JPH0892676A - Nickel-based superheat resistant alloy - Google Patents

Nickel-based superheat resistant alloy

Info

Publication number
JPH0892676A
JPH0892676A JP22698994A JP22698994A JPH0892676A JP H0892676 A JPH0892676 A JP H0892676A JP 22698994 A JP22698994 A JP 22698994A JP 22698994 A JP22698994 A JP 22698994A JP H0892676 A JPH0892676 A JP H0892676A
Authority
JP
Japan
Prior art keywords
good
less
alloy
nickel
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22698994A
Other languages
Japanese (ja)
Inventor
Sadayuki Watanabe
貞幸 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP22698994A priority Critical patent/JPH0892676A/en
Publication of JPH0892676A publication Critical patent/JPH0892676A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To obtain an Ni-based superheat resistant alloy easy to melt, less liable to crack at the time of forging and excellent in various physical properties. CONSTITUTION: This alloy consists of <=0.1% C+N, <=1.0% Si, <=0.1% Mn, 2-10% Cr, 4-15% Mo, 20-40% W, 0.01-0.010%, in total, of Mg and/or B, <=0.01% S, <=0.01% P and the balance essentially Ni. This alloy has high strength at high temp. and is excellent in hot workability.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はニッケル基の超耐熱合金
に関し、溶製が容易であって諸物性のすぐれた、用途の
広い超耐熱材料を提供する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nickel-base superheat-resistant alloy, which provides a superheat-resistant material which is easy to melt and has various physical properties and which has a wide range of applications.

【0002】[0002]

【従来の技術】ニッケル基の超耐熱材料において耐熱強
度を高めるには、Niに対して多量のWを配合すればよ
いことが知られている。 W量の増大につれマトリクス
の耐熱強度が増大するので、W量最大50%程度までの
添加が試みられている。
2. Description of the Related Art It is known that a large amount of W should be added to Ni in order to increase the heat resistance strength of a nickel-based super heat resistant material. Since the heat resistance strength of the matrix increases as the W content increases, addition of up to about 50% W content has been attempted.

【0003】ところが、W量が40%を超えると、Wが
Ni中に均質に固溶しにくくなり、比重差のためWが沈
でんする傾向がみられる。 たとえば、W45%(Ni
55%)の割合で配合し真空誘導溶解−鋳造(溶解温度
は約1750℃)を行なったとき、得られたインゴット
中のW量はトップでは約40%、ボトムでは約50%と
偏りが生じる。 しかも、ルツボの底にWリッチ(70
〜80%)の材料が残って鋳型に流れ込まないという事
態も、ときに起る。
However, when the amount of W exceeds 40%, it becomes difficult for W to form a solid solution in Ni uniformly, and W tends to settle due to the difference in specific gravity. For example, W45% (Ni
55%) and vacuum induction melting-casting (melting temperature is about 1750 ° C.), the W content in the obtained ingot is biased to about 40% at the top and about 50% at the bottom. . Moreover, W-rich (70
Occasionally, there will be ~ 80% of the material left and not flowing into the mold.

【0004】このような困難を克服してW45%の合金
を溶解−鋳造したとしても、その加工は容易でない。
素材を製品形状に近づけるとともにミクロ組織を微細化
して被削性を向上させるには、インゴットの鍛造(加熱
温度は1300℃)が必要であるが、注意深くプレスし
ても、ワレが生じやすい。 これはW量が高い組成では
材料の伸びが低下するためと考えられる。
Even if such a difficulty is overcome and a W45% alloy is melted and cast, its working is not easy.
Forging the ingot (heating temperature is 1300 ° C.) is necessary to bring the material closer to the product shape and to improve the machinability by refining the microstructure, but cracks are likely to occur even with careful pressing. It is considered that this is because the elongation of the material decreases in a composition having a high W content.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、ニッ
ケル基の超耐熱合金において、高温強度を高く保ったま
まで、溶製が容易であり、かつ鍛造時にワレの生じるこ
とが少い材料を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a nickel-base super heat-resistant alloy which is easy to melt while maintaining high strength at high temperature and which is less likely to crack during forging. To provide.

