JPH0894526A - Method for measuring soot concentration - Google Patents

Method for measuring soot concentration

Info

Publication number
JPH0894526A
JPH0894526A JP25455394A JP25455394A JPH0894526A JP H0894526 A JPH0894526 A JP H0894526A JP 25455394 A JP25455394 A JP 25455394A JP 25455394 A JP25455394 A JP 25455394A JP H0894526 A JPH0894526 A JP H0894526A
Authority
JP
Japan
Prior art keywords
soot
light
signal
concentration
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25455394A
Other languages
Japanese (ja)
Inventor
Kazuhisa Inagaki
和久 稲垣
Kiyomi Nakakita
清己 中北
Shinpei Miura
晋平 三浦
Satoru Watabe
哲 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP25455394A priority Critical patent/JPH0894526A/en
Publication of JPH0894526A publication Critical patent/JPH0894526A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE: To provide a method for measuring the concentration of soot by a technique employing laser induced incandescence. CONSTITUTION: A beam-emitting part provided at one end of a measuring chamber illuminates a soot formation field with a pulse laser sheet beam 10 to raise the temperature of soot to near its evaporation point, a high-speed shutter camera 14 provided at the other end of the measuring chamber in such a way as to cross the direction of application of the pulse laser sheet beam 10 receives incandescence which the soot particles radiate, and the intensity of the pulse laser sheet beam 10 is in the range from 150 to 400MW/cm<2> , so that through the detection of the radiation the concentration of the soot is measured with high accuracy and efficiency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、すす生成場におけるす
すの濃度を効率良く高精度に測定するすす濃度測定方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a soot concentration measuring method for efficiently and highly accurately measuring the concentration of soot in a soot generation field.

【0002】[0002]

【従来の技術】近年の環境問題の高まりと共に、例えば
ディーゼルエンジンに対しては窒素酸化物(NOx)や
粒子状物質(PM)の低減が強く求められている。この
粒子状物質の主成分であるすすの生成抑制が急務となっ
ている。このすす低減技術の開発のためには、ディーゼ
ルエンジンにおける筒内中のすすの生成・酸化過程に関
する現象情報が極めて有用である。しかし、非定常で、
かつ複雑に分布した筒内のすす分布を計測することは非
常に難しい。
2. Description of the Related Art As environmental problems have increased in recent years, reduction of nitrogen oxides (NOx) and particulate matter (PM) has been strongly demanded for diesel engines, for example. There is an urgent need to suppress the formation of soot, which is the main component of this particulate matter. In order to develop this soot reduction technology, information on phenomena relating to the generation and oxidation process of soot in the cylinder of a diesel engine is extremely useful. But in the non-stationary
In addition, it is very difficult to measure the soot distribution in a cylinder that has a complicated distribution.

【0003】かかる状況の下で、従来、散乱法や透過光
減衰法などのレーザ計測は、測定場を乱すことなく瞬時
に、高分解能、広領域のすす分布測定が可能である
〔(「レーザシート散乱法による非定常自由噴霧火炎
内のすす生成に関する研究」日本機会学会論文集(B
編),57巻543号,No.91−0639A(19
91)。「2次元すす散乱光画像の解析による非定常
噴霧火炎の構造とすす生成に関する研究」,日本機会学
会論文集(B編),57巻536号,No.90−07
07A(1990)。「レーザシート法による直接噴
射式デイーゼル機関内燃焼の観察」,第9回内燃機関合
同シンポジウム講演論文集,229.(1991)。
SAEペーパ831291(1983年)。〕
Under such a circumstance, laser measurement such as the scattering method or the transmitted light attenuation method has hitherto been capable of instantaneously measuring high-resolution and wide-area soot distribution without disturbing the measurement field [("laser Study on Soot Formation in Unsteady Free Spray Flame by Sheet Scattering Method "
Ed.), 57, 543, No. 91-0639A (19
91). “Study on the structure of unsteady spray flame and soot formation by analysis of two-dimensional soot scattered light image”, Proc. 90-07
07A (1990). "Observation of Combustion in Direct Injection Diesel Engine by Laser Sheet Method", Proc. Of the 9th Joint Symposium of Internal Combustion Engine, 229. (1991).
SAE paper 831291 (1983). ]

【0004】しかし、従来の散乱法は散乱光(レーザシ
ート)が粒子径の6乗に比例するため、大粒子径のすす
のみ検出できるが小粒子径のすすを測定することができ
ず、また同時に含まれる燃料の液滴や壁面からの反射な
どから余分な信号が生じてS/Nが悪いといった実用上
解決すべき課題がある。また、従来の透過光減衰法は光
路方向の積分情報のみであるためすすの濃度分布を測定
することができないといった実用上解決すべき課題があ
る。
However, in the conventional scattering method, since scattered light (laser sheet) is proportional to the sixth power of the particle diameter, only soot with a large particle diameter can be detected, but soot with a small particle diameter cannot be measured, and At the same time, there is a problem to be solved practically that an extra signal is generated from the droplets of the fuel contained at the same time, reflection from the wall surface, etc., and the S / N is bad. In addition, the conventional transmitted light attenuation method has a problem to be solved in practical use that the soot concentration distribution cannot be measured because only the integrated information in the optical path direction is used.

