JPH0894672A - Moving magnet-type gauge device - Google Patents

Moving magnet-type gauge device

Info

Publication number
JPH0894672A
JPH0894672A JP6224585A JP22458594A JPH0894672A JP H0894672 A JPH0894672 A JP H0894672A JP 6224585 A JP6224585 A JP 6224585A JP 22458594 A JP22458594 A JP 22458594A JP H0894672 A JPH0894672 A JP H0894672A
Authority
JP
Japan
Prior art keywords
coil
constant voltage
sensor
moving magnet
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6224585A
Other languages
Japanese (ja)
Inventor
Shigeki Totsuka
茂樹 戸塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP6224585A priority Critical patent/JPH0894672A/en
Publication of JPH0894672A publication Critical patent/JPH0894672A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PURPOSE: To non-linearly indicate characteristics changing indication values when a power source is turned OFF, by fixing a fixed magnet and a first coil wound around a core, connecting a resistor in series to a sensor and the first coil, connecting a first constant voltage diode in parallel to the first coil and controlling a current flowing in the first coil. CONSTITUTION: An indicator is attached to a rotary shaft of a moving magnet 1. A set core 3 is separated an angle 6 from a fixed magnet 2. While a resistor 8 is connected in series to a circuit wherein a first constant voltage diode 6 is connected in parallel to a first coil 4, a sensor 9 is connected in series to the resistor 8. Moreover, a second coil 5 is connected to the sensor 9 via a circuit wherein a second constant voltage diode 7 is connected in series to the second coil 5. A constant voltage of the diode 6 is set to be lower than a constant voltage of the diode 7. A coil current-controlling means 10 indicates linearly when an output of the sensor is high and non-linearly when the output is smaller than a middle level. When a power source is turned OFF, the controlling means 10 moves the indicator outside an indication range.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は指針の指示特性が非線形
指示特性のムービング磁石式ゲージ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a moving magnet type gauge device having a pointer indicating characteristic of a non-linear indicating characteristic.

【0002】[0002]

【従来の技術】例えば車両の水温や燃量を表示させるゲ
ージ装置においては指針の指示を非線形指示させるもの
が一般に使用されている。すなわち、エンジンの温度が
低いと出力が低下し、燃費も悪く、また温度が高くなる
とノッキングが発生して出力が低下し、燃費も悪くな
る。
2. Description of the Related Art For example, in a gauge device for displaying a water temperature or a fuel amount of a vehicle, a device for indicating a pointer with a nonlinear instruction is generally used. That is, when the temperature of the engine is low, the output is reduced and the fuel consumption is poor, and when the temperature is high, knocking occurs, the output is reduced, and the fuel consumption is deteriorated.

【0003】したがって、エンジンを冷却する水の水温
を指示させる水温ゲージ装置においては、エンジンの動
作にとって悪い温度である低温および高温部分の指示は
正確に、また中温部分は単に適した温度であることのみ
を示す中温安定型のゲージ装置が使用されている。
Therefore, in the water temperature gauge device for indicating the water temperature of the water for cooling the engine, the indication of the low temperature portion and the high temperature portion, which is a temperature bad for the operation of the engine, is accurate, and the middle temperature portion is merely a suitable temperature. A medium temperature stable gauge device is used that shows only

【0004】このような従来のゲージ装置を図4を参照
して説明する。図4(a)において、11はムービング
磁石、12はムービング磁石11に一定磁界を与える固
定磁石、13はコア、14はコイルである。ムービング
磁石11の回転軸に、図示していないが、指示させる指
針が取付けられており、ムービング磁石11が回転する
ことによって指針も回転指示を行なう。
Such a conventional gauge device will be described with reference to FIG. In FIG. 4A, 11 is a moving magnet, 12 is a fixed magnet that gives a constant magnetic field to the moving magnet 11, 13 is a core, and 14 is a coil. Although not shown, a pointer for pointing is attached to the rotating shaft of the moving magnet 11, and the pointer also gives a rotation instruction when the moving magnet 11 rotates.