【0006】[0006]

【課題を解決するための手段】本発明のニッケル基超耐
熱合金は、C+N:0.1%以下、Si:1.0%以
下、Mn:1.0%以下、Cr:2〜10%、Mo:4
〜15%以下、W:20〜40%、ならびに、Mgおよ
びBの1種または2種(2種の場合は合計量で):0.0
01〜0.010%を含有し、S:0.01%以下、
P:0.01%以下であって、残部がNiからなる合金
組成を有する。
The nickel-base superalloy according to the present invention is C + N: 0.1% or less, Si: 1.0% or less, Mn: 1.0% or less, Cr: 2-10%, Mo: 4
~ 15% or less, W: 20 to 40%, and one or two kinds of Mg and B (in the case of two kinds in total amount): 0.0
01-0.010%, S: 0.01% or less,
P: 0.01% or less, having an alloy composition with the balance being Ni.

【0007】本発明において、とくに高温強度の高い合
金を所望する場合は、上記組成においてCrおよびMoの
量を少な目にし、W量を多目にしたもの、すなわちC+
N:0.1%以下、Si:1.0%以下、Mn:1.0%
以下、Cr:2〜5%、Mo:4〜10%以下、W:3
0〜40%、ならびに、MgおよびBの1種または2種
(2種の場合は合計量で):0.001〜0.010%
を含有し、S:0.01%以下、P:0.01%以下で
あって、残部がNiからなる合金組成を採用するとよ
い。
In the present invention, when an alloy having particularly high strength at high temperature is desired, in the above composition, the amounts of Cr and Mo are made small and the amount of W is made large, that is, C +.
N: 0.1% or less, Si: 1.0% or less, Mn: 1.0%
Below, Cr: 2 to 5%, Mo: 4 to 10% or less, W: 3
0 to 40%, and one or two kinds of Mg and B (in the case of two kinds, the total amount): 0.001 to 0.010%
It is advisable to employ an alloy composition containing S, 0.01% or less, P: 0.01% or less, and the balance being Ni.

【0008】[0008]

【作用】NiにWを添加したときに、溶解を容易にし偏
析を少くするためには、W量をある程度抑えなければな
らない。 W量を抑えると当然に高温強度が低下するの
でそれをMoで補うこととし、さらに高温強度の補強と
耐酸化性の向上を企てて適量のCrを添加して成ったも
のが、本発明の合金の基本的な組成である。 上記の主
要成分を含め、各合金成分のはたらきと組成範囲の限定
理由を示せば、つぎのとおりである。
When W is added to Ni, the amount of W must be suppressed to some extent in order to facilitate dissolution and reduce segregation. When the amount of W is suppressed, the high temperature strength naturally lowers, so it is decided to supplement it with Mo, and further an appropriate amount of Cr is added in order to reinforce the high temperature strength and improve the oxidation resistance. This is the basic composition of the alloy. The functions of each alloy component including the above-mentioned main components and the reasons for limiting the composition range are as follows.

【0009】C+N:0.1%以下 CもNも固溶強化により高温強度を高めるので、少量の
存在が有用である。多量になると熱間加工性を害するの
で、CとNの合計量で0.1%を限度とする。
C + N: 0.1% or less Since both C and N enhance the high temperature strength by solid solution strengthening, the presence of a small amount is useful. Since a large amount impairs hot workability, the total amount of C and N is limited to 0.1%.

【0010】Si:1.0%以下 Siは脱酸剤として必要であるが、融点を下げ高温での
延性を低下させるので、1.0%までの添加量とする。
Si: 1.0% or less Si is necessary as a deoxidizing agent, but since it lowers the melting point and reduces the ductility at high temperatures, it is added up to 1.0%.

【0011】Mn:1.0%以下 Mnは脱酸のため添加するが、Sを固定する作用もあ
る。 高温での延性改善にも役立つが、1%を超えて存
在すると高温強度が低下する。
Mn: 1.0% or less Mn is added for deoxidation, but it also has the function of fixing S. It also helps improve ductility at high temperatures, but if present in excess of 1%, the high temperature strength will decrease.

【0012】Cr:2〜10% CrはMoやWと金属間化合物をつくり、またCと炭化
物をつくり、結晶粒の成長を抑えて組織を微細化する。
前記のように耐酸化性を向上させる効果もある。 こ
れらの効果は2%以上の添加で得られるが、10%を超
えると熱間加工性が損なわれる。
Cr: 2 to 10% Cr forms an intermetallic compound with Mo or W, and forms a carbide with C, which suppresses the growth of crystal grains and makes the structure fine.
It also has the effect of improving the oxidation resistance as described above. These effects are obtained by adding 2% or more, but if it exceeds 10%, hot workability is impaired.