【0005】一方、最近では強力なレーザ光をすす粒子
に照射することによって得られる輻射熱を検出し、すす
分布を測定するレーザ誘起白熱手法(以下LII法と称
する)が知られている。これは他のレーザ計測手法と比
較して多くの利点を有することから注目されている〔
SAEペーパ831291(1983年)。SAEペ
ーパ920114(1992年)。SAEペーパ92
0115(1992年)。SAEペーパ932650
(1993年)。〕
On the other hand, recently, a laser-induced incandescent method (hereinafter referred to as LII method) is known in which radiant heat obtained by irradiating soot particles with intense laser light is detected to measure soot distribution. This attracts attention because it has many advantages compared to other laser measurement methods.
SAE paper 831291 (1983). SAE Paper 920114 (1992). SAE paper 92
0115 (1992). SAE paper 932650
(1993). ]

【0006】これらは、強力なパルスレーザシートをす
す粒子に照射し、粒子の温度をすすの蒸発温度(約45
00K)まで瞬間的に上昇させ、このときすす粒子が放
射する白熱光(黒体放射)を超高速シャッタカメラで撮
影することによりレーザシート面内のすす粒子の体積濃
度を可視化するものである。この手法は、断面像が得ら
れること、信号強度がすす濃度にほぼ比例すること、燃
料液滴の影響を受けないこと、壁面等からの散乱光の影
響を受けないこと等の面で優れている。反面、すす粒子
が一部蒸発してしまうため同一サイクルでの反復測定が
不可能で或ること、信号強度が弱いため光路中のすすの
影響を受け易いこと等の欠点を有する。
These irradiate the soot particles with a powerful pulsed laser sheet and change the temperature of the particles to the soot evaporation temperature (about 45 ° C.).
The incandescent light (blackbody radiation) emitted by soot particles at this time is photographed with an ultra-high-speed shutter camera to visualize the volume concentration of soot particles in the laser sheet surface. This method is excellent in that a cross-sectional image can be obtained, that the signal intensity is almost proportional to the soot concentration, that it is not affected by fuel droplets, and that it is not affected by scattered light from the wall surface, etc. There is. On the other hand, the soot particles partially evaporate, so that repeated measurement in the same cycle is impossible, and the signal intensity is weak, so that it is easily affected by soot in the optical path.

【0007】そして、すす濃度の定量化にあたっては、
以下の課題がある。 (1)レーザの強度分布不均一の補正 (2)すす雲によるレーザ強度の減衰の補正 (3)すす濃度とレーザ誘起白熱信号(以下LII信号
と称する)との関係の明確化 (4)すす雲によるLII信号の減衰の補正 また上記LII法にはすす粒子径を測定する例示はな
く、かつ経験的にLII信号の飽和性を示唆している
が、このときのレーザ強度の敷居値を求め、また数値シ
ミュレーション等によって確認した例は全く皆無であ
る。
When quantifying the soot concentration,
There are the following issues. (1) Correction of non-uniform laser intensity distribution (2) Correction of attenuation of laser intensity by soot cloud (3) Clarification of relationship between soot concentration and laser-induced incandescent signal (hereinafter referred to as LII signal) (4) Soot Correction of Attenuation of LII Signal Due to Cloud Also, there is no example of measuring the soot particle size in the above LII method, and empirically suggesting the saturation property of the LII signal, but the threshold value of the laser intensity at this time is obtained. Moreover, there are no examples confirmed by numerical simulation or the like.

【0008】ところで、燃料を直接筒内に噴射させ燃焼
するディーゼルエンジンにおいては、燃料液滴が偏在
し、燃料蒸気濃度の高い領域が生じている。そのため、
局所的に非常に高濃度のすすが存在しているものと考え
られる。かかる条件のもと、ディーゼルエンジンの筒内
のすす濃度の定量測定に前記LII法の適用実施を鋭意
研究した。しかし、ディーゼルエンジンの筒内のすす濃
度の定量測定には、前記(2)入射レーザ光のすすによ
るレーザ強度の減衰と、(4)測定面とカメラの間に存
在するすすによるLII信号の減衰が実用上の大きな問
題となることを見出した。
By the way, in a diesel engine in which fuel is directly injected into a cylinder and burned, fuel droplets are unevenly distributed, resulting in a region where the fuel vapor concentration is high. for that reason,
It is considered that very high concentration of soot is locally present. Under such conditions, the application of the LII method to the quantitative measurement of the soot concentration in the cylinder of a diesel engine was earnestly studied. However, in the quantitative measurement of the soot concentration in the cylinder of a diesel engine, (2) the attenuation of the laser intensity by the soot of the incident laser light and (4) the attenuation of the LII signal by the soot existing between the measurement surface and the camera are performed. Has been found to be a big problem in practical use.

【0009】[0009]

【発明が解決しようとする課題】そこで、本発明者等は
鋭意研究し、すす濃度を定量的に測定するには、得られ
たLII信号に前記(2)、(4)に関する適切な補正
を行う必要があることを知見した。そして、ディーゼル
エンジンの筒内と同レベルの濃度の定常すす生成場に対
してLII法を適用し、レーザ光やLII信号の減衰補
正手法の幾多の検討解析を行い本発明を案出した。本発
明は、従来技術の問題点を解決するためになされたもの
で、レーザシート光をすす生成場に的確に照射して精度
良く、かつ簡便にすす濃度およびすすの粒子径の測定を
行うことができるすす濃度測定方法を提供することを目
的とする。
Therefore, the inventors of the present invention have diligently studied, and in order to quantitatively measure the soot concentration, the obtained LII signal should be appropriately corrected with respect to the above (2) and (4). We have found that we need to do it. Then, the LII method was applied to a steady soot generation field having the same level of concentration as in the cylinder of a diesel engine, and the present invention was devised by conducting many studies and analyzes of attenuation correction methods for laser light and LII signals. The present invention has been made to solve the problems of the prior art, and to accurately and easily measure the soot concentration and the particle size of soot by accurately irradiating the soot generation field with laser sheet light. It is an object of the present invention to provide a soot concentration measuring method capable of producing a soot.