【0005】図4(b)はコイル14で磁界を発生させ
るための回路であり、15は定電圧ダイオード、16は
センサ、17〜19は抵抗である。センサ16の抵抗値
x が高いと、R2 の両端の電圧は定電圧ダイオード1
5のツェナ電と抵抗19の両端の電圧の和より高くなっ
て、コイル14に左より右方向に向かって電流が流れ
る。
FIG. 4B shows a circuit for generating a magnetic field in the coil 14, 15 is a constant voltage diode, 16 is a sensor, and 17 to 19 are resistors. When the resistance value R x of the sensor 16 is high, the voltage across R 2 is constant voltage diode 1
It becomes higher than the sum of the Zener voltage of 5 and the voltage across the resistor 19, and a current flows through the coil 14 from left to right.

【0006】Rx の抵抗値が次第に減少するとRx の両
端の電圧も低くなり、Rx の両端の電圧が定電圧ダイオ
ードのツェナ電圧+抵抗19の両端の電圧以下になると
コイル14には電流が流れなくなる。更にRx の抵抗値
が減少し、Rx の両端の電圧が抵抗19の両端の電圧よ
り低くなるとコイル14に右より左の方向に向かって電
流が流れる。
When the resistance value of R x gradually decreases, the voltage across R x also decreases, and when the voltage across R x becomes less than the zener voltage of the zener diode + the voltage across resistor 19, a current flows through coil 14. Will not flow. When the resistance value of R x further decreases and the voltage across R x becomes lower than the voltage across resistor 19, a current flows in the coil 14 from the right to the left.

【0007】すなわち、コイル14には、センサ16の
抵抗値Rx が高いと左より右に電流が流れ、これによっ
て図4(c)に示すように、固定磁石12の磁界φMg
対して直角の方向にφCHなる磁界が、またRx が次第に
低下して抵抗値が低くなるとコイル14に右より左に電
流が流れ、φCHと反対方向にφCCなる磁界が発生する。
That is, when the resistance value R x of the sensor 16 is high, a current flows through the coil 14 from the left to the right, which causes a magnetic field φ Mg of the fixed magnet 12 as shown in FIG. 4 (c). A magnetic field of φ CH in the direction of the right angle, and when R x gradually decreases and the resistance value decreases, a current flows from the right to the left in the coil 14, and a magnetic field of φ CC occurs in the direction opposite to φ CH .

【0008】コイル14よりφCHなる磁界が発生する
と、固定磁石12の一定磁界φMgと合成され、合成され
た磁界の方向(図4(c)の(H))にムービング磁石
11が回転する。また、コイル14よりφCCなる磁界が
発生すると図4(c)の(C)で示す方向にムービング
磁石11が回転して指針による指示が行なわれる。
When a magnetic field of φ CH is generated from the coil 14, it is combined with the constant magnetic field φ Mg of the fixed magnet 12, and the moving magnet 11 rotates in the direction of the combined magnetic field ((H) in FIG. 4C). . When a magnetic field of φ CC is generated by the coil 14, the moving magnet 11 rotates in the direction shown in (C) of FIG.

【0009】[0009]

【発明が解決しようとする課題】しかし、前述したよう
な従来のムービング磁石式ゲージ装置においては、電源
Vをオフにするとコイル14には電流が流れなくなって
磁界が発生しなくなる。このため、ムービング磁石11
は固定磁石12によって吸引され、指針の指示はセンサ
16の抵抗値が中位に対応した位置を指示する。
However, in the conventional moving magnet type gauge device as described above, when the power source V is turned off, the current does not flow in the coil 14 and the magnetic field is not generated. Therefore, the moving magnet 11
Is attracted by the fixed magnet 12, and the indication of the pointer indicates the position where the resistance value of the sensor 16 corresponds to the middle value.

【0010】そこで電源をオンした場合、センサ16の
抵抗値が中位であれば電源をオンオフさせても指針の指
示は変化せず、ゲージ装置が障害によって指針の指示が
変化しないのか、正常指示によって変化しないかを判断
することができず、不安を与えていた。
Therefore, when the power is turned on, if the resistance value of the sensor 16 is medium, the indication of the pointer does not change even if the power is turned on and off. If the gauge device fails, the indication of the pointer does not change. I couldn't judge whether it would change by, and gave me anxiety.