【0013】Mo:4〜15% 前述のように、MoはWを助けて高温強度を高める。
また、融点を下げて鋼製インゴットモールドの使用を可
能にするし、Wより比重が小さいことから、製品重量を
下げる利益もある。 こうした効果を得るには、Mo量
にして少なくとも4%の添加を要する。 一方、多量に
なるとCやCrとの化合物が多量に生成して常温での被
削性が悪くなる。 そこで、15%を上限とする。
Mo: 4 to 15% As mentioned above, Mo assists W to enhance high temperature strength.
Further, the melting point is lowered to enable the use of a steel ingot mold, and the specific gravity is smaller than W, so that there is an advantage of reducing the product weight. In order to obtain such effects, it is necessary to add Mo in an amount of at least 4%. On the other hand, when the amount is large, a large amount of a compound with C or Cr is generated and the machinability at room temperature is deteriorated. Therefore, the upper limit is 15%.

【0014】W:20〜40% はじめに記したように、WはNi中に固溶して高温強度
を高めるが、添加量が40%を超えると偏析が大きくな
り、均質なインゴットを得ることが困難になる。 W量
を低下させて行けばこの逆であって、発明者の経験で
は、W:45%においてはインゴットの上下で±5%あ
った偏析が、40%のとき±2〜3%に減少し、35%
なら実質上ゼロに近くなる。 この種の合金に要求され
る高温強度を得るには、Wは少なくとも20%必要であ
る。
W: 20-40% As described at the beginning, W forms a solid solution in Ni to enhance the high temperature strength, but if the addition amount exceeds 40%, segregation becomes large and a homogeneous ingot can be obtained. It will be difficult. If the W content is reduced, the opposite is true. In the experience of the inventor, segregation of ± 5% above and below the ingot at W: 45% was reduced to ± 2 to 3% at 40%. , 35%
Then it will be close to zero. To obtain the high temperature strength required for this type of alloy, W must be at least 20%.

【0015】MgおよびBの1種または2種(2種の場合
は合計量で):0.001〜0.01%MgもBも熱間加
工性を向上させる作用がある。 この効果は0.001
%程度の少量で得られ、添加量を増しても比較的早く飽
和するので、0.01%を上限とする。
One or two kinds of Mg and B (total amount in the case of two kinds): 0.001 to 0.01% Both Mg and B have an action of improving hot workability. This effect is 0.001
%, And is saturated relatively quickly even if the amount added is increased, so 0.01% is made the upper limit.

【0016】S:0.01%以下、P:0.01%以下 SもPも熱間加工性を害するので、含有量は極力抑えた
い。 0.01%が許容限度である。
S: 0.01% or less, P: 0.01% or less Since both S and P impair hot workability, the content should be suppressed as much as possible. 0.01% is the acceptable limit.

【0017】[0017]

【実施例】表1に示す組成の合金を真空誘導炉で溶解
し、径70mm×長さ150mmのインゴットに鋳造した。
このインゴットから機械加工により引張試験片(平行
部の寸法:径8mm×長さ40mm)を製作し、高温引張試
験を行なった。 試験条件は、1100℃に保持15分
間、引張速度3mm/minである。 結果を、試験片製作時
の被削性(旋削性)の評価とともに、表2に示す。
Example An alloy having the composition shown in Table 1 was melted in a vacuum induction furnace and cast into an ingot having a diameter of 70 mm and a length of 150 mm.
A tensile test piece (dimension of parallel portion: diameter 8 mm × length 40 mm) was produced from this ingot by machining, and a high temperature tensile test was performed. The test conditions are 1100 ° C. for 15 minutes and a pulling rate of 3 mm / min. The results are shown in Table 2 together with the evaluation of the machinability (turning property) when the test piece was manufactured.