【0010】[0010]

【課題を解決するための手段】本発明のすす濃度測定方
法は、測定室の一端に設けた発光部により該測定室内の
すす生成場にパルスレーザシートを照射しすす温度を蒸
発点付近まで上昇させると共に、該測定室の他端に前記
発光部のパルスレーザシート照射方向に対し交差して設
けた受光部により前記すす生成場におけるすすの粒子が
輻射する白熱光を受光し、かつ当該パルスレーザシート
の強度を150MW/cm2 から400MW/cm2
範囲とし前記輻射強度を検出することによりすす濃度を
測定することを特徴とする。
The soot concentration measuring method of the present invention is such that a light emitting section provided at one end of a measurement chamber irradiates a pulse laser sheet on a soot generation field in the measurement chamber to raise the soot temperature to near an evaporation point. In addition, the incandescent light emitted by the soot particles in the soot generation field is received by the light receiving unit provided at the other end of the measurement chamber so as to intersect the pulse laser sheet irradiation direction of the light emitting unit, and the pulse laser It is characterized in that the soot concentration is measured by setting the strength of the sheet in the range of 150 MW / cm 2 to 400 MW / cm 2 and detecting the radiation intensity.

【0011】また、本発明のすす濃度測定方法は、すす
の粒子が輻射する当該粒子径に依存する異種二以上の波
長の白熱光信号を検出部により検出すると共に、輻射強
度の比を算出し当該比によりすすの粒子径を決定して信
号光の減衰を補正しすす濃度を測定することを特徴とす
る。
Further, the soot concentration measuring method of the present invention detects incandescent light signals of two or more different wavelengths which are dependent on the particle diameter of soot particles radiated by the detection unit and calculates the ratio of radiation intensity. It is characterized in that the particle diameter of soot is determined by the ratio to correct the attenuation of the signal light and the soot concentration is measured.

【0012】[0012]

【発明の作用・効果】上記構成からなる本発明のすす濃
度測定方法(請求項1記載)では、発光部からすす生成
場へのパルスレーザシートの照射に伴い、すす粒子の温
度は急激に上昇し、白熱光が放射される。しかるのち、
すす粒子が蒸発し始め、粒径が減少するのに伴い白熱光
は減少する。そして、前記発光部のパルスレーザシート
照射方向に対し交差して設けた受光部は、すす粒子が輻
射する白熱光を受光し当該輻射強度を検出することによ
りすすの濃度を効率良く高精度に測定することができ
る。
According to the soot concentration measuring method (claim 1) of the present invention having the above-mentioned constitution, the temperature of soot particles rapidly rises with the irradiation of the pulse laser sheet from the light emitting part to the soot generation field. However, incandescent light is emitted. After a while,
Incandescent light decreases as the soot particles begin to evaporate and the particle size decreases. Then, the light receiving portion provided to intersect the irradiation direction of the pulsed laser sheet of the light emitting portion receives the incandescent light radiated by soot particles and measures the soot concentration efficiently and highly accurately by detecting the radiation intensity. can do.

【0013】ここで、パルスレーザシートの強度(以下
レーザ強度と称する)を変化させた時のLII信号の変
化のシュミレーション結果を図1に、実験結果を図4に
示す。レーザ強度が比較的低い場合にはレーザ強度の増
加につれLII信号は増加する。これは主に粒子の温度
上昇のためである。さらにレーザ強度が高くなるとLI
I信号は飽和し、ついには減少する。これは、粒子の温
度上昇にもかかわらず、すすの蒸発により粒径が減少
し、吸収係数の減少とあいまって放射光が減少するため
である(図2)。このような特性により、前記課題
(2)、(4)を解決することができる。すなわち、レ
ーザ強度は150MW/cm2 から400MW/cm2
の範囲が好適である。
Here, the simulation result of the change of the LII signal when the intensity of the pulsed laser sheet (hereinafter referred to as the laser intensity) is changed is shown in FIG. 1, and the experimental result is shown in FIG. When the laser intensity is relatively low, the LII signal increases as the laser intensity increases. This is mainly due to the temperature rise of the particles. When the laser intensity becomes higher, LI
The I signal saturates and eventually diminishes. This is because the particle size decreases due to the evaporation of soot despite the temperature rise of the particles, and the radiated light decreases together with the decrease in the absorption coefficient (FIG. 2). Due to such characteristics, the problems (2) and (4) can be solved. That is, the laser intensity is 150 MW / cm 2 to 400 MW / cm 2
Is preferred.

【0014】このように、レーザ強度は、例えば、粒径
40nmの場合、400MW/cm2 を使用すればレー
ザシートの周辺部の強度の低下している部分(150M
W/cm2 )でも信号強度は中央部と同レベルに保て
る。また、同様にすす雲によりある程度減衰したレーザ
でも減衰前と同レベルの信号が得られる。図3に示すよ
うに、344MW/cm2 のエネルギ密度のレーザを使
用すればすす濃度10-5g/cm3 以下の場合には光路
長3.7cm以内の範囲で最大強度の95%の信号が得
られる。これは、計測上重要な利点であり、例えば、ミ
ー散乱法のようにレーザ強度に比例する特性を持つ信号
の場合には、信号光に対してレーザ強度分布・レーザ減
衰の影響を補正しなければならないが、LIIのように
レーザ強度にほとんど影響されない信号光がえられる場
合にはこれらの補正が不要になり、すす濃度の定量測定
が効率良く高精度にできるといった実用上優れた作用効
果を奏する。
As described above, when the laser intensity is, for example, 40 nm, if 400 MW / cm 2 is used, the intensity at the peripheral portion of the laser sheet is reduced (150 M).
Even with W / cm 2 ), the signal strength can be kept at the same level as the central part. Similarly, a laser that has been attenuated to some extent by soot clouds can also obtain a signal at the same level as before attenuation. As shown in FIG. 3, when a laser having an energy density of 344 MW / cm 2 is used and the soot concentration is 10 −5 g / cm 3 or less, a signal of 95% of the maximum intensity is obtained within an optical path length of 3.7 cm. Is obtained. This is an important advantage in measurement.For example, in the case of a signal having a characteristic proportional to the laser intensity such as the Mie scattering method, the effects of the laser intensity distribution and laser attenuation on the signal light must be corrected. However, when a signal light that is hardly affected by the laser intensity can be obtained like LII, these corrections become unnecessary, and the practically excellent effect that quantitative measurement of soot concentration can be performed efficiently and with high accuracy. Play.

