JPH0894584A - Method for assaying picture element resolution in magnetic particle inspection and device for use in executing same - Google Patents
Method for assaying picture element resolution in magnetic particle inspection and device for use in executing sameInfo
- Publication number
- JPH0894584A JPH0894584A JP23352294A JP23352294A JPH0894584A JP H0894584 A JPH0894584 A JP H0894584A JP 23352294 A JP23352294 A JP 23352294A JP 23352294 A JP23352294 A JP 23352294A JP H0894584 A JPH0894584 A JP H0894584A
- Authority
- JP
- Japan
- Prior art keywords
- fluorescent
- pixel resolution
- image
- jig
- pixels
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、磁粉探傷検査における
画像処理の画素分解能を検定する方法及び装置に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for testing the pixel resolution of image processing in magnetic particle flaw detection.
【0002】[0002]
【従来の技術】従来、蛍光磁粉探傷検査における疵の検
出は目視検査により行われていたが、近年の画像処理装
置の普及により疵検出が自動化され、高検出能及び高速
度化が達成されつつある。自動磁粉探傷では、磁化され
た被検査材を搬送しつつ蛍光磁粉液を散布し、疵部分に
付着された蛍光体に紫外線を照射して発光せしめ、CC
Dカメラによりこれを撮像して画像処理することによ
り、被検査材の疵部を検出する。2. Description of the Related Art Conventionally, flaw detection in fluorescent magnetic particle flaw detection inspection has been performed by visual inspection. However, with the recent spread of image processing apparatuses, flaw detection is automated and high detectability and high speed are achieved. is there. In the automatic magnetic particle inspection, the magnetized material to be inspected is transported and the fluorescent magnetic particle liquid is sprinkled, and the phosphor attached to the flaw is irradiated with ultraviolet rays to emit light.
By picking up the image with the D camera and performing image processing, the flaw portion of the material to be inspected is detected.
【0003】この画像処理にあっては、カメラが取り込
んだ映像信号をフレームメモリに入力し、生成した画像
を保存する。フレームメモリは、カメラの映像信号を走
査周期範囲内の時間でデジタル化する装置であり、各画
素の輝度をアナログ/デジタル変換してメモリに記憶す
る。例えば、フレームメモリが、カメラの水平方向(被
検査材の軸長垂直方向)を512 、垂直方向(被検査材の
軸長方向)を256 に分解されたもので、カメラと被検査
材の表面との距離が500mm である場合は、1画素は鋼片
表面の幅方向が0.55mm、軸長方向が0.825mm に分解した
要素に対応させることになり、画素分解能が決定され
る。In this image processing, a video signal captured by a camera is input to a frame memory and the generated image is stored. The frame memory is a device that digitizes a video signal of the camera within a time within a scanning cycle range, and performs analog / digital conversion of the brightness of each pixel and stores the converted brightness in the memory. For example, the frame memory is decomposed into 512 in the horizontal direction of the camera (vertical direction of the axial length of the inspected material) and 256 in the vertical direction (axial direction of the inspected material). If the distance between and is 500 mm, one pixel corresponds to an element decomposed into 0.55 mm in the width direction of the steel slab surface and 0.825 mm in the axial length direction, and the pixel resolution is determined.
【0004】[0004]
【発明が解決しようとする課題】自動磁粉探傷検査の過
程でカメラ視野が完全に固定されている場合は、上述し
た画素分解能を用いて疵部を自動検出することができ
る。しかしながら、カメラの移動、交換又は視野調整を
行った際には被検査材に対するカメラ位置が変わり、画
素分解能が変化する。このような場合にはカメラ位置が
変化する都度、画素分解能を算出する必要があり、この
作業は煩雑になり易く、画素分解能の測定に時間がかか
るという問題があった。When the field of view of the camera is completely fixed in the process of the automatic magnetic particle flaw detection inspection, the flaw portion can be automatically detected by using the pixel resolution described above. However, when the camera is moved, replaced, or the field of view is adjusted, the position of the camera with respect to the material to be inspected changes and the pixel resolution changes. In such a case, it is necessary to calculate the pixel resolution each time the camera position changes, and this work is likely to be complicated, and there is a problem that it takes time to measure the pixel resolution.