【0018】 表1(その1、実施例) No. C+N Si Mn W Mo Cr Mg+B P S 1 0.052 0.05 0.08 21.2 14.2 8.6 0.00051 0.003 0.002 2 0.025 0.12 0.24 22.5 13.6 7.5 0.0035 0.002 0.002 3 0.043 0.25 0.18 25.3 12.4 8.1 0.0054 0.003 0.002 4 0.018 0.33 0.53 27.2 11.7 8.8 0.0042 0.003 0.001 5 0.026 0.20 0.35 28.5 10.3 5.2 0.0032 0.002 0.001 6 0.065 0.54 0.15 29.4 10.4 6.3 0.0062 0.002 0.001 7 0.038 0.45 0.31 30.3 9.5 5.6 0.0018 0.002 0.001 8 0.035 0.22 0.43 32.3 9.2 5.8 0.0052 0.003 0.002 9 0.012 0.95 0.48 33.8 8.2 4.7 0.0062 0.004 0.001 10 0.012 0.18 0.28 34.4 8.5 5.4. 0.0048 0.002 0.001 11 0.024 0.80 0.95 35.3 8.7 4.0 0.0090 0.001 0.002 12 0.037 0.93 0.18 36.2 8.1 4.8 0.0062 0.002 0.001 13 0.088 0.74 0.84 39.4 5.4 3.2 0.0073 0.002 0.002 14 0.015 0.03 0.88 38.4 6.5 2.3 0.0038 0.002 0.001 表1(その2、比較例) No. C+N Si Mn W Mo Cr Mg+B P S 1 0.093 0.35 0.36 16.1 13.7 5.3 0.0041 0.003 0.002 2 0.082 0.50 0.41 18.8 12.4 8.6 0.0028 0.003 0.001 3 0.021 0.20 0.32 44.3 4.3 4.5 0.0072 0.004 0.001 4 0.034 0.04 0.35 49.4 4.6 4.8 0.0046 0.007 0.001 5 0.033 0.02 0.42 31.2 3.2 7.1 0.0052 0.003 0.002 6 0.026 0.18 0.56 29.6 17.1 8.3 0.0038 0.004 0.008 7 0.142 0.55 0.03 33.4 9.0 5.2 0.0066 0.002 0.007 8 0.008 1.3 0.75 34.3 8.3 4.4 0.0042 0.003 0.006 9 0.011 0.35 1.5 27.5 11.2 5.4 0.0035 0.004 0.006 10 0.032 0.46 0.34 26.3 11.4 5.9. 0.0048 0.016 0.005 11 0.056 0.38 0.26 30.8 10.6 4.3 0.0065 0.002 0.014 12 0.043 0.18 0.32 31.9 9.4 13.2 0.0076 0.003 0.005 13 0.034 0.35 0.49 29.1 10.8 4.4 0.0005 0.002 0.004 14 0.021 0.48 0.77 28.1 11.4 4.5 0.0120 0.003 0.004 重量%、残部Ni。Table 1 ( No. 1, Example) No. C + N Si Mn W Mo Mo Cr Mg + B P S 1 0.052 0.05 0.08 21.2 14.2 8.6 0.00051 0.003 0.002 2 0.025 0.12 0.24 22.5 13.6 7.5 0.0035 0.002 0.002 3 0.043 0.25 0.18 25.3 12.4 8.1 0.0054 0.003 0.002 4 0.018 0.33 0.53 27.2 11.7 8.8 0.0042 0.026 0.20 0.35 28.5 10.3 5.2 0.0032 0.002 0.001 6 0.065 0.54 0.15 29.4 10.4 6.3 0.0062 0.002 0.001 7 0.038 0.45 0.31 30.3 9.5 5.6 0.0018 0.002 0.001 8 0.035 0.22 0.43 32.3 9.2 5.8 0.0052 0.003 0.002 9 0.012 0.95 0.48 33.8 8.2 4.7 0.0062 0.004 0.001 10 0.012 0.18 0.28 34.4 8.5 5.4. 0.0048 0.002 0.001 11 0.024 0.80 0.95 35.3 8.7 4.0 0.0090 0.001 0.002 12 0.037 0.93 0.18 36.2 8.1 4.8 0.0062 0.002 0.001 13 0.088 0.74 0.84 39.4 5.4 3.2 0.0073 0.002 0.002 14 0.015 0.03 0.88 38.4 6.5 2.3 0.0038 0.002 0.001 Table 1 (Part 2, Comparative Example) No. C + N Si Mn W Mo Mo Cr Mg + B P S 1 0.093 0.35 0.36 16.1 13.7 5.3 0.0041 0.003 0.002 2 0.082 0.50 0.41 18.8 12.4 8.6 0.0028 0.003 0.001 3 0.021 0.20 0.32 44.3 4.3 4.5 0.0072 0.004 0.001 0.004 0.034 0.04 0.35 49.4 4.61 4.8 0.0046 0.004 0.033 0.02 0.42 31.2 3.2 7.1 0.0052 0.003 0.002 6 0.026 0.18 0.56 29.6 17.1 8.3 0.0038 0.004 0.008 7 0.142 0.55 0.03 33.4 9.0 5.2 0.0066 0.002 0.007 8 0.008 1.3 0.75 34.3 8.3 4.4 0.0042 0.003 0.006 9 0.011 0.35 1.5 27.5 11.2 5.4 0.0035 0.004 0.006 10 0.032 0.46 0.34 26.3 11.4 5.9.0.0048 0.016 0.005 11 0.056 0.38 0.26 30.8 10.6 4.3 0.0065 0.002 0.014 12 0.043 0.18 0.32 31.9 9.4 13.2 0.0076 0.003 0.005 13 0.034 0.35 0.49 29.1 10.8 4.4 0.0005 0.002 0.004 14 0.021 0.48 0.77 28.1 11.4 4.5 0.0120 0.003 0.004 % By weight, balance Ni.