【0015】また、上記構成からなる本発明のすす濃度
測定方法(請求項2記載)は、すすの粒子が輻射する当
該粒子径に依存する異種二以上の波長の白熱光信号を検
出部により検出した輻射強度の比によりすすの粒子径を
決定して信号光の減衰を補正しすす濃度を効率良く高精
度に測定することができる。
Further, in the soot concentration measuring method of the present invention having the above-mentioned structure (claim 2), the incandescent light signal of two or more different wavelengths depending on the particle diameter of soot particles radiated is detected by the detecting section. The soot particle diameter is determined by the ratio of the radiant intensities, the attenuation of the signal light is corrected, and the soot concentration can be measured efficiently and highly accurately.

【0016】ここで、図5に、粒径が大きく変化した時
のLII信号の変化を示す。一定濃度でも粒径が大きく
なるとLII信号も増加する。従って、粒径が大きく変
化する場合、濃度を検出するためには粒径情報が必要で
ある。そして、信号強度が変化する原因は図5に示すよ
うに、主に粒子の温度変化である。この温度変化によっ
て黒体放射の波長分布が変わることに着眼し、二以上の
波長の信号光の比を取って粒径の情報が得られないか検
討した。図6に2波長の比の粒径による変化を示す。粒
径の余り大きくない範囲内では適当な波長を選択するこ
とにより粒径を検出できる。
Here, FIG. 5 shows the change of the LII signal when the particle size is greatly changed. The LII signal increases as the particle size increases even at a constant concentration. Therefore, when the particle size changes greatly, particle size information is necessary to detect the concentration. The cause of the change in signal intensity is mainly the temperature change of the particles, as shown in FIG. Focusing on the fact that the wavelength distribution of blackbody radiation changes due to this temperature change, we examined whether or not information on the particle size could be obtained by taking the ratio of signal lights of two or more wavelengths. FIG. 6 shows the change in the ratio of the two wavelengths depending on the particle size. The particle size can be detected by selecting an appropriate wavelength within the range where the particle size is not too large.

【0017】また、図7に粒径が大きく変化した時のL
II信号の減衰係数の変化を示す。一定濃度でも粒径に
より減衰係数は変化する。これは、主に粒径の変化によ
るミー減衰係数の変化によるものである。減衰補正に多
層計測を行う際にも、すす粒径が大きく変化する場合に
は、すす濃度情報の他に粒径情報も必要である。この情
報を得るためにも、多色LIIが極めて有効となる。
Further, in FIG. 7, L when the particle size changes greatly
11 shows changes in the attenuation coefficient of the II signal. The attenuation coefficient changes depending on the particle size even at a constant concentration. This is mainly due to the change in the Mie damping coefficient due to the change in particle size. Even when performing multi-layer measurement for attenuation correction, if the soot particle size changes significantly, particle size information is necessary in addition to soot concentration information. Multicolor LII is also very effective in obtaining this information.

【0018】[0018]

【実施例】以下、本発明の一実施例を図面に基づき説明
する。本実施例のすす濃度測定方法は、図8、図9に示
すように、濃予混合バーナ1で形成された生成場にLI
I法を適用した例である。バーナ1の要部構造を図8に
それぞれ示す。窒素ボンベで加圧(ゲージ圧2.2at
m )されたタンクに液体燃料のベンゼンを密閉し、圧
送する。電子燃料噴射弁によって間欠的に噴射され、バ
ーナ1の内部に設置したマイクロヒータで蒸発させる。
また、リボンヒータでバーナ壁を加熱し、壁面への燃料
液滴の付着や擬縮を防ぐように構成されている。そし
て、フレームレストーチによって約450度まで加熱し
た空気をバーナ底面の2箇所から導入し、気化したベン
ゼンと混合させる。このような壁面や混合空気の加熱に
よって、バーナ1の出口での予混合気温度は約180度
となるため、ベンゼン燃料は完全に気化されているもの
と考えられる(ベンゼン沸点:80.1度)。また、ベ
ンゼン火炎の保温、安定化のために、バーナ1の周囲部
にブタンー空気予混合火炎を形成する。すす濃度は、燃
料噴射量の制御(燃料噴射弁の噴射回数、噴射時期)で
変化させる。バーナ1は、燃料、空気導入部2、ミキシ
ング部、ビーズ部、ハニカム部3、外周部4から成り立
っている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. As shown in FIGS. 8 and 9, the soot concentration measuring method of the present embodiment uses LI in the production field formed by the rich premix burner 1.
This is an example in which method I is applied. The main structure of the burner 1 is shown in FIG. Pressurized with nitrogen cylinder (gauge pressure 2.2 at)
m) The liquid fuel, benzene, is sealed in the tank and pumped. It is injected intermittently by an electronic fuel injection valve and evaporated by a micro heater installed inside the burner 1.
Further, the ribbon heater is configured to heat the burner wall to prevent the fuel droplets from adhering to the wall surface and preventing pseudo shrinkage. Then, the air heated up to about 450 degrees by the flame torch is introduced from two points on the bottom surface of the burner and mixed with the vaporized benzene. Due to such heating of the wall surface and the mixed air, the temperature of the premixed gas at the outlet of the burner 1 becomes about 180 degrees, so it is considered that the benzene fuel is completely vaporized (benzene boiling point: 80.1 degrees). ). In addition, a butane-air premixed flame is formed around the burner 1 to keep the benzene flame warm and stable. The soot concentration is changed by controlling the fuel injection amount (the number of injections of the fuel injection valve, the injection timing). The burner 1 is composed of a fuel, an air introduction part 2, a mixing part, a bead part, a honeycomb part 3 and an outer peripheral part 4.