【0011】本発明は電源をオフさせたとき指示値が変
化するようにした非線形特性指示を行なわすムービング
磁石式ゲージ装置を提供することを目的とする。
It is an object of the present invention to provide a moving magnet type gauge device which gives a non-linear characteristic indication such that the indication value changes when the power is turned off.

【0012】[0012]

【課題を解決するための手段】前述の課題を解決するた
めに本発明が採用した手段を説明する。センサ9よりの
出力に対応してムービング磁石1を回転させて指針指示
を行なわせるムービング磁石式ゲージ装置において、前
記ムービング磁石1に対して一定磁界を発生する固定磁
石2と、前記固定磁石2と角度θ離れて設定されたコア
3に巻かれた第1のコイル4と、前記センサ9と前記第
1のコイル4に対して直列に接続された抵抗8と、第1
のコイル4に並列に接続された第1の定電圧ダイオード
6とで構成されるコイル電流制御手段10と、を備え
る。
Means adopted by the present invention for solving the above-mentioned problems will be described. In a moving magnet type gauge device that rotates a moving magnet 1 in response to an output from a sensor 9 to give a pointer, a fixed magnet 2 that generates a constant magnetic field with respect to the moving magnet 1, and a fixed magnet 2 A first coil 4 wound around a core 3 set at an angle θ; a resistor 8 connected in series to the sensor 9 and the first coil 4;
Coil current control means 10 including a first constant voltage diode 6 connected in parallel to the coil 4 of FIG.

【0013】また、前記コア3に第2のコイル5を設
け、前記コイル電流制御手段10に、前記センサ9と前
記第2のコイル5に対して直列に接続する第2の定電圧
ダイオード7を設けるようにする。また、前記第1の定
電圧ダイオード6の定電圧値を前記第2の定電圧ダイオ
ード7の定電圧値より低くする。
Further, the core 3 is provided with a second coil 5, and the coil current control means 10 is provided with a second constant voltage diode 7 connected in series to the sensor 9 and the second coil 5. To be provided. Further, the constant voltage value of the first constant voltage diode 6 is made lower than the constant voltage value of the second constant voltage diode 7.

【0014】[0014]

【作用】固定磁石2によってムービング磁石1に対して
一定磁界を発生させる。第1のコイル4は固定磁石2と
角度θ離れた位置に設置されたコア3に取付ける。
The fixed magnet 2 generates a constant magnetic field for the moving magnet 1. The first coil 4 is attached to the core 3 placed at a position separated from the fixed magnet 2 by an angle θ.

【0015】コイル電流制御手段10は、センサ9と第
1のコイル4に対して直列に抵抗8を接続し、また第1
のコイル4に並列に接続した第1の定電圧ダイオード6
を接続して第1のコイル4に流れる電流を制御する。ま
た、コア3に第2のコイル5を取付け、コイル電流制御
手段10は、センサ9と第2のコイル5に対して直列に
第2の定電圧ダイオード7を接続した回路を設ける。
The coil current control means 10 connects a resistor 8 in series with the sensor 9 and the first coil 4, and
First voltage regulator diode 6 connected in parallel to the coil 4 of
Is connected to control the current flowing through the first coil 4. Further, the second coil 5 is attached to the core 3, and the coil current control means 10 is provided with a circuit in which the sensor 9 and the second constant voltage diode 7 are connected in series to the second coil 5.