【0019】 表2(その1、実施例) No. 引張強度 伸び 絞り 被削性 MPa % % 1 158 68 73 良 2 162 72 76 良 3 159 71 75 良 4 165 68 65 良 5 165 62 68 良 6 171 58 62 良 7 168 58 65 良 8 168 63 72 良 9 169 59 65 良 10 161 64 68 良 11 164 40 43 良 12 167 71 69 良 13 171 39 42 良 14 158 72 43 良 表2(その2、比較例) No. 引張強度 伸び 絞り 被削性 MPa % % 1 133 41 50 良 2 134 42 51 良 3 152 23 18 良 4 154 21 16 良 5 125 41 50 良 6 159 35 42 不良* 7 148 12 15 良 8 152 13 16 良 9 148 9 11 良 10 161 7 10 良 11 165 8 10 良 12 165 8 10 良 13 167 6 8 良 14 168 7 9 良 *非常に削りにくかった。Table 2 (No. 1, Example) No. Tensile Strength Elongation Draw Machinability MPa% 1 158 68 73 73 Good 2 162 172 76 76 Good 3 159 71 75 Good 4 165 68 65 Good 5 165 62 68 Good 6 171 58 62 Good 7 168 58 58 65 Good 8 168 63 72 Good 9 169 59 65 65 Good 10 161 64 68 Good 11 164 40 43 Good 12 167 71 69 69 Good 13 171 39 42 Good 14 158 72 43 (Good) Comparative Example) No. Tensile Strength Elongation Drawing Machinability MPa %% 1 133 41 50 Good 2 134 42 51 Good 3 15 2 23 23 18 Good 4 154 21 16 Good 5 125 41 50 Good 6 159 35 35 42 Poor * 7 148 12 15 Good 8 152 13 16 Good 9 148 9 11 Good 10 161 7 10 Good 11 165 8 0 Good 12 165 8 10 Good 13 167 6 8 Good 14 168 7 9 good * was difficult very shaving.

【0020】[0020]

【発明の効果】本発明のニッケル基合金は、W量が過大
でないため、溶解が容易で偏析の少いインゴットに鋳造
できる。 高温強度は高く、かつ熱間加工性がすぐれて
いて、鍛造に当ってワレの生じる心配は少く、被削性も
良好である。
EFFECTS OF THE INVENTION The nickel-base alloy of the present invention does not have an excessive W content, and therefore can be cast into an ingot which is easily melted and has less segregation. It has high high-temperature strength, excellent hot workability, less risk of cracking during forging, and good machinability.