【0005】本発明は、かかる事情に鑑みてなされたも
のであり、撮像体制が変化したときに画素分解能を自動
的に簡易に測定し、迅速に画素検定を行うことができる
画素分解能検定方法及び装置を提供することを目的とす
る。The present invention has been made in view of the above circumstances, and a pixel resolution test method and a pixel resolution test method capable of quickly and easily measuring the pixel resolution when the imaging system changes and performing a pixel test quickly. The purpose is to provide a device.
【0006】[0006]
【課題を解決するための手段】第1発明に係る画素分解
能検定方法は、被検査材の表面に付着せしめた蛍光磁粉
からの蛍光を撮像手段により撮像し、得られた信号を画
像処理して前記被検査材の磁粉探傷を行う際に、前記撮
像手段の画素分解能を検定する方法であって、既知寸法
の蛍光体を所定の位置に貼付した蛍光治具の前記蛍光体
からの蛍光を前記撮像手段により撮像する過程と、該撮
像手段からの信号を画像処理して所定範囲内の画素数を
測定する過程と、測定された画素数により画素分解能を
求める過程とを有することを特徴とする。According to a first aspect of the present invention, there is provided a pixel resolution test method, wherein fluorescence from fluorescent magnetic powder adhered to the surface of a material to be inspected is picked up by an image pickup means, and the obtained signal is subjected to image processing. A method for testing the pixel resolution of the image pickup means when performing magnetic particle flaw detection on the material to be inspected, wherein fluorescence from the phosphor of a fluorescent jig in which a phosphor having a known size is attached to a predetermined position is used. It is characterized by including a process of capturing an image by the image capturing unit, a process of image-processing a signal from the image capturing unit to measure the number of pixels within a predetermined range, and a process of obtaining a pixel resolution based on the measured number of pixels. .
【0007】第2発明に係る画素校正装置は、第1発明
の実施に使用する装置であって、前記撮像手段からの信
号を画像処理して所定範囲内の画素数を測定する手段
と、測定された画素数により画素分解能を求める手段と
を備えることを特徴とする。A pixel calibrating apparatus according to a second aspect of the present invention is an apparatus used for implementing the first aspect of the present invention, which is a means for performing image processing on a signal from the image pickup means to measure the number of pixels within a predetermined range, and measuring means. And a means for obtaining a pixel resolution based on the number of pixels thus obtained.
【0008】[0008]
【作用】本発明の画素分解能検定方法及びその実施に使
用する装置では、被検査材を撮像する撮像手段が既知寸
法の蛍光体を貼付した蛍光治具を撮像し、画面視野内の
所定範囲の画素数を測定してリアルタイムの画素分解能
を得る。これにより、例えば複数の検査材を探傷検査す
る際に探傷期間中に前記蛍光治具を撮像して自動的に画
素分解能を検定する。In the pixel resolution test method of the present invention and the apparatus used for carrying out the method, the image pickup means for picking up an image of a material to be inspected picks up an image of a fluorescent jig to which a phosphor having a known size is attached, and a predetermined range within the visual field of the screen is displayed. Real time pixel resolution is obtained by measuring the number of pixels. Thereby, for example, when a plurality of inspection materials are inspected, the fluorescent jig is imaged during the flaw detection period to automatically verify the pixel resolution.
