JPH0893631A - Windmill blade - Google Patents

Windmill blade

Info

Publication number
JPH0893631A
JPH0893631A JP6227795A JP22779594A JPH0893631A JP H0893631 A JPH0893631 A JP H0893631A JP 6227795 A JP6227795 A JP 6227795A JP 22779594 A JP22779594 A JP 22779594A JP H0893631 A JPH0893631 A JP H0893631A
Authority
JP
Japan
Prior art keywords
wind turbine
blade
metal fitting
main girder
main beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6227795A
Other languages
Japanese (ja)
Inventor
Nozomi Kawasetsu
川節  望
Akihiro Suzuki
章弘 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP6227795A priority Critical patent/JPH0893631A/en
Publication of JPH0893631A publication Critical patent/JPH0893631A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Wind Motors (AREA)

Abstract

PURPOSE: To shorten the manufacturing time of a windmill blade and reduce its cost by burying a metal fitting in the blade base of a main beam and screwing the main beam in a windmill main body through the metal fitting at the time of manufacture of the main beam made of fiber reinforced plastic. CONSTITUTION: A skin 1 is formed in a blade shape made of GFRP and a main beam 2 is made of FRP or GFRP served as a reinforcement member and a windmill blade is composed of an intermediate filling material, etc., by a foaming urethane. A disc shape metal fitting 3 is buried advancely in the blade base of the main beam 2 at the time of manufacture of the main beam 2 in order to install the wind mill blade to the wind mill main body and nuts 4 for fixing are installed on this metal fitting 3 and bolts are screwed in. Thereby, as the buried metal fitting 3 is in a disc type simple shape, the manufacturing time of the wind mill blade is shortened and its workability is improved and also such defect as the unfilled up part of FRP is almost eliminated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、風力発電用などの風車
に適用される風車翼に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wind turbine blade applied to a wind turbine such as a wind turbine.

【0002】[0002]

【従来の技術】図2は風力発電用などの風車に使用され
ている従来の風車翼の説明図である。図において、従来
の風車翼は翼形状を形成する外皮1、主として強度部材
となるFRP製の主桁2、発泡ウレタンによる中間充填
材5,6などから構成されており、主桁2の翼根部には
主桁2の製造時に多数のナット11が埋め込まれる。風
車翼はこの埋め込まれたナット11と予め用意されるボ
ルトとにより風車本体に取付けられるようになってい
る。図における符号7,8は接着層(GFRP)、9は
前縁(リーディングングエッジ)、10は後縁(トレー
リングングエッジ)である。現在、生産されている風力
発電用の風車は200〜300KW級のものが主流で、そ
の風車翼の長さは約10〜12m、重量は約1,000
kg程度である。
2. Description of the Related Art FIG. 2 is an explanatory view of a conventional wind turbine blade used in a wind turbine for wind power generation or the like. In the figure, a conventional wind turbine blade is composed of an outer skin 1 forming a blade shape, a main girder 2 mainly made of FRP which is a strength member, intermediate fillers 5 and 6 made of urethane foam, and the like. A large number of nuts 11 are embedded in the main girder 2 when manufacturing the main girder 2. The wind turbine blade is attached to the wind turbine main body by the embedded nut 11 and a bolt prepared in advance. Reference numerals 7 and 8 in the drawing are adhesive layers (GFRP), 9 is a leading edge (leading edge), and 10 is a trailing edge (trailing edge). Currently, the mainstream wind turbines for wind power generation being produced are those of 200 to 300 KW class, the length of the wind turbine blades is about 10 to 12 m, and the weight is about 1,000.
It is about kg.