【0016】また、第1の定電圧ダイオード6の定電圧
値を第2の定電圧ダイオード7の定電圧値より低くす
る。以上のように、固定磁石に対して角度θ離れた位置
に設置されたコアに第1のコイルを固定し、センサと第
1のコイルに対して直列に抵抗を接続し、また第1のコ
イルに並列に第1の定電圧ダイオードを接続して第1の
コイルに流れる電流を制御するようにしたので、センサ
出力が高い場合は線型に、中位以下の場合は非線型に指
針指示を行ない、かつ電源オフ時には指示範囲外の指針
指示を行なわせることができる。
The constant voltage value of the first constant voltage diode 6 is set lower than the constant voltage value of the second constant voltage diode 7. As described above, the first coil is fixed to the core installed at the position separated by the angle θ with respect to the fixed magnet, and the resistor is connected in series to the sensor and the first coil. Since the first constant-voltage diode is connected in parallel to control the current flowing through the first coil, the pointer is directed linearly when the sensor output is high and nonlinear when the sensor output is below the middle level. In addition, when the power is off, the pointer indication outside the indication range can be given.

【0017】また、コアに第2にコイルを設け、センサ
に直列と第2のコイルに対して直列に第2の定電圧ダイ
オードを接続して第2のコイルの電流を制御するように
したので、センサ出力が低い場合も線形指針指示を行な
わせることができる。また、第1の定電圧ダイオードの
定電圧値を第2の定電圧ダイオードの定電圧値より低く
したので、この定電圧値の差に対応する範囲を非線形指
針指示を行なわせることができる。
Further, the second coil is provided in the core, and the second constant voltage diode is connected in series with the sensor and in series with the second coil to control the current of the second coil. Even when the sensor output is low, the linear pointer instruction can be given. Further, since the constant voltage value of the first constant voltage diode is set lower than the constant voltage value of the second constant voltage diode, the range corresponding to the difference between the constant voltage values can be instructed by the non-linear pointer.

【0018】[0018]

【実施例】本発明の一実施例を図1を参照して説明す
る。図1は本発明の実施例の構成図である。図1(A)
において、1はムービング磁石、2は固定磁石、3はコ
ア、4および5は、それぞれ第1のコイルおよび第2の
コイルである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIG. FIG. 1 is a block diagram of an embodiment of the present invention. Figure 1 (A)
In FIG. 1, 1 is a moving magnet, 2 is a fixed magnet, 3 is a core, and 4 and 5 are a first coil and a second coil, respectively.

【0019】ムービング磁石1の回転軸には、図示しな
い指針が取付けられている。また、コア3は固定磁石2
と角度θ離れて設置される。第1のコイル4および第2
のコイル5には、図1(B)に示すように、第1のコイ
ル5に対して並列に第1の定電圧ダイオード6を接続し
た回路に直列に抵抗8を接続下回路を介してセンサ9
に、また第2のコイル5には直列に第2の定電圧ダイオ
ード7を接続した回路を介してセンサ9に接続される。
A pointer (not shown) is attached to the rotating shaft of the moving magnet 1. Further, the core 3 is the fixed magnet 2
And the angle θ are set apart. First coil 4 and second
1B, a resistor 8 is connected in series to a circuit in which a first constant voltage diode 6 is connected in parallel to the first coil 5 as shown in FIG. 9
In addition, the second coil 5 is connected to the sensor 9 through a circuit in which the second constant voltage diode 7 is connected in series.

【0020】また、第1の定電圧ダイオード6の定電圧
値は第2の定電圧ダイオード7の定電圧値より低い値の
ものを設置する。いまセンサ9を温度センサとし、温度
が低い時はセンサの抵抗値Rx が高く、温度が高くなる
とRx が低くなる特性を有しているものとして以後の説
明を行なう。
Further, the constant voltage value of the first constant voltage diode 6 is set to be lower than the constant voltage value of the second constant voltage diode 7. The following description will be made assuming that the sensor 9 is a temperature sensor and has a characteristic that the resistance value R x of the sensor is high when the temperature is low and R x is low when the temperature is high.

【0021】Rx が高い場合はRx に流れる電流は少な
く、 IRx=IR =IL1=V/(RL1+R+Rx ) IL2=0 …(1) ただし、IRx,Rx はセンサ9に流れる電流、抵抗値、
R ,Rは抵抗8に流れる電流、抵抗値、IL1,RL1
第1のコイル4に流れる電流、抵抗値、IL2は第2のコ
イル5に流れる電流、なる電流が流れる。
When R x is high, the current flowing through R x is small, and I Rx = I R = I L1 = V / (R L1 + R + R x ) I L2 = 0 (1) where I Rx and R x are Current flowing through the sensor 9, resistance value,
I R and R are currents flowing through the resistor 8 and resistance values, I L1 and R L1 are currents flowing through the first coil 4, resistance values, and I L2 is current flowing through the second coil 5.

