
JP4497514B2 (en) | Wide angle zoom lens | |
US5841578A (en) | Integrated optical system for endoscopes and the like | |
JPH06308385A (en) | Wide-angle lens | |
JP5373514B2 (en) | Zoom lens and imaging device | |
US5691850A (en) | Eyepiece | |
WO2018235352A1 (en) | Objective optical system for endoscope | |
JP2011059495A (en) | Zoom lens and imaging device | |
JP2002221657A (en) | Single focus lens | |
JP4371304B2 (en) | Wide angle zoom lens | |
JPH0894928A (en) | Image transmission optical system | |
JP6653183B2 (en) | Imaging lens system and imaging device | |
JP6535947B2 (en) | Optical system for observation and imaging apparatus provided with the same | |
JP4817551B2 (en) | Zoom lens | |
JP7187375B2 (en) | REAR ATTACHMENT LENS AND IMAGING OPTICAL SYSTEM USING THE SAME | |
JP2518055B2 (en) | Catadioptric optical system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20020115 |