【0003】[0003]

【発明が解決しようとする課題】近年、風力発電はクリ
ーンなエネルギー源として注目されており、発電効率の
向上のために風車の大型化が強く要求されているが、上
記のような従来の風車翼においては例えば400〜50
0KW級の大型風車の場合には風車翼の長さは約18〜2
0m程度になり、重量は2000kgを越える。このよう
に風車翼が重くなると、風車翼を風車本体に固定する翼
根部の構造が問題となる。即ち、常に荷重を繰り返し受
けながら10年以上の耐久性を有する風車翼にするに
は、従来の翼根部にナット11を埋め込むだけの構造で
はかなり困難である。従来の翼根部の構造は主桁2の製
造時に多数のナット11を埋め込み、この埋め込んだナ
ット11とボルトとにより風車翼を風車本体に固定して
おり、この場合はナット11がFRPに埋め込まれてい
るだけであるため、ボルトの1本当たりの引き抜き力に
対する強度には限界がある。また、風車翼の支持荷重は
ナット11からFRP製の主桁2に直接掛かるため、ナ
ット1本1本の埋め込み状態が重要で、安全率を高くと
るために必然的にナット11の数がかなり多めになる傾
向がある。また、大型の風車翼になると多数のナット1
1を主桁2のFRP積層による成形時に埋め込む必要が
あるために作業性が非常に悪く、主桁2の製造時間に多
くを要して現実的にかなりのコスト高になっている。ま
た、多数のナット11を1本づつそれぞれの位置決めを
して固定し、そのナット11間の僅かな隙間を埋めるよ
うにFRPを積層する必要があるために作業が困難で、
FRPの未充填部が発生し易く信頼性に欠ける面があ
る。
In recent years, wind power generation has been attracting attention as a clean energy source, and there is a strong demand for larger wind turbines in order to improve power generation efficiency. For wings, for example, 400 to 50
In the case of a large wind turbine of 0 KW class, the length of the wind turbine blade is about 18 to 2
It is about 0 m and weighs over 2000 kg. When the wind turbine blade becomes heavy in this way, the structure of the blade root portion that fixes the wind turbine blade to the wind turbine main body becomes a problem. That is, in order to make a wind turbine blade having a durability of 10 years or more while constantly receiving a load, it is quite difficult with the conventional structure in which the nut 11 is simply embedded in the blade root portion. In the conventional blade root structure, a large number of nuts 11 are embedded when the main girder 2 is manufactured, and the wind turbine blades are fixed to the wind turbine main body by the embedded nuts 11 and bolts. In this case, the nuts 11 are embedded in the FRP. Therefore, there is a limit to the strength against the pull-out force per bolt. Further, since the supporting load of the wind turbine blade is directly applied from the nut 11 to the FRP main girder 2, it is important to embed each nut one by one, and the number of nuts 11 is inevitably large in order to increase the safety factor. Tends to be overloaded. Also, when it comes to a large wind turbine blade, a large number of nuts 1
Since it is necessary to embed 1 in the molding of the main girder 2 by FRP lamination, the workability is very poor, and it takes a lot of time to manufacture the main girder 2 and the cost is actually considerably high. Further, since it is necessary to position and fix a large number of nuts 11 one by one and to stack the FRP so as to fill the slight gap between the nuts 11, the work is difficult,
There is a surface where unfilled part of FRP is likely to occur and reliability is lacking.

【0004】[0004]

【課題を解決するための手段】本発明に係る風車翼は上
記課題の解決を目的にしており、繊維強化プラスチック
ス製の主桁により支えられ上記主桁の翼根部を介して風
車本体に取付けられる風車翼において、上記主桁の製造
時に上記翼根部に埋め込まれた金具と、該金具を介して
上記主桁を上記風車本体に螺着する手段とを備えた構成
を特徴とする。
A wind turbine blade according to the present invention is intended to solve the above problems, and is supported by a main girder made of fiber reinforced plastic and attached to a wind turbine main body through a blade root portion of the main girder. The wind turbine blade is characterized in that it comprises a metal fitting embedded in the blade root when the main girder is manufactured, and means for screwing the main girder to the wind turbine main body via the metal fitting.