【0009】[0009]
【実施例】以下、本発明をその実施例を示す図面に基づ
き具体的に説明する。図1は、本発明の画素分解能検定
装置の構成を示すブロック図であり、図2は本発明方法
の実施に用いる蛍光治具の構造を示す斜視図である。図
2において、1は蛍光治具であり、直方体形状の角材の
一面に4本の蛍光テープa,b,c,dが貼付けられて
いる。蛍光テープa,cは長さ80mm、幅10mmの寸法を有
し、これらは中心間距離をYS だけ離隔して貼付けら
れ、蛍光テープb,dは長さ80mm、幅10mmの寸法を有
し、これらは中心間距離をXS だけ離隔して貼付けられ
ている。蛍光テープa,b,c,dは10/100mm以下の寸
法精度を有するものであり、貼付け間隔(XS ,YS )
は後述する画像処理部が有する固定画素数に基づいて決
定される。なお、この蛍光治具は被検査材が角材の場合
のものであるが、被検査材が角材でない場合はその形状
と同形状の蛍光治具を準備する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the drawings showing the embodiments. FIG. 1 is a block diagram showing the configuration of a pixel resolution assay device of the present invention, and FIG. 2 is a perspective view showing the structure of a fluorescent jig used for carrying out the method of the present invention. In FIG. 2, 1 is a fluorescent jig, and four fluorescent tapes a, b, c, d are attached to one surface of a rectangular parallelepiped square member. The fluorescent tapes a and c have a length of 80 mm and a width of 10 mm, they are attached with a center-to-center distance of Y S , and the fluorescent tapes b and d have a length of 80 mm and a width of 10 mm. , They are attached with a center-to-center distance of X S. The fluorescent tapes a, b, c, and d have a dimensional accuracy of 10/100 mm or less, and are attached at intervals (X S , Y S ).
Is determined based on the number of fixed pixels included in the image processing unit described later. This fluorescent jig is for the case where the material to be inspected is a square material, but if the material to be inspected is not a square material, a fluorescent jig having the same shape as that of the material is prepared.
【0010】図1において、2は被検査材及び蛍光治具
1を搬送するローラであり、ローラ2上を搬送される蛍
光治具1の斜め上方に紫外線灯3が配設されている。紫
外線灯3の近傍にはCCDカメラ4が配されており、蛍
光治具1の蛍光テープa,b,c,dを撮像してその輝
度信号をフリーザ5へ入力する。入力された輝度信号は
フリーザ5により静止画像に生成され、画像処理部6へ
入力される。画像処理部6の2値化手段61では、フリ
ーザ5から入力された信号が所定のしきい値に基づいて
2値化画像に変換される。変換された信号がX方向プロ
ジェクション手段62及びY方向プロジェクション手段
63へ与えられ、夫々の手段で得られた数値が画素数測
定手段64に与えられる。画素数測定手段64で測定さ
れた画素数が画素分解能算出手段65へ入力されて画素
分解能が算出される。In FIG. 1, reference numeral 2 denotes a roller that conveys the material to be inspected and the fluorescent jig 1, and an ultraviolet lamp 3 is arranged diagonally above the fluorescent jig 1 that is conveyed on the roller 2. A CCD camera 4 is arranged in the vicinity of the ultraviolet lamp 3, and images the fluorescent tapes a, b, c, d of the fluorescent jig 1 and inputs the brightness signal to the freezer 5. The input luminance signal is generated as a still image by the freezer 5 and is input to the image processing unit 6. The binarizing unit 61 of the image processing unit 6 converts the signal input from the freezer 5 into a binarized image based on a predetermined threshold value. The converted signal is given to the X-direction projection means 62 and the Y-direction projection means 63, and the numerical values obtained by the respective means are given to the pixel number measuring means 64. The number of pixels measured by the pixel number measuring means 64 is input to the pixel resolution calculating means 65 to calculate the pixel resolution.
【0011】2値化手段61、X方向プロジェクション
手段62、Y方向プロジェクション手段63、画素数測
定手段64及び画素分解能算出手段65は画像処理部6
が備えている。画像処理部6はこの他に、撮像された輝
度信号を疵の程度を表す信号に変換する手段(図示せ
ず)を備えており、通常の磁粉探傷検査を行える構成に
なっている。The binarizing means 61, the X-direction projection means 62, the Y-direction projection means 63, the pixel number measuring means 64 and the pixel resolution calculating means 65 are the image processing section 6.
