JPH0892601A - Conductive flake powder - Google Patents

Conductive flake powder

Info

Publication number
JPH0892601A
JPH0892601A JP6229235A JP22923594A JPH0892601A JP H0892601 A JPH0892601 A JP H0892601A JP 6229235 A JP6229235 A JP 6229235A JP 22923594 A JP22923594 A JP 22923594A JP H0892601 A JPH0892601 A JP H0892601A
Authority
JP
Japan
Prior art keywords
powder
conductive
flake powder
paste
flake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6229235A
Other languages
Japanese (ja)
Inventor
Osamu Kato
理 加藤
Tamotsu Nishinakagawa
保 西中川
Akihiro Ogata
章弘 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP6229235A priority Critical patent/JPH0892601A/en
Publication of JPH0892601A publication Critical patent/JPH0892601A/en
Pending legal-status Critical Current

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE: To obtain a conductive flake powder useful to a conductive paste for cold cure in the flake powder having conductivity by specifying the ratio of the major axis to thickness, average diameter and tap density of the powder particles. CONSTITUTION: In the conductive flake powder of Ag, etc., the ratio of the major axis (1) to thickness (t) of the powder particle is limited to conform to 1/t>=10. The average particle diameter is controlled to 2-5μm by granulometry, and further, the tap density of the powder is controlled to <=30% of the true density. The conductive flake powder is mixed with a caking agent and a solvent to constitute a paste. A circuit pattern is formed by this pasty composition, the composition is heated to remove the solvent and to solidify the caking agent, and a conductor is formed. Conductivity is exhibited by contact of the particles of the conductive flake powder with one another under such conditions.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、微細電子回路の製造に
用いる導電性ペースト用粉末に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a powder for a conductive paste used for manufacturing a fine electronic circuit.

【0002】[0002]

【従来の技術】従来、ベアチップIC、フリップチップ
IC等のチップオンボード(COB)実装、その他の微
細電子回路の製造に導電性ペーストを使用している。こ
の導電性ペーストは、金属粉末等の導電性微粉末にエポ
キシ樹脂等の固化剤とブチルカルビトールアセテート等
の溶剤とを加えてペースト状としたものである。印刷な
どの方法によって基板の上に前記導電性ペーストによる
回路パターンを形成し、さらにベアチップICを装着す
るなどしてから加熱固化して電子回路とする。
2. Description of the Related Art Conventionally, conductive paste has been used for chip-on-board (COB) mounting of bare chip ICs, flip chip ICs, etc., and for manufacturing other fine electronic circuits. This conductive paste is a paste in which a solidifying agent such as epoxy resin and a solvent such as butyl carbitol acetate are added to conductive fine powder such as metal powder. A circuit pattern made of the conductive paste is formed on the substrate by a method such as printing, and a bare chip IC is mounted, and then heated and solidified to form an electronic circuit.

【0003】前記導電性ペーストを使用する電子回路の
製作において、高温で加熱固化を行い導電性ペースト中
の溶剤や固化剤を十分に取除いて残った導電性粉末を焼
結する場合には、導電性ペーストに用いる導電性粉末と
しては一般に充填性の良い球状粉末を用いる。液晶など
の耐熱温度の低いエレメントを実装する場合のように、
導電性粉末が焼結するほど十分に高温に加熱することが
できない場合には、比較的低い温度で加熱して導電性ペ
ースト中に加えた樹脂を重合固化する低温硬化法によっ
て導電体を形成する。低温硬化法の場合には、主に導電
性ペースト中に混合する導電性粉末粒子の接触によって
導電性が得られる。この導電性粉末としては、粉末を偏
平化してフレーク状とすることによって粉末粒子間の接
触面積を増加させ導電性を向上したフレーク粉末を用い
る。
In manufacturing an electronic circuit using the above-mentioned conductive paste, when heating and solidifying at high temperature to sufficiently remove the solvent and solidifying agent in the conductive paste and sinter the remaining conductive powder, As the conductive powder used for the conductive paste, a spherical powder having a good filling property is generally used. As when mounting an element with a low heat resistant temperature such as liquid crystal,
If the conductive powder cannot be heated to a temperature high enough to sinter, a conductor is formed by a low temperature curing method in which the resin added to the conductive paste is polymerized and solidified by heating at a relatively low temperature. . In the case of the low temperature curing method, conductivity is obtained mainly by contact of the conductive powder particles mixed in the conductive paste. As the conductive powder, flake powder in which the contact area between the powder particles is increased by flattening the powder into flakes to improve the conductivity is used.