【0005】[0005]

【作用】即ち、本発明に係る風車翼においては、繊維強
化プラスチックス製の主桁により支えられ主桁の翼根部
を介して風車本体に取付けられる風車翼における主桁の
製造時に翼根部に埋め込まれた金具を介して主桁が風車
本体に螺着されるようになっており、この場合は主桁の
翼根部の製造時に主桁の金型に所定の形状をなす金具を
設置しこれを埋め込むように繊維強化プラスチックスを
積層すればよく、埋め込む金具の形状を単純にすること
により作業性がかなり改善される。金具を埋め込んで繊
維強化プラスチックスを硬化させた後、翼根部の端面側
から金具に必要な本数だけ例えばボルト、ナットなどを
ねじ込み端面を仕上げる。風車翼の支持荷重はボルト、
ナット、金具などを介して主桁に掛かる。
That is, in the wind turbine blade according to the present invention, the main girder of the wind turbine blade supported by the main girder made of fiber reinforced plastic and attached to the wind turbine main body through the blade root portion of the main girder is embedded in the blade root portion at the time of manufacturing. The main girder is screwed to the main body of the wind turbine via the metal fittings.In this case, when the blade roots of the main girder are manufactured, the metal fittings of a predetermined shape are installed in the mold of the main girder. The fiber reinforced plastics may be laminated so as to be embedded, and the workability is considerably improved by simplifying the shape of the metal fitting to be embedded. After the metal fitting is embedded and the fiber reinforced plastic is hardened, the end face is finished by screwing as many bolts and nuts as necessary for the metal fitting from the end face side of the blade root portion. The supporting load of the wind turbine blade is bolt,
It hangs on the main girder via nuts and metal fittings.

【0006】[0006]

【実施例】図1は本発明の一実施例に係る風車翼の説明
図である。図において、本実施例に係る風車翼は風力発
電用などの風車に使用されるもので、翼形状を形成する
GFRP製の外皮1、主として強度部材となるFRP
製、或いはGFRP製の主桁2、発泡ウレタンによる中
間充填材などから構成されており、本風車翼を風車本体
に取付けるために図に示すように主桁2の製造時に主桁
2の翼根部に円盤状の金具3を先に埋め込み、この金具
3に固定用のナット4を取付けてボルトをねじ込む構造
になっている。なお、金具3にボルトを直接ねじ込む構
造にしてもよい。
1 is an explanatory view of a wind turbine blade according to an embodiment of the present invention. In the figure, the wind turbine blade according to the present embodiment is used for a wind turbine for wind power generation, etc., and includes a GFRP outer skin 1 forming a blade shape, and an FRP mainly serving as a strength member.
Made of GFRP made of main girder 2, intermediate filler of urethane foam, etc., to install this wind turbine blade to the main body of the wind turbine as shown in the figure The disk-shaped metal fitting 3 is first embedded in the metal fitting 3, the fixing nut 4 is attached to the metal fitting 3, and the bolt is screwed. The structure may be such that the bolt is directly screwed into the metal fitting 3.