Is equipped with. In addition to this, the image processing unit 6 includes means (not shown) for converting the captured luminance signal into a signal indicating the degree of flaw, and is configured to perform a normal magnetic particle flaw detection inspection.
【0012】以上の如き構成の装置を用いて画素分解能
検定を行う場合は、複数の角材を搬送する合間に上述し
た蛍光治具1を搬送する。そして、CCDカメラ4によ
り蛍光テープa,b,c,dを貼付した面を撮像し、C
CDカメラ4からの輝度信号によりフリーザ5が静止画
像を生成して画像処理部6に与えられる。図3は、画像
処理部が画素分解能を求める実施手順を示すフローチャ
ートであり、このフローチャートに基づいて、画素分解
能を求める手順を説明する。When the pixel resolution test is performed using the apparatus having the above-described structure, the fluorescent jig 1 described above is transported between the transportation of a plurality of square members. Then, the CCD camera 4 takes an image of the surface to which the fluorescent tapes a, b, c, d are attached, and C
The freezer 5 generates a still image based on the luminance signal from the CD camera 4 and supplies the still image to the image processing unit 6. FIG. 3 is a flowchart showing an implementation procedure for obtaining the pixel resolution by the image processing unit, and the procedure for obtaining the pixel resolution will be described based on this flowchart.
【0013】2値化手段61に与えられた静止画像は、
所定のしきい値に基づいて2値化画像に変換される(ス
テップS11)。図4は、2値化された画像を座標上に
示した平面図であり、図面上で左右方向がX方向、上下
方向がY方向である。なお、本実施例では、XSIZEがX
方向に512 画素、YSIZE がY方向に240 画素の固定画
素数のものを使用している。蛍光テープa,b,c,d
の画像上での位置を表すパラメータをxstart ,
xend ,ystart ,yend とすると、蛍光テープaは
(x1 ,ystart )から(x2 ,ystart )に、bは
(xend ,y1 )から(x end ,y2 )に、cは
(x1 ,yend )から(x2 ,yend )に、dは(x
star t ,y1 )から(xstart ,y2 )に位置する。The still image given to the binarizing means 61 is
It is converted into a binary image based on a predetermined threshold (
Step S11). Figure 4 shows the binarized image on the coordinates
It is the top view shown, and the horizontal direction is the X direction and the vertical direction in the drawing.
The direction is the Y direction. In this embodiment, XSIZEIs X
512 pixels in the direction, YSIZE Is a fixed image of 240 pixels in the Y direction
I am using a prime number. Fluorescent tape a, b, c, d
X is the parameter that represents the position on the imagestart,
xend, Ystart, YendThen, the fluorescent tape a
(X1, Ystart) To (x2, Ystart), B is
(Xend, Y1) To (x end, Y2), C is
(X1, Yend) To (x2, Yend), D is (x
star t, Y1) To (xstart, Y2) Located.
【0014】そして、蛍光テープa,b,c,dで囲ま
れた範囲の画素数を測定するために、まず、X方向プロ
ジェクション手段62にてX方向にプロジェクションし
て輝度を測定する(ステップS12)。図5はX方向プ
ロジェクションの結果を示すグラフであり、横軸はX座
標を示し、縦軸は prof-x即ち頻度を示している。この
プロジェクションの結果から、xstart ,xend の値を
求める(ステップS13)。次に、Y方向プロジェクシ
ョン手段63にてY方向にプロジェクションして輝度を
測定する(ステップS14)。X方向プロジェクション
の結果と同様にY座標に対する prof-y即ち頻度から、
ystart ,yend の値を求める(ステップS15)。x
start ,xend ,ystart ,yend の値は、以下の式で
求められる。Then, in order to measure the number of pixels in a range surrounded by the fluorescent tapes a, b, c, d, first, the X-direction projection means 62 projects to measure the luminance in the X-direction (step S12). ). FIG. 5 is a graph showing the results of X-direction projection, in which the horizontal axis represents the X coordinate and the vertical axis represents prof-x, that is, frequency. The values of x start and x end are obtained from the result of this projection (step S13). Next, the Y-direction projection means 63 projects in the Y-direction to measure the brightness (step S14). From the prof-y, that is, the frequency for the Y coordinate as well as the result of the X direction projection,
The values of y start and y end are obtained (step S15). x
The values of start , x end , y start , and y end are calculated by the following formulas.