【0019】火炎11は、これの安定化を図るために火
炎11の背後に金網5を挿入配置して成る。また、本実
施例は、周囲の空気の巻き込みを抑制するために、火炎
11の径と同じ内径を持つドーナツ状リング6で火炎1
1を囲む構成とすることにより、一層の火炎安定化を実
現できる。この火炎11は、強烈な輝炎を発しており、
高濃度のすすが生成されている。シース型熱電対(白金
−白金ロジウム、シース径1mm)による計測では、火
炎11の温度は、中心軸上で約1400〔K〕である。
図8に示す装置ですす生成場を形成し透過光減衰法とC
Tを組み合わせてこの生成場の濃度分布を測定した。こ
の分布は、複数の直線で近似すると数1、数2になる。
The flame 11 is formed by inserting and arranging the wire mesh 5 behind the flame 11 in order to stabilize the flame 11. Further, in this embodiment, in order to suppress the entrainment of the surrounding air, the flame 1 is formed by the donut-shaped ring 6 having the same inner diameter as that of the flame 11.
With the configuration that surrounds 1, it is possible to realize further flame stabilization. This flame 11 emits a strong luminous flame,
A high concentration of soot is produced. In the measurement by the sheath type thermocouple (platinum-platinum rhodium, sheath diameter 1 mm), the temperature of the flame 11 is about 1400 [K] on the central axis.
The apparatus shown in Fig. 8 forms a soot generation field and uses the transmitted light attenuation method and C
T was combined to measure the concentration distribution of this production field. This distribution becomes Equations 1 and 2 when approximated by a plurality of straight lines.

【0020】[0020]

【数1】 [Equation 1]

【0021】[0021]

【数2】 [Equation 2]

【0022】ここで、τは、バーナ1の先端面から3.
3mmの高さで、バーナ1の中心を通るレーザ光(10
64nm)の透過率である。従って、この位置における
透過率τの測定のみで、直ちにすす濃度分布を算出する
ことができるのである。このようにして本実施例は、濃
度が既知となったすす生成場に対して、LII法を適用
して成る。LII装置の概略を図9に示す。光源として
はNd:YAGレーザの第2高調波(波長:532n
m)を用いて成る。レーザビーム7はシリンドリカルレ
ンズ8と凸レンズ9によって幅9.5mm、焦点距離で
厚み0.5mmのレーザシート光10に形成する。さら
に、このレーザシート光10はスリット12で幅2mm
の光線して、すす濃度分布を測定した面にして成る。こ
こで、レーザシート光10は、これをそのまますす生成
場に照射すると、火炎11の下流ほどすす粒子の凝集に
よる粒径増大が原因でLII発光が大きくなり、測定対
象位置でのダイナミックレンジが低下する。このためス
リット12を用いてレーザ幅を細くしてある。そして、
すすから放射されるLII光13を、レーザ面に対して
垂直方向から高速シャッタカメラ14で撮影する。ここ
で、シャッタ時間は最短の20〔nsec〕として成
る。また、散乱光を除去し、かつ輝炎光に対するS/N
比が良く成る短波長側のLII光13を検出するため、
2枚のショートウエーブパスフイルタを用い半値幅で2
80〜370〔nm〕の信号光を得ることができた。図
中15は検出部である。
Here, τ is 3. from the tip surface of the burner 1.
Laser light (10 mm) passing through the center of the burner 1 at a height of 3 mm.
64 nm). Therefore, the soot concentration distribution can be immediately calculated only by measuring the transmittance τ at this position. In this way, the present embodiment is configured by applying the LII method to the soot generation field whose concentration is already known. An outline of the LII device is shown in FIG. As the light source, the second harmonic of the Nd: YAG laser (wavelength: 532n
m). The laser beam 7 is formed by a cylindrical lens 8 and a convex lens 9 into a laser sheet light 10 having a width of 9.5 mm and a focal length of 0.5 mm. Further, this laser sheet light 10 has a slit 12 and a width of 2 mm.
The surface of which the soot concentration distribution was measured by the light rays of. Here, when the laser sheet light 10 is applied to the soot generation field as it is, the LII emission increases due to the particle size increase due to the aggregation of soot particles downstream of the flame 11, and the dynamic range at the measurement target position decreases. To do. Therefore, the slit 12 is used to narrow the laser width. And
The LII light 13 emitted from the soot is photographed by the high-speed shutter camera 14 from the direction perpendicular to the laser surface. Here, the shutter time is 20 [nsec] which is the shortest. In addition, the scattered light is removed and the S / N ratio to the bright flame light is increased.
In order to detect the LII light 13 on the short wavelength side where the ratio is improved,
2 full width at half maximum using two short wave pass filters
Signal light of 80 to 370 [nm] could be obtained. In the figure, reference numeral 15 is a detection unit.