【0007】近年、風力発電はクリーンなエネルギー源
として注目されており、発電効率の向上のために風車の
大型化が強く要求されているが、例えば400〜500
KW級の大型風車の場合には風車翼の長さは約18〜20
m程度になり、重量は2000kgを越える。このように
風車翼が重くなると、風車翼を風車本体に固定する翼根
部の構造が問題となる。即ち、常に荷重を繰り返し受け
ながら10年以上の耐久性を有する風車翼にするには、
従来の翼根部にナットを埋め込むだけの構造ではかなり
困難である。従来の翼根部の構造は主桁の製造時に多数
のナットを埋め込み、この埋め込んだナットとボルトと
により風車翼を風車本体に固定しており、この場合はナ
ットがFRPに埋め込まれているだけであるため、ボル
トの1本当たりの引き抜き力に対する強度には限界があ
る。また、風車翼の支持荷重はナットからFRP製の主
桁に直接掛かるため、ナット1本1本の埋め込み状態が
重要で、安全率を高くとるために必然的にナットの数が
かなり多めになる傾向がある。また、大型の風車翼にな
ると多数のナットを主桁のFRP積層による成形時に埋
め込む必要があるために作業性が非常に悪く、主桁の製
造時間に多くを要して現実的にかなりのコスト高になっ
ている。また、多数のナットを1本づつそれぞれの位置
決めをして固定し、そのナット間の僅かな隙間を埋める
ようにFRPを積層する必要があるために作業が困難
で、FRPの未充填部が発生し易く信頼性に欠ける面が
あるが、本風車翼においては風車の大型化、信頼性の向
上、低コスト化に対応できる風車翼にするため、翼根部
の構造をFRP製の主桁2の製造時に翼根部に円盤状の
金具3を埋め込み、この金具3に固定用のナット4を取
付けてボルトをねじ込む構造にしており、このような構
造にすることにより主桁2の翼根部の製造時に主桁2の
金型に所定の大きさの円盤状をなす金具3を設置しこれ
を埋め込むようにFRPを積層すればよく、埋め込む金
具3が円盤状をなして単純な形状であるために作業性が
かなり改善されるとともにFRPの未充填部などの欠陥
も殆どなくなる。翼根部に金具3を埋め込んでFRPを
硬化させた後は、翼根部の端面側から金具3に必要な本
数だけナット4をねじ込み端面を仕上げる。このような
構造にすると、風車翼の支持荷重はボルト、ナット4、
金属製の金具3を通じて主桁2に掛かるため、円盤状の
金具3の面積を確保しておけば強度的にも安全である。
In recent years, wind power generation has attracted attention as a clean energy source, and there is a strong demand for larger wind turbines in order to improve power generation efficiency. For example, 400 to 500
In the case of a large KW wind turbine, the length of the wind turbine blade is about 18 to 20.
It is about m and weighs over 2000 kg. When the wind turbine blade becomes heavy in this way, the structure of the blade root portion that fixes the wind turbine blade to the wind turbine main body becomes a problem. In other words, in order to make a wind turbine blade that has a durability of 10 years or more while constantly receiving a load,
It is quite difficult with the conventional structure in which the nut is simply embedded in the blade root. In the conventional blade root structure, many nuts are embedded at the time of manufacturing the main girder, and the wind turbine blades are fixed to the wind turbine main body by the embedded nuts and bolts. In this case, the nuts are only embedded in the FRP. Therefore, there is a limit to the strength against the pull-out force per bolt. In addition, since the supporting load of the wind turbine blade is directly applied from the nut to the main girder made of FRP, it is important that each nut is embedded, and the number of nuts inevitably increases considerably in order to increase the safety factor. Tend. Also, in the case of a large wind turbine blade, a large number of nuts need to be embedded during molding of the main girder by FRP lamination, so workability is extremely poor, and it takes a lot of time to manufacture the main girder, which is a substantial cost. It is high. Also, it is necessary to position and fix a large number of nuts one by one, and stack the FRP so as to fill the slight gaps between the nuts, which makes work difficult and creates an unfilled portion of FRP. However, in order to make this wind turbine blade compatible with larger wind turbines, improved reliability, and lower costs, the structure of the blade root part of the main girder 2 made of FRP is used. At the time of manufacturing, a disk-shaped metal fitting 3 is embedded in the blade root portion, and a fixing nut 4 is attached to the metal fitting 3 to screw a bolt. With this structure, the blade root portion of the main girder 2 is manufactured. It is only necessary to install a disc-shaped metal fitting 3 of a predetermined size in the mold of the main girder 2 and stack the FRP so as to embed it. Since the metal fitting 3 to be embedded has a disk shape and has a simple shape, work is performed. Sex is significantly improved and F Defects such as unfilled portion of the P also almost eliminated. After the metal fitting 3 is embedded in the blade root portion to cure the FRP, the nuts 4 are screwed from the end surface side of the blade root portion to the metal fitting 3 to finish the end surface. With such a structure, the supporting load of the wind turbine blade is increased by the bolts, nuts 4,
Since it hangs on the main girder 2 through the metal fitting 3, it is safe in terms of strength if the area of the disk-shaped fitting 3 is secured.