【0015】[0015]
【数1】 [Equation 1]
【0016】画素数測定手段64ではxstart ,
xend ,ystart ,yend の値が入力され、蛍光テープ
a,b,c,dで囲まれた範囲の画素数はX方向がH=
xend −x start であり、Y方向がW=yend −y
start であり、総画素数はH×Wで求められる(ステッ
プS16)。これらの画素数が画素分解能算出手段65
へ入力され、画素分解能が算出される。X方向の画素分
解能はαXS /H、Y方向の画素分解能はαYS /Wで
求められる。なお、αXS ,αYS は画像処理部6の固
定値である。In the pixel number measuring means 64, xstart,
xend, Ystart, YendEnter the value of the fluorescent tape
The number of pixels in the range surrounded by a, b, c and d is H = in the X direction.
xend-X startAnd Y = W = yend-Y
startAnd the total number of pixels is calculated by H × W (step
S16). The number of these pixels is the pixel resolution calculation means 65.
And the pixel resolution is calculated. Pixels in X direction
Resolution is αXS/ H, Y pixel resolution is αYS/ W
Desired. Note that αXS, ΑYSIs the image processing unit 6
It is a fixed value.
【0017】なお、所定範囲の画素数を求めるために、
x1 ,x2 ,y1 ,y2 の値だけを使用せずに
xstart ,xend ,ystart ,yend の値を求めるの
は、x1 ,x2,y1 ,y2 は蛍光テープa,b,c,
dの汚れ、欠け等により容易に値の誤差を生じるためで
ある。また、蛍光テープa,b,c,dで囲まれた範囲
の面積を求めることができれば、上述の計算式の限りで
はない。In order to obtain the number of pixels in a predetermined range,
x 1, x 2, y 1 , x without using only the value of y 2 start, x end, y start, determine the value of y end The is, x 1, x 2, y 1, y 2 fluorescence Tape a, b, c,
This is because a value error can easily occur due to stains, chips, etc. on d. Further, if the area of the range surrounded by the fluorescent tapes a, b, c, d can be obtained, the above formula is not limited.
【0018】以上の如き画素分解能検定を行った結果を
表1に示す。蛍光治具1は軸長方向長さが 13595mm, X
S =200mm,YS =120mm のものを用いた。表に示すよう
に画素分解能が求められ、この画素分解能を用いて被検
査材の探傷精度を向上させることができる。Table 1 shows the results of the above-described pixel resolution test. The length of the fluorescent jig 1 in the axial direction is 13595 mm, X
S = 200 mm, was used for Y S = 120 mm. Pixel resolution is required as shown in the table, and it is possible to improve the flaw detection accuracy of the material to be inspected by using this pixel resolution.
【0019】[0019]
【表1】 [Table 1]
【0020】なお、上述の実施例では蛍光治具の一面を
撮像するCCDカメラ4の1台を備えた場合を説明して
いるが、実際の磁粉探傷装置では被検査材を様々な方向
から撮像するために複数の撮像装置が配置されており、
被検査材の各面を撮像する撮像装置により蛍光治具の各
面を撮像し、夫々の面において画素分解能の検定を行っ
ても良い。In the above embodiment, the case where one CCD camera 4 for picking up one surface of the fluorescent jig is provided is explained. However, in an actual magnetic particle flaw detector, the material to be inspected is picked up from various directions. In order to do so, multiple imaging devices are arranged,
You may image each surface of a fluorescent jig with the imaging device which images each surface of a to-be-inspected material, and may test pixel resolution in each surface.