【0022】すなわち、第1のコイル4の両端の電圧は
第1の定電圧ダイオード6の定電圧値より低く、また第
1のコイル4と抵抗8の直列回路の両端の電圧は第2の
定電圧ダイオード7の定電圧値より低いため、両定電圧
ダイオードには電流が流れない。
That is, the voltage across the first coil 4 is lower than the constant voltage value of the first constant voltage diode 6, and the voltage across the series circuit of the first coil 4 and the resistor 8 is the second constant voltage. Since it is lower than the constant voltage value of the voltage diode 7, no current flows through both constant voltage diodes.

【0023】センサ9の抵抗値Rx が、温度が上昇して
x が低くなると、第1のコイル4の両端の電圧が上昇
し、第1の定電圧ダイオード6の定電圧値VZ1と等しく
なり、以後第1のコイル4には IL1=VZ1/RL1(=IM (一定値)) …(2) なる電流が流れる。
When the resistance value R x of the sensor 9 rises as the temperature rises and R x becomes lower, the voltage across the first coil 4 rises and becomes equal to the constant voltage value V Z1 of the first constant voltage diode 6. They become equal, and thereafter, a current I L1 = V Z1 / R L1 (= I M (constant value)) (2) flows through the first coil 4.

【0024】センサ9の抵抗Rx が更に小さくなり、第
1の定電圧ダイオード6の定電圧値VZ1と抵抗8の両端
電圧VR の和が第2の定電圧ダイオード7の定電圧値V
Z2に等しくなると、以後第2のコイル5には、 IZ2=(VZ1+VR −VZ2)/RZ1 …(3) なる電流が流れる。
The resistance R x of the sensor 9 becomes smaller, and the sum of the constant voltage value V Z1 of the first constant voltage diode 6 and the voltage V R across the resistor 8 becomes the constant voltage value V of the second constant voltage diode 7.
Becomes equal to Z2, subsequent to the second coil 5, I Z2 = (V Z1 + V R -V Z2) / R Z1 ... (3) becomes a current flows.

【0025】図2(A)は、電流Vをオンして、センサ
9の抵抗値が高くR2Cであった時は、式(1)で示すI
L1に対応するIC なる電流が第1のコイルに流れる。エ
ンジンを回転し、温度が上昇してセンサ抵抗Rx が減少
し、RxM1 に達すると式(2)で示すIL1に対応するI
M なる電流が第1のコイルに流れ、以後Rxが小さくな
っても一定電流が流れる。
In FIG. 2A, when the current V is turned on and the resistance value of the sensor 9 is high and R 2C , I shown by the equation (1) is given.
A current I C corresponding to L1 flows through the first coil. When the engine is rotated, the temperature rises, the sensor resistance R x decreases, and R x M1 is reached, I corresponding to I L1 shown in the equation (2) is obtained.
A current M flows in the first coil, and then a constant current flows even if R x becomes smaller.

【0026】更に温度が上昇してセンサ抵抗Rx がR
xM2 に達すると、式(3)で示すIL2が流れる。第1の
コイル4および第2のコイル5に電流が流れることによ
って、図2(B)に示すような磁界φC1およびφC2が発
生し、固定磁石2が発している磁界φMgと合成されて、
φC1およびφC2の磁界に対応してC,M,Hなる方向の
磁界が発生する。
When the temperature further rises and the sensor resistance R x becomes R
When it reaches xM2 , I L2 shown by the equation (3) flows. By the current flowing through the first coil 4 and the second coil 5, magnetic fields φ C1 and φ C2 as shown in FIG. 2 (B) are generated and combined with the magnetic field φ Mg emitted by the fixed magnet 2. hand,
Magnetic fields in the directions of C, M, and H are generated corresponding to the magnetic fields of φ C1 and φ C2 .