【0008】本風車翼における強度を実証するため、2
50KW風車用の風車翼を試作し、従来の風車翼との比較
試験を実施した。なお、従来の風車翼の翼根部には直径
50mm、長さ250mmのナットを25本埋め込む構造と
した。また、本風車翼の翼根部には外径800mm、内径
600mm、厚さ20mmのステンレス製による円盤状の金
具を埋め込み、FRPが硬化後に翼根部の端部から金具
に金属製のナットをねじ込む構造とした。そして、翼根
部から埋め込んだナット1本ごとのサンプルを部分的に
切り出し、引き抜き引張り試験を実施した結果、従来の
翼根部に埋め込んだナットは約50ton の荷重で翼根部
からナットが引き抜けたが、本風車翼の場合は約70to
n で埋め込んだナットに締め込んだボルトが破断しただ
けで埋め込んだナットには異常は認められなかった。こ
のことから、本風車翼における翼根部の構造は従来の風
車翼と比較して強度的にかなり強く、さらに製造に費か
る時間も短縮でき、製造コストの低減が可能であること
が確認できた。この比較試験の結果を次表に示す。
In order to demonstrate the strength of this wind turbine blade, 2
A prototype wind turbine blade for a 50KW wind turbine was prototyped and a comparative test with a conventional wind turbine blade was conducted. Note that the conventional wind turbine blade has a structure in which 25 nuts having a diameter of 50 mm and a length of 250 mm are embedded in the root portion of the blade. In addition, a disk-shaped metal fitting made of stainless steel with an outer diameter of 800 mm, an inner diameter of 600 mm, and a thickness of 20 mm is embedded in the blade root portion of this wind turbine blade, and a metal nut is screwed into the metal fitting from the end of the blade root portion after the FRP hardens. And A sample of each nut embedded from the blade root was partially cut out and a pull-out tensile test was performed. As a result, the nut embedded in the conventional blade root pulled out from the blade root under a load of about 50 tons. , About 70to for this wind turbine blade
No abnormality was found in the embedded nut, only the bolt tightened in the nut embedded with n broke. From this, it was confirmed that the structure of the blade root part of this wind turbine blade is considerably stronger than the conventional wind turbine blade in terms of strength, the time required for manufacturing can be shortened, and the manufacturing cost can be reduced. . The results of this comparative test are shown in the following table.

【0009】[0009]

【表1】 [Table 1]

【0010】このように、本風車翼においてはFRP
製、或いはGFRP製の主桁2の製造時に翼根部に円盤
状の金具3を埋め込み、この金具3に固定用のナット4
を取付けてボルトをねじ込む構造にしており、埋め込む
金具3の形状が単純であることにより作業性がかなり改
善でき、風車翼1本当たりの製造時間が短縮できてコス
トが低減される。また、FRPの未充填部などの発生が
なく、強度的なばらつきの心配がなくなって信頼性が向
上する。また、風車翼の支持荷重はボルト、ナット4、
金属製の金具3を通じて主桁2に掛かるため、金具3の
面積を確保しておくことにより強度的にも安全で、設計
的にも安全率を必要以上に高くする必要がなくなる。
Thus, in this wind turbine blade, the FRP
Made or GFRP main girder 2 is manufactured, a disk-shaped metal fitting 3 is embedded in the blade root portion, and a nut 4 for fixing to this metal fitting 3
Is attached and the bolt is screwed in, and the workability can be considerably improved due to the simple shape of the metal fitting 3 to be embedded, and the manufacturing time per wind turbine blade can be shortened and the cost can be reduced. Further, there is no occurrence of an unfilled portion of FRP, there is no concern about variations in strength, and reliability is improved. In addition, the supporting load of the wind turbine blade is bolt, nut 4,
Since the metal girder 3 hangs over the main girder 2, securing the area of the metal gage 3 makes it safe in terms of strength, and it is not necessary to raise the safety factor more than necessary in terms of design.

【0011】[0011]

【発明の効果】本発明に係る風車翼は前記のように構成
されており、作業性がかなり改善されるので、風車翼の
製造時間が短縮されてコストが低減する。また、また、
風車翼の支持荷重はボルト、ナット、金具などを介して
主桁に掛かるので、金具、ボルト、ナットなどの強度を
確保しておくことにより強度的にも安全になる。
Since the wind turbine blade according to the present invention is constructed as described above and the workability is considerably improved, the manufacturing time of the wind turbine blade is shortened and the cost is reduced. Also again
The supporting load of the wind turbine blade is applied to the main girder via bolts, nuts, metal fittings, etc. Therefore, by securing the strength of the metal fittings, bolts, nuts, etc., the strength becomes safe.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1(a)は本発明の一実施例に係る風車翼の
正面図、同図(b)はその翼根部の断面図、同図(c)
は側面図である。
FIG. 1 (a) is a front view of a wind turbine blade according to an embodiment of the present invention, FIG. 1 (b) is a sectional view of a blade root portion thereof, and FIG. 1 (c).
Is a side view.