【0021】また、上述の実施例では被検査材が搬送さ
れつつ探傷される自動探傷検査装置について説明してい
るが、これに限るものではなく、画像処理を行う磁粉探
傷検査であれば適用できる。Further, in the above-mentioned embodiment, the automatic flaw detection inspection apparatus for flaw detection while the material to be inspected is conveyed is explained, but the present invention is not limited to this, and any magnetic particle flaw detection inspection for image processing can be applied. .
【0022】[0022]
【発明の効果】以上のように、本発明においては、被検
査材の探傷検査の際に既知寸法の蛍光体を撮像すること
によりリアルタイムで画素分解能を求め、簡易に画素検
定を行うことができるので、高精度に磁粉探傷検査を行
うことができる等、本発明は優れた効果を奏するもので
ある。As described above, according to the present invention, the pixel resolution can be obtained in real time by capturing an image of a phosphor having a known size during flaw inspection of the material to be inspected, and the pixel inspection can be easily performed. Therefore, the present invention has excellent effects such as highly accurate magnetic particle inspection.
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明の画素分解能検定装置の構成を示すブロ
ック図である。FIG. 1 is a block diagram showing a configuration of a pixel resolution test apparatus of the present invention.
【図2】本発明方法の実施に用いる蛍光治具の構造を示
す斜視図である。FIG. 2 is a perspective view showing a structure of a fluorescent jig used for carrying out the method of the present invention.
【図3】画像処理部が画素分解能を求める実施手順を示
すフローチャートである。FIG. 3 is a flowchart showing an implementation procedure in which an image processing unit obtains pixel resolution.
【図4】本発明に係る2値化画像を座標上に示した平面
図である。FIG. 4 is a plan view showing the binarized image according to the present invention on coordinates.
【図5】本発明に係るX方向プロジェクションの結果を
示すグラフである。FIG. 5 is a graph showing a result of X-direction projection according to the present invention.
1 蛍光治具 2 ローラ 3 紫外線灯 4 CCDカメラ 6 画像処理部 64 画素数測定手段 65 画素分解能算出手段 a,b,c,d 蛍光テープ 1 Fluorescent jig 2 Roller 3 Ultraviolet lamp 4 CCD camera 6 Image processing unit 64 Pixel number measuring means 65 Pixel resolution calculating means a, b, c, d Fluorescent tape
───────────────────────────────────────────────────── フロントページの続き (72)発明者 松本 修二 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shuji Matsumoto 4-53-3 Kitahama, Chuo-ku, Osaka City, Osaka Prefecture Sumitomo Metal Industries, Ltd.
Claims (2)
からの蛍光を撮像手段により撮像し、得られた信号を画
像処理して前記被検査材の磁粉探傷を行う際に、前記撮
像手段の画素分解能を検定する方法であって、 既知寸法の蛍光体を所定の位置に貼付した蛍光治具の前
記蛍光体からの蛍光を前記撮像手段により撮像する過程
と、該撮像手段からの信号を画像処理して所定範囲内の
画素数を測定する過程と、測定された画素数により画素
分解能を求める過程とを有することを特徴とする磁粉探
傷における画素分解能検定方法。1. When the fluorescence from the fluorescent magnetic powder adhered to the surface of the material to be inspected is picked up by an image pickup means and the obtained signal is image-processed to detect flaws in the magnetic powder of the material to be inspected, the image pickup means. A method of assaying the pixel resolution of, wherein a process of capturing fluorescence from the phosphor of the phosphor of a fluorescent jig having a known size of a phosphor attached at a predetermined position by the image capturing means, and a signal from the image capturing means. A pixel resolution test method in magnetic particle flaw detection, comprising a step of performing image processing to measure the number of pixels within a predetermined range, and a step of obtaining a pixel resolution from the measured number of pixels.