【0027】ムービング磁石1は合成された磁界によっ
て吸引されて、合成された磁界の方向と一致するように
回転する。したがって、センサ9の抵抗値Rx と指針の
振れは、図3(A)に示すように、電源がオフのときは
0を、抵抗値Rx がRxC〜RxM1 およびRxM2 〜RxH
範囲は線型に、RxM1 〜RxM2 の範囲は非線型に指針指
示が行なわれる。すなわち中温安定型の温度ゲージとな
る。
The moving magnet 1 is attracted by the combined magnetic field and rotates so as to match the direction of the combined magnetic field. Therefore, as shown in FIG. 3A, the resistance value R x of the sensor 9 and the deflection of the pointer are 0 when the power is off, and the resistance value R x is R xC to R xM1 and R xM2 to R xH. Is indicated linearly, and the range from R xM1 to R xM2 is indicated non-linearly. That is, it becomes a medium temperature stable type temperature gauge.

【0028】また、第1の定電圧ダイオード6および第
2の定電圧ダイオード7の定電圧値を変化することによ
って特性を変化させることができる。また、第2のコイ
ル5および第2の定電圧ダイオード7を除去すれば、図
3(B)に示すような低温線型の指示特性にすることが
できる。
The characteristics can be changed by changing the constant voltage values of the first constant voltage diode 6 and the second constant voltage diode 7. Further, by removing the second coil 5 and the second constant voltage diode 7, it is possible to obtain a low-temperature linear indicating characteristic as shown in FIG. 3 (B).

【0029】[0029]

【発明の効果】以上説明したように、本発明によれば次
の効果が得られる。固定磁石に対して角度θ離れた位置
に設置されたコアに第1のコイルを固定し、センサと第
1のコイルに対して直列に抵抗を接続し、また第1のコ
イルに並列に第1の定電圧ダイオードを接続して第1の
コイルに流れる電流を制御するようにしたので、センサ
出力が高い場合は線型に、中位以下の場合は非線型に指
針指示を行ない、かつ電源オフ時には指示範囲外の指針
指示を行なわせることができる。
As described above, according to the present invention, the following effects can be obtained. A first coil is fixed to a core installed at a position separated by an angle θ with respect to a fixed magnet, a resistor is connected in series to the sensor and the first coil, and a first coil is connected in parallel to the first coil. Since the constant voltage diode of is used to control the current flowing through the first coil, the pointer is linearly indicated when the sensor output is high and non-linear when the sensor output is below the middle level, and when the power is off. It is possible to have a pointer instruction outside the instruction range.

【0030】また、コアに第2にコイルを設け、センサ
と第2のコイルに対して直列に第2の定電圧ダイオード
を接続して第2のコイルの電流を制御するようにしたの
で、センサ出力が低い場合も線型指針指示を行なわせる
ことができる。また、第1の定電圧ダイオードの定電圧
値を第2の定電圧ダイオードの定電圧値より低くしたの
で、この定電圧値の差に対応する範囲を非線型指針指示
を行なわせることができる。
Further, since the second coil is provided in the core and the second constant voltage diode is connected in series with the sensor and the second coil to control the current of the second coil, Even when the output is low, the linear pointer can be instructed. Further, since the constant voltage value of the first constant voltage diode is set lower than the constant voltage value of the second constant voltage diode, it is possible to perform the non-linear pointer instruction in the range corresponding to the difference between the constant voltage values.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の構成図である。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】同実施例の動作説明図である。FIG. 2 is an operation explanatory diagram of the embodiment.

【図3】同実施例の動作説明図である。FIG. 3 is an operation explanatory diagram of the embodiment.

【図4】従来例の説明図である。FIG. 4 is an explanatory diagram of a conventional example.