【図2】図2(a)は従来の風車翼の正面図、同図
(b)は同図(a)におけるB−B矢視断面図、同図
(c)はその翼根部の断面図、同図(d)は側面図であ
る。
FIG. 2 (a) is a front view of a conventional wind turbine blade, FIG. 2 (b) is a sectional view taken along the line BB in FIG. 2 (a), and FIG. 2 (c) is a sectional view of the blade root portion. The same figure (d) is a side view.

【符号の説明】[Explanation of symbols]

1 外皮 2 主桁 3 金具 4 ナット 1 outer skin 2 main girder 3 metal fittings 4 nut

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 繊維強化プラスチックス製の主桁により
支えられ上記主桁の翼根部を介して風車本体に取付けら
れる風車翼において、上記主桁の製造時に上記翼根部に
埋め込まれた金具と、該金具を介して上記主桁を上記風
車本体に螺着する手段とを備えたことを特徴とする風車
翼。
1. A wind turbine blade supported by a main girder made of fiber reinforced plastics and attached to a wind turbine main body via a blade root portion of the main girder, wherein a metal fitting embedded in the blade root portion at the time of manufacturing the main girder, A wind turbine blade, comprising means for screwing the main girder to the wind turbine body via the metal fitting.
JP6227795A 1994-09-22 1994-09-22 Windmill blade Withdrawn JPH0893631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6227795A JPH0893631A (en) 1994-09-22 1994-09-22 Windmill blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6227795A JPH0893631A (en) 1994-09-22 1994-09-22 Windmill blade

Publications (1)

Publication Number Publication Date
JPH0893631A true JPH0893631A (en) 1996-04-09

Family

ID=16866513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6227795A Withdrawn JPH0893631A (en) 1994-09-22 1994-09-22 Windmill blade

Country Status (1)

Country Link
JP (1) JPH0893631A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008107738A1 (en) 2007-03-06 2008-09-12 Tecsis Tecnologia E Sistemas Avançados Ltda Fan blade connection

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008107738A1 (en) 2007-03-06 2008-09-12 Tecsis Tecnologia E Sistemas Avançados Ltda Fan blade connection
US8651816B2 (en) 2007-03-06 2014-02-18 Fantech Tecnologia Em Sistemas De Ventilacao Ltda Fan blade connection

Similar Documents

Publication Publication Date Title
US8186960B2 (en) Repair of rotor blade roots
US10309369B2 (en) Wind turbine blade having a root region with elongated fastening members provided with metal fibres
US8863382B2 (en) Highly reliable, low cost wind turbine rotor blade
CN101910623B (en) Flexible wind blade root bulkhead flange
US8043066B2 (en) Trailing edge bonding cap for wind turbine rotor blades
KR20110025147A (en) Wind turbine tower and system and method for fabricating the same
KR20140003413A (en) Vertical axis wind turbine having one or more modular blades
BR112016009592B1 (en) JOINING METHOD FOR WIND TURBINE BLADES SHELLS
US20130078105A1 (en) Rotor blade for a wind turbine
DK201270510A (en) Rotor blade for a wind turbine and methods of manufacturing the same
CN113165296B (en) Improvements relating to wind turbine blade manufacture
WO2010084320A2 (en) Composite blade
JP2017207001A (en) Wind turbine blade, wind turbine, process of manufacture for wind turbine blade and wind turbine blade connection structure
US11802541B2 (en) Method for producing a split rotor blade, and rotor blade
US20170234296A1 (en) A Reinforced Wind Turbine Blade Component
JPH11182408A (en) Windmill vane fitting device
JPH0893631A (en) Windmill blade
US11396860B2 (en) Embedding element for a wind turbine blade
WO2012041992A1 (en) Modular wind turbine blade for a vertical axis wind turbine
JP3530261B2 (en) Windmill wing
US20120027611A1 (en) Compression member for wind turbine rotor blades
EP2878806B1 (en) Manufacturing method of a wind turbine blade
Lark Fabrication of low-cost Mod-OA wood composite wind turbine blades
DK202270287A1 (en) Repair of a wind turbine blade
JP5296634B2 (en) Wind turbine for wind power generation

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020115