用する装置であって、前記撮像手段からの信号を画像処
理して所定範囲内の画素数を測定する手段と、測定され
た画素数により画素分解能を求める手段とを備えること
を特徴とする磁粉探傷における画素分解能検定装置。2. An apparatus used in the pixel resolution test method according to claim 1, wherein the signal from the image pickup means is subjected to image processing to measure the number of pixels within a predetermined range, and the measured number of pixels. And a means for determining the pixel resolution by means of the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23352294A JPH0894584A (en) | 1994-09-28 | 1994-09-28 | Method for assaying picture element resolution in magnetic particle inspection and device for use in executing same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23352294A JPH0894584A (en) | 1994-09-28 | 1994-09-28 | Method for assaying picture element resolution in magnetic particle inspection and device for use in executing same |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0894584A true JPH0894584A (en) | 1996-04-12 |
Family
ID=16956361
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23352294A Pending JPH0894584A (en) | 1994-09-28 | 1994-09-28 | Method for assaying picture element resolution in magnetic particle inspection and device for use in executing same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0894584A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105823762A (en) * | 2015-01-07 | 2016-08-03 | 宝山钢铁股份有限公司 | Method for measuring unevenness of fluorescence intensity used for automatic magnetic powder inspection and apparatus thereof |
CN105823763A (en) * | 2015-01-07 | 2016-08-03 | 宝山钢铁股份有限公司 | Method for measuring fluorescence intensity used for automatic magnetic powder inspection and apparatus thereof |
-
1994
- 1994-09-28 JP JP23352294A patent/JPH0894584A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105823762A (en) * | 2015-01-07 | 2016-08-03 | 宝山钢铁股份有限公司 | Method for measuring unevenness of fluorescence intensity used for automatic magnetic powder inspection and apparatus thereof |
CN105823763A (en) * | 2015-01-07 | 2016-08-03 | 宝山钢铁股份有限公司 | Method for measuring fluorescence intensity used for automatic magnetic powder inspection and apparatus thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3826849B2 (en) | Defect inspection method and defect inspection apparatus | |
KR100855100B1 (en) | Appearance inspection apparatus and appearance inspection method | |
KR101146081B1 (en) | Detection of macro-defects using micro-inspection inputs | |
JP2006276454A (en) | Image correcting method and pattern defect inspecting method using same | |
JP2010276538A (en) | Detection method of crack defect | |
JP3324699B2 (en) | Method and apparatus for measuring fiber diameter distribution | |
JPH11223610A (en) | Surface defect inspection device and fluorescent magnetic particle flaw inspecting method | |
CN110412056A (en) | A kind of vehicle-mounted glass molds group automatic optical detection method and device | |
JPH0894584A (en) | Method for assaying picture element resolution in magnetic particle inspection and device for use in executing same | |
TWI477768B (en) | Method and apparatus for automatic optical inspection of flat panel substrate | |
JP3219565B2 (en) | Defect depth position detection apparatus and method | |
JP4257720B2 (en) | Method and apparatus for measuring outer shape of honeycomb structure | |
JP2004086712A (en) | Image processor | |
JP2002175520A (en) | Device and method for detecting defect of substrate surface, and recording medium with recorded program for defect detection | |
JP2007081513A (en) | Blot defect detecting method for solid-state imaging element | |
JPH11166813A (en) | Dimension measuring circuit using image processing | |
JP4021084B2 (en) | Electron microscope and inspection method | |
JP4395581B2 (en) | Wire detection program and wire inspection apparatus | |
JP3496288B2 (en) | Testing method for magnetic particle flaw detection function, verification device for magnetic particle flaw detection function, magnetic particle flaw detection device, and fluorescent jig | |
JP2965370B2 (en) | Defect detection device | |
KR102234984B1 (en) | Apparatus for detecting particle of a semiconductor wafer | |
JP3218909B2 (en) | Inspection method and apparatus | |
JPH0731131B2 (en) | Method for spotting periodic pattern | |
JP2008014907A (en) | Surface evaluation device and painting sample | |
JP2004289571A (en) | Pixel defect masking method for imaging device |