【0023】そして、本実施例は、すす濃度を固定した
場に強度を種々に変化させたレーザ光を照射し、LII
光輝度の変化を測定する。レーザ強度は、レーザのオッ
シレータ(アンプ段)の印可電圧によって変化させるこ
とができる。レーザ強度と共にLII信号強度は増加す
るが、150MW/cm2 以上ではLII信号の変化が
小さく、飽和性が見られた。従って、150MW/cm
2 以上の強度がレーザ面上で確保された場合には、レー
ザの減衰によるLII信号の補正は必要ないことが分か
った。また、LIIの数値シミュレーションによって、
LII信号の強度の変化を調べた。その結果、すす温度
はレーザ強度と共に単調に増加しているのに対し、LI
I信号は実験と同様な飽和性を有する。これは、レーザ
光が強すぎると瞬時に蒸発するすすの質量が増加し、全
体のすす粒子表面積が減少するために、LII信号の放
出量が減るものと推測される。
Then, in this embodiment, a laser beam having various intensities was applied to a field where the soot concentration was fixed, and LII was irradiated.
Measure the change in light intensity. The laser intensity can be changed by the applied voltage of the oscillator (amplifier stage) of the laser. The LII signal intensity increased with the laser intensity, but at 150 MW / cm 2 or more, the change in the LII signal was small and saturation was observed. Therefore, 150 MW / cm
It has been found that if an intensity of 2 or more is ensured on the laser surface, no correction of the LII signal due to laser attenuation is necessary. In addition, by the numerical simulation of LII,
The change in the intensity of the LII signal was investigated. As a result, the soot temperature increases monotonically with the laser intensity, whereas the LI
The I signal has the same saturation as the experiment. It is speculated that when the laser light is too intense, the mass of soot that evaporates instantaneously increases, and the total soot particle surface area decreases, so that the emission amount of the LII signal decreases.

【0024】すす生成場に照射されたレーザ光の透過率
は、ランバートビーアの法則に従うと数3となる。これ
を適用して信号の減衰補正を行うのである。
According to Lambert-Beer's law, the transmittance of the laser light with which the soot generation field is irradiated is given by Formula 3. By applying this, the signal attenuation correction is performed.

【0025】[0025]

【数3】 [Equation 3]

【0026】ただし、 I:減衰を受けた後の信号強
度、IO:もとの信号強度、D:粒径、Qext:効率因
子、N:粒子数密度、l:光路長、c:定数、Cs:す
す濃度数3中のQext/Dが粒径Dに依存するため、
補正のためにはすす生成場の粒径分布が必要となる。
However, I: signal intensity after being attenuated, IO: original signal intensity, D: particle size, Qext: efficiency factor, N: particle number density, 1: optical path length, c: constant, Cs : Since Qext / D in the soot concentration number 3 depends on the particle size D,
For correction, the particle size distribution of soot generation field is required.

【0027】本実施例では、直径が100nmの一様分
布で(このときQext=0.65)、1cmの厚みが
あるすす生成場を想定し、この場に対するレーザ光(5
32nm)の透過率を数3から算出した。ただし、レー
ザエネルギ吸収によるすす温度の増加に起因するQex
tの変化や粒子径変化は考慮しない。本実施例で用いた
レーザの最大エネルギ密度は230MW/cm2 である
ため、65%以上の透過率があれば臨界値150MW/
cm2 を維持できる。この時のすす濃度は1.0×10
-5 g/cm3 となり、これより薄いすす濃度場ではレ
ーザ強度の補正は不必要である。
In this embodiment, a soot generation field having a uniform distribution with a diameter of 100 nm (Qext = 0.65 at this time) and a thickness of 1 cm is assumed, and a laser beam (5
The transmittance at 32 nm) was calculated from Equation 3. However, Qex due to increase in soot temperature due to laser energy absorption
Changes in t and changes in particle size are not considered. Since the maximum energy density of the laser used in this example is 230 MW / cm 2 , a critical value of 150 MW /
Can maintain cm 2 . The soot concentration at this time is 1.0 x 10
It becomes -5 g / cm 3 , and the correction of the laser intensity is unnecessary in the soot concentration field thinner than this.

【0028】次に、本実施例における多色LII法と粒
子径の決定手法について説明する。 (a)レーザ光を受けたすす粒子の最大温度は、すす粒
子径に依存しており、図5に示すように、粒子径が大き
いほど最大温度は上昇する傾向を持つ。このLII信号
はグレイボデイの放射スペクトルであるが、粒子径の違
いによる最大温度の変化で、LII信号のスペクトルが
異なるのである。すなわち、最大温度が高い粒子径の大
きなすす粒子ほど紫外側に、より高いピークを持つスペ
クトルとなるのである。これを式で表すと数4となる。
Next, the multicolor LII method and the particle size determining method in this embodiment will be described. (A) The maximum temperature of soot particles that receive laser light depends on the soot particle diameter, and as shown in FIG. 5, the maximum temperature tends to increase as the particle diameter increases. This LII signal is a gray body radiation spectrum, but the spectrum of the LII signal differs due to the change in maximum temperature due to the difference in particle size. That is, a soot particle having a high maximum temperature and a large particle diameter has a spectrum having a higher peak in the ultraviolet region. When this is expressed by an equation, the equation 4 is obtained.

【0029】[0029]

【数4】 [Equation 4]

【0030】ここで、数4中、a:粒子半径、T:温
度、kabs:吸収係数である。また、(b)LII信
号は、数4に示すように、吸収係数に比例するのであ
る。この吸収係数は波長や粒子径に依存するため、LI
I信号は波長や粒子径に依存するのである。上記
(a)、(b)の理由からLII信号スペクトルは、粒
子径に依存するため、複数の波長を同時に検出すること
により、粒子径を測定することができる。実際に粒子径
に対する2色のLII光の信号比を、シミュレーション
によって求めると図6に示すようになる。いずれの波長
の信号比も上に凸の関数となっていることが分かり、図
6をもとに実験により得られた信号比から、粒子径を求
めることができるのである。ただし、この図6は、2価
関数となっているため、粒子径は2値得られるが、さら
に、別の波長の信号比を得ることによって真の粒子径を
特定することができるのである。
Here, in the equation 4, a is a particle radius, T is a temperature, and kabs is an absorption coefficient. The (b) LII signal is proportional to the absorption coefficient, as shown in equation 4. Since this absorption coefficient depends on the wavelength and particle size, LI
The I signal depends on the wavelength and the particle size. Since the LII signal spectrum depends on the particle size for the reasons (a) and (b) above, the particle size can be measured by simultaneously detecting a plurality of wavelengths. The signal ratio of the two colors of LII light with respect to the particle diameter is actually obtained by simulation as shown in FIG. It can be seen that the signal ratio of any wavelength is a convex function, and the particle size can be obtained from the signal ratio obtained by the experiment based on FIG. However, since the particle diameter is binary in FIG. 6 because it has a divalent function, the true particle diameter can be specified by further obtaining the signal ratio of another wavelength.