【0021】従ってこの合金は、高温で使用する加熱炉
ないし熱処理炉の構造材料として有用であるほか、熱間
塑性加工用工具、たとえば押出し造管装置のマンドレル
やダイスに使用したとき、寿命の長い工具を与える。
Therefore, this alloy is useful as a structural material of a heating furnace or a heat treatment furnace used at a high temperature, and has a long life when used for a hot plastic working tool such as a mandrel or a die of an extrusion pipe forming apparatus. Give a tool.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 C+N:0.1%以下、Si:1.0%
以下、Mn:1.0%以下、Cr:2〜10%、Mo:
4〜15%、W:20〜40%、ならびに、Mgおよび
Bの1種または2種(2種の場合は合計量で):0.0
01〜0.010%を含有し、S:0.01%以下、P:
0.01%以下であって、残部が実質的にNiからなる
ニッケル基超耐熱合金。
1. C + N: 0.1% or less, Si: 1.0%
Hereinafter, Mn: 1.0% or less, Cr: 2 to 10%, Mo:
4 to 15%, W: 20 to 40%, and one or two kinds of Mg and B (in the case of two kinds, in a total amount): 0.0
01 to 0.010%, S: 0.01% or less, P:
Nickel-based superalloys with 0.01% or less and the balance being substantially Ni.
【請求項2】 C+N:0.1%以下、Si:1.0%
以下、Mn:1.0%以下、Cr:2〜5%、Mo:4
〜10%、W:30〜40%、ならびに、MgおよびB
の1種または2種(2種の場合は合計量で):0.00
1〜0.010%を含有し、S:0.01%以下、P:
0.01%以下であって、残部が実質的にNiからなる
ニッケル基超耐熱合金。
2. C + N: 0.1% or less, Si: 1.0%
Below, Mn: 1.0% or less, Cr: 2 to 5%, Mo: 4
-10%, W: 30-40%, and Mg and B
1 type or 2 types (in the case of 2 types, the total amount): 0.00
1 to 0.010%, S: 0.01% or less, P:
Nickel-based superalloys with 0.01% or less and the balance being substantially Ni.
JP22698994A 1994-09-21 1994-09-21 Nickel-based superheat resistant alloy Pending JPH0892676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22698994A JPH0892676A (en) 1994-09-21 1994-09-21 Nickel-based superheat resistant alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22698994A JPH0892676A (en) 1994-09-21 1994-09-21 Nickel-based superheat resistant alloy

Publications (1)

Publication Number Publication Date
JPH0892676A true JPH0892676A (en) 1996-04-09

Family

ID=16853770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22698994A Pending JPH0892676A (en) 1994-09-21 1994-09-21 Nickel-based superheat resistant alloy

Country Status (1)

Country Link
JP (1) JPH0892676A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021241585A1 (en) * 2020-05-26 2021-12-02 日立金属株式会社 Ni-based alloy for hot die, and hot-forging die using same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021241585A1 (en) * 2020-05-26 2021-12-02 日立金属株式会社 Ni-based alloy for hot die, and hot-forging die using same
JPWO2021241585A1 (en) * 2020-05-26 2021-12-02

Similar Documents

Publication Publication Date Title
JP5201708B2 (en) Ni-based heat-resistant alloy welding wire
KR20050025276A (en) Age-hardenable, corrosion resistant ni-cr-mo alloys
JPS6311638A (en) Cobalt-base alloy having high strength and high toughness and its production
JPH03274238A (en) Manufacture of high strength titanium alloy excellent in workability and its alloy material as well as plastic working method therefor
JPS6249342B2 (en)
US4456481A (en) Hot workability of age hardenable nickel base alloys
JP3597211B2 (en) Spheroidal graphite cast iron with excellent high-temperature strength
JPH0892676A (en) Nickel-based superheat resistant alloy
US4195987A (en) Weldable alloys
JPH083665A (en) Nickel-base superalloy for die excellent in oxidation resistance and high temperature strength
JPH02236239A (en) Manufacture of high temperature wear-resistant co base alloy having excellent hot workability
JP2010031301A (en) Nickel-chromium-aluminum alloy base material
JPS6046353A (en) Heat resistant steel
JPH04111962A (en) Production of high-speed tool steel
JP3451771B2 (en) High strength low thermal expansion alloy wire rod and method of manufacturing the same
US3212886A (en) High temperature alloy
JP2003183766A (en) Tool material for hot working
US1932844A (en) Aluminum alloys
JPS58107462A (en) Mold material for precipitation hardening type continuous casting
JPH07252564A (en) Ni-based alloy material excellent in corrosion resistance and strength
JP2002302725A (en) Trinickel aluminide heat-resistant alloy
EP0117932A1 (en) Improving the hot workability of an age hardenable nickel base alloy
US3625678A (en) Nickel-chromium alloys adapted for producing weldable sheet
JPS5817818B2 (en) Weldable heat-resistant nickel-based alloy
JPS6138256B2 (en)