【符号の説明】[Explanation of symbols]

1 ムービング磁石 2 固定磁石 3 コア 4,5 コイル 6,7 定電圧ダイオード 8 抵抗 9 センサ 10 コイル電流制御手段 1 Moving Magnet 2 Fixed Magnet 3 Core 4, 5 Coil 6, 7 Constant Voltage Diode 8 Resistor 9 Sensor 10 Coil Current Control Means

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 センサよりの出力に対応してムービング
磁石を回転させて指針指示を行なわせるムービング磁石
式ゲージ装置において、 前記ムービング磁石に対して一定磁界を発生する固定磁
石と、 前記固定磁石と角度θ離れて設定されたコアに巻かれた
第1のコイルと、 前記センサと前記第1のコイルに対して直列に接続され
た抵抗と、第1のコイルに並列に接続された第1の定電
圧ダイオードとで構成されるコイル電流制御手段と、を
備えたことを特徴とするムービング磁石式ゲージ装置。
1. A moving magnet type gauge device for rotating a moving magnet according to an output from a sensor to give a pointer instruction, wherein a fixed magnet for generating a constant magnetic field for the moving magnet, and the fixed magnet. A first coil wound around a core set at an angle θ, a resistor connected in series to the sensor and the first coil, and a first coil connected in parallel to the first coil. A moving magnet type gauge device, comprising: a coil current control means composed of a constant voltage diode.
【請求項2】 前記コアに第2のコイルを設け、前記コ
イル電流制御手段に、前記センサと前記第2のコイルに
対して直列に接続する第2の定電圧ダイオードを設ける
ようにしたことを特徴とする請求項1記載のムービング
磁石式ゲージ装置。
2. A second coil is provided in the core, and the coil current control means is provided with a second constant voltage diode connected in series to the sensor and the second coil. The moving magnet type gauge device according to claim 1, which is characterized in that.
【請求項3】 前記第1の定電圧ダイオードの定電圧値
を前記第2の定電圧ダイオードの定電圧値より低くした
ことを特徴とする請求項2記載のムービング磁石式ゲー
ジ装置。
3. The moving magnet type gauge device according to claim 2, wherein the constant voltage value of the first constant voltage diode is set lower than the constant voltage value of the second constant voltage diode.
JP6224585A 1994-09-20 1994-09-20 Moving magnet-type gauge device Withdrawn JPH0894672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6224585A JPH0894672A (en) 1994-09-20 1994-09-20 Moving magnet-type gauge device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6224585A JPH0894672A (en) 1994-09-20 1994-09-20 Moving magnet-type gauge device

Publications (1)

Publication Number Publication Date
JPH0894672A true JPH0894672A (en) 1996-04-12

Family

ID=16816044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6224585A Withdrawn JPH0894672A (en) 1994-09-20 1994-09-20 Moving magnet-type gauge device

Country Status (1)

Country Link
JP (1) JPH0894672A (en)

Similar Documents

Publication Publication Date Title
US4758784A (en) Air core gauge with zero pointer return related application
JPH0894672A (en) Moving magnet-type gauge device
US4406168A (en) System for measuring torque and/or speed of rotating shaft
Mellard Automotive electronic systems
US3327208A (en) Electrical device for indicating the rate of an occurrence of an event
US5550465A (en) Driving apparatus for cross-coil type analog indicating instrument
US3602811A (en) Electrical measuring device
JPH07167932A (en) Temperature compensation circuit for hall element
JPH0236136Y2 (en)
JPS596444Y2 (en) Vehicle engine tachometer
JPH0725710Y2 (en) Crossed coil instrument
JPS61198064A (en) Cross coil type indicating instrument
JPS6322535Y2 (en)
JPH0225177Y2 (en)
JPH0140056Y2 (en)
JPS5532427A (en) Circuit for driving motor
US5382897A (en) Cross-coil type measuring instrument with correction means for varying a supply voltage
JP3304351B2 (en) Voltage indicating device
JPH0225176Y2 (en)
JPH08129028A (en) Cross coil type wide angle meter
JP2600361Y2 (en) Cross coil meter drive
US6362616B1 (en) Flat response temperature gauge with a single diode
JPS644130B2 (en)
JPS5817258Y2 (en) Crossed coil type indicator
JPH0225175Y2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011120