【0031】以下、本実施例における粒子径の特定例を
説明する。図6において300/500nmの信号比が
2.2で、350/500nmの信号比が1.85であ
る場合、当該300/500nmの図6から得られる粒
子径は、40と100nmであり、また350/500
nmの図6から得られる粒子径は、70と100nmと
なる。従って、3色同時に満たす粒子径は100nmと
なるのである。すなわち、複数(3色以上)の波長の信
号光を同時に検出することによって、粒子径をただ一つ
に決定することができるのである。
Hereinafter, a specific example of the particle diameter in this embodiment will be described. In FIG. 6, when the signal ratio of 300/500 nm is 2.2 and the signal ratio of 350/500 nm is 1.85, the particle sizes obtained from FIG. 6 of 300/500 nm are 40 and 100 nm, and 350/500
The particle sizes obtained from FIG. 6 of 70 nm are 70 and 100 nm. Therefore, the particle size that simultaneously fills the three colors is 100 nm. That is, it is possible to determine only one particle size by simultaneously detecting signal lights having a plurality of (three or more colors) wavelengths.

【図面の簡単な説明】[Brief description of drawings]

【図1】レーザ強度を変化させたときのLII信号の変
化状況を示す線図
FIG. 1 is a diagram showing how the LII signal changes when the laser intensity is changed.

【図2】本実施例のLIIシミュレーションの一例を示
す線図
FIG. 2 is a diagram showing an example of LII simulation of the present embodiment.

【図3】本実施例のLII信号の減衰状況を示す線図FIG. 3 is a diagram showing an attenuation state of an LII signal according to the present embodiment.

【図4】レンジ小におけるレーザ強度に対するLII信
号強度の変化状況を示す線図
FIG. 4 is a diagram showing a change situation of LII signal intensity with respect to laser intensity in a small range.

【図5】すす粒径が大きく変化した時のLII信号の変
化を示す線図
FIG. 5 is a diagram showing changes in the LII signal when the soot particle size changes significantly.

【図6】2波長のLII信号の比の粒径による変化状況
を示す線図
FIG. 6 is a diagram showing how the ratio of LII signals of two wavelengths changes with particle size.

【図7】すす粒径が大きく変化した時のLII信号の減
衰係数の変化を示す線図
FIG. 7 is a diagram showing changes in the attenuation coefficient of the LII signal when the soot particle size changes significantly.

【図8】本実施例の装置の要部を示す概要図FIG. 8 is a schematic diagram showing a main part of the apparatus according to the present embodiment.

【図9】本実施例の装置を示す概要図FIG. 9 is a schematic diagram showing an apparatus of this example.

【符号の説明】[Explanation of symbols]

1 バーナ 2 空気導入部 3 ハニカム部 4 外周部 5 金網 6 ドーナッ状リング 7 レーザビーム 8 シリンドリカルレンズ 9 凸レンズ 10 レーザシート光 11 火炎 12 スリット 13 LII光 14 高速シャッタカメラ 15 検出部 DESCRIPTION OF SYMBOLS 1 Burner 2 Air introduction part 3 Honeycomb part 4 Outer peripheral part 5 Wire mesh 6 Donut ring 7 Laser beam 8 Cylindrical lens 9 Convex lens 10 Laser sheet light 11 Flame 12 Slit 13 LII light 14 High speed shutter camera 15 Detection part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三浦 晋平 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 渡部 哲 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shinpei Miura, 1 Toyota Town, Toyota City, Aichi Prefecture, Toyota Motor Corporation (72) Inventor, Satoshi Watanabe, 1 Toyota Town, Toyota City, Aichi Prefecture, Toyota Motor Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 測定室の一端に設けた発光部により該測
定室内のすす生成場にパルスレーザシートを照射しすす
温度を蒸発点付近まで上昇させると共に、該測定室の他
端に前記発光部のパルスレーザシート照射方向に対し交
差して設けた受光部により前記すす生成場におけるすす
の粒子が輻射する白熱光を受光し、かつ当該パルスレー
ザシートの強度を150MW/cm2 から400MW/
cm2の範囲とし前記輻射強度を検出することによりす
す濃度を測定することを特徴とするすす濃度測定方法。
1. A light emitting section provided at one end of the measurement chamber raises the soot temperature of a pulsed laser sheet irradiating a soot generation field in the measurement chamber up to near an evaporation point, and the light emission section is provided at the other end of the measurement chamber. The incandescent light radiated by the soot particles in the soot generation field is received by the light receiving portion provided crossing the pulse laser sheet irradiation direction, and the intensity of the pulse laser sheet is 150 MW / cm 2 to 400 MW /
A soot concentration measuring method, wherein the soot concentration is measured by detecting the radiation intensity within a range of cm 2 .
【請求項2】 すすの粒子が輻射する当該粒子径に依存
する異種二以上の波長の白熱光信号を検出部により検出
すると共に、輻射強度の比を算出し当該比によりすすの
粒子径を決定して信号光の減衰を補正しすす濃度を測定
することを特徴とする請求項1記載のすす濃度測定方
法。
2. A soot particle is radiated, and an incandescent light signal of two or more different wavelengths depending on the particle diameter of the soot is detected by a detection unit, and a ratio of radiation intensities is calculated to determine the particle diameter of soot. The soot concentration measuring method according to claim 1, wherein the soot concentration is measured by correcting the attenuation of the signal light.
JP25455394A 1994-09-22 1994-09-22 Method for measuring soot concentration Pending JPH0894526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25455394A JPH0894526A (en) 1994-09-22 1994-09-22 Method for measuring soot concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25455394A JPH0894526A (en) 1994-09-22 1994-09-22 Method for measuring soot concentration

Publications (1)

Publication Number Publication Date
JPH0894526A true JPH0894526A (en) 1996-04-12

Family

ID=17266644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25455394A Pending JPH0894526A (en) 1994-09-22 1994-09-22 Method for measuring soot concentration

Country Status (1)

Country Link
JP (1) JPH0894526A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0959329A2 (en) * 1998-05-22 1999-11-24 National Research Council Of Canada Absolute intensity measurements in laser induced incandescence
DE19904691A1 (en) * 1999-02-05 2000-09-14 Esytec En U Systemtechnik Gmbh Device and method for the simultaneous in-situ determination of the particle size and mass concentration of fluid-borne particles
WO2001022045A1 (en) * 1999-09-23 2001-03-29 Abb Research Ltd. Method and device for measuring the temperature of a gas using laser-induced incandescence pyrometry
US6366353B1 (en) * 1999-11-05 2002-04-02 Corning Incorporated Method to determine the identity of a material in an object
JP2005534017A (en) * 2002-07-19 2005-11-10 コロンビアン ケミカルズ カンパニー Carbon black sampling for particle surface area measurements using laser-induced incandescence and reactor process control based on it
GB2459452A (en) * 2008-04-22 2009-10-28 Rolls Royce Plc Continuous wave laser induced incandescence detector
JP2015232474A (en) * 2014-06-09 2015-12-24 一般財団法人電力中央研究所 Imaging method and imaging apparatus for particle in flame

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0959329A2 (en) * 1998-05-22 1999-11-24 National Research Council Of Canada Absolute intensity measurements in laser induced incandescence
JP2000055800A (en) * 1998-05-22 2000-02-25 Natl Research Council Of Canada Measurement of absolute light intensity in laser-induced incandescent light
EP0959329A3 (en) * 1998-05-22 2000-11-02 National Research Council Of Canada Absolute intensity measurements in laser induced incandescence
DE19904691A1 (en) * 1999-02-05 2000-09-14 Esytec En U Systemtechnik Gmbh Device and method for the simultaneous in-situ determination of the particle size and mass concentration of fluid-borne particles
US6496258B1 (en) 1999-02-05 2002-12-17 Esytec Energie-Und Systemtechnik Gmbh Device and method for simultaneous in-situ determination of particle size and mass concentration of fluid-borne particles
DE19904691C2 (en) * 1999-02-05 2003-05-28 Esytec En U Systemtechnik Gmbh Device and method for the simultaneous in-situ determination of the particle size and mass concentration of fluid-borne particles
WO2001022045A1 (en) * 1999-09-23 2001-03-29 Abb Research Ltd. Method and device for measuring the temperature of a gas using laser-induced incandescence pyrometry
US6366353B1 (en) * 1999-11-05 2002-04-02 Corning Incorporated Method to determine the identity of a material in an object
JP2005534017A (en) * 2002-07-19 2005-11-10 コロンビアン ケミカルズ カンパニー Carbon black sampling for particle surface area measurements using laser-induced incandescence and reactor process control based on it
GB2459452A (en) * 2008-04-22 2009-10-28 Rolls Royce Plc Continuous wave laser induced incandescence detector
JP2015232474A (en) * 2014-06-09 2015-12-24 一般財団法人電力中央研究所 Imaging method and imaging apparatus for particle in flame

Similar Documents

Publication Publication Date Title
Bardi et al. Engine combustion network: comparison of spray development, vaporization, and combustion in different combustion vessels
Santoro et al. Laser-induced incandescence
Dec et al. Soot distribution in a DI diesel engine using 2-D laser-induced incandescence imaging
JP4563525B2 (en) Absolute photometry in laser-induced incandescent light
Bruneaux Liquid and vapor spray structure in high-pressure common rail diesel injection
Senda et al. Quantitative analysis of fuel vapor concentration in diesel spray by exciplex fluorescence method
Cenker et al. Study of soot formation and oxidation in the engine combustion network (ECN), Spray A: Effects of ambient temperature and oxygen concentration
Zhang et al. Experimental study of flash boiling spray vaporization through quantitative vapor concentration and liquid temperature measurements
Nau et al. Wall temperature measurements at elevated pressures and high temperatures in sooting flames in a gas turbine model combustor
Park et al. Mixture fraction, soot volume fraction, and velocity imaging in the soot-inception region of a turbulent non-premixed jet flame
Wang et al. Soot formation and flame structure in swirl-stabilized turbulent non-premixed methane combustion
JPH0894526A (en) Method for measuring soot concentration
Dasch New soot diagnostics in flames based on laser vaporization of soot
Dulin et al. On impact of helical structures on stabilization of swirling flames with vortex breakdown
Förster et al. Temperature measurements under diesel engine conditions using laser induced grating spectroscopy
Geigle et al. Laser-induced incandescence for soot measurements in an aero-engine combustor at pressures up to 20 bar
Jüngst et al. Imaging of fuel-film evaporation and combustion in a direct-injection model experiment
JP7081530B2 (en) Liquid film thickness measurement method
US20030197863A1 (en) Small particle analysis by laser induced incandescence
Humphries et al. A simple photoacoustic method for the in situ study of soot distribution in flames
Kulkarni et al. Planar liquid volume fraction measurements in air-blast sprays using SLIPI technique with numerical corrections
Wainner et al. Soot diagnostics using laser-induced incandescence in flames and exhaust flows
Fukumasu et al. Influence of fuel injection frequency on droplet dispersion in ethanol pulsed spray flames
Gradinger et al. Liquid-fuel/air premixing in gas turbine combustors: experiment and numerical simulation
Fuentes et al. Laser-induced incandescence calibration in a three-dimensional laminar diffusion flame