【0004】[0004]

【発明が解決しようとする課題】しかし、電子材料とし
て一般に使用されているフレーク粉末、例えばAgのフ
レーク粉末はタップ密度が2〜2.5g/cm3 (真密
度の19〜24%)と低いので、ペースト化にあたって
粉末粒子間の空間を埋める樹脂成分を多く必要とする。
そのため、導電性粉末として従来のフレーク粉末を用い
た場合には比抵抗が10-2〜10-3Ωcm程度と大きい
値となり、電極間のファインピッチ化の要求に適応し得
るほどに断面積の小さい導体膜とするために必要な比抵
抗5×10 -4Ωcm以下の導体膜を得ることは困難であ
った。
However, as an electronic material,
Commonly used flake powders such as Ag flakes
Lake powder has a tap density of 2 to 2.5 g / cm3(Closeness
Since it is as low as 19 to 24%), when making it into a paste
Many resin components are required to fill the space between the powder particles.
Therefore, use conventional flake powder as the conductive powder.
If the resistance is 10-2-10-3Ωcm and large
Value, which can meet the demand for fine pitch between electrodes
The specific resistance required to obtain a conductor film with a smaller cross-sectional area
Anti 5 × 10 -FourIt is difficult to obtain a conductor film of Ωcm or less
It was.

【0005】以上の現状に鑑みて、本発明が解決しよう
とする課題は、低温硬化法によって比抵抗が小さい導体
膜を形成することができる低温硬化用導電性ペーストに
用いる導電性フレーク粉末を提供することにある。
In view of the above circumstances, the problem to be solved by the present invention is to provide a conductive flake powder used for a low temperature curing conductive paste capable of forming a conductor film having a small specific resistance by a low temperature curing method. To do.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するため
の本発明による導電性フレーク粉末は、導電性を有する
フレーク粉末において、前記フレーク粉末の粉末粒子の
長径(l)と厚み(t)の比l/t≧10であり、前記
フレーク粉末の平均粒子径が粒ゲージで測定して2〜5
μmであり、前記フレーク粉末のタップ密度が真密度の
30%以上であることを特徴とする。
The conductive flake powder according to the present invention for achieving the above-mentioned object is a conductive flake powder having a major axis (l) and a thickness (t) of powder particles of the flake powder. The ratio 1 / t ≧ 10, and the average particle diameter of the flake powder is 2 to 5 as measured by a particle gauge.
μm, and the tap density of the flake powder is 30% or more of the true density.

【0007】本発明の導電性フレーク粉末は、低温硬化
用導電性ペーストに用いる。すなわち、前記導電性フレ
ーク粉末を固化剤および溶剤と混合してペースト状と
し、前記ペースト状組成物によって回路パターンを形成
し、加熱して溶剤を除去するとともに固化剤を硬化して
導電体を形成する。この状態において、前記導電性フレ
ーク粉末の各粒子は互に接触することによって導電性を
発揮する。前記フレーク粉末の製造は例えば原料粉をボ
ールミル等によって押しつぶし、所定形状のフレーク状
に調整することによって得られる。
The conductive flake powder of the present invention is used in a low temperature curing conductive paste. That is, the conductive flake powder is mixed with a solidifying agent and a solvent to form a paste, a circuit pattern is formed by the paste composition, the solvent is removed by heating and the solidifying agent is hardened to form a conductor. To do. In this state, the particles of the conductive flake powder exhibit conductivity by contacting each other. The flake powder can be produced, for example, by crushing the raw material powder with a ball mill or the like and adjusting it into flakes having a predetermined shape.

【0008】ここで、フレーク粉末粒子の長径と厚みの
比が10未満では形成する前記導電体の比抵抗が大きく
なるため、微細電子回路用として十分に比抵抗の小さい
導体膜を得るためには長径と厚みの比を10以上とする
ことが必要である。フレーク粉末の平均粒子径が小さい
と、ペーストの流動性が劣化して回路パターンを形成す
る際の作業性が悪くなる。従って、ペーストの流動性を
保持するためにペーストに多量の固化剤を添加すること
が必要となり、形成した導電体の比抵抗が大きくなる。
このため、フレーク粉末の平均粒子径の下限は2μmと
する。
If the ratio of the major axis of the flake powder particles to the thickness is less than 10, the specific resistance of the conductor to be formed becomes large. Therefore, in order to obtain a conductor film having a sufficiently small specific resistance for a fine electronic circuit. It is necessary to set the ratio of major axis to thickness to 10 or more. When the average particle diameter of the flake powder is small, the fluidity of the paste is deteriorated and the workability in forming a circuit pattern is deteriorated. Therefore, it is necessary to add a large amount of a solidifying agent to the paste in order to maintain the fluidity of the paste, and the specific resistance of the formed conductor increases.
Therefore, the lower limit of the average particle size of the flake powder is 2 μm.

【0009】フレーク粉末の平均粒子径が大き過ぎる
と、ペーストとしたときにペーストの延びがわるく、回
路パターンを印刷によって形成するときに印刷むらを生
じるなどの不都合を生じる。このため、フレーク粉末の
平均粒子径の上限は5μmとする。なお、平均粒子径
は、通常この種のペースト状組成物の平均粒子径の測定
に用いられる粒ゲージ法によって測定する。
If the average particle size of the flake powder is too large, the paste does not spread well when formed into a paste, and printing irregularities occur when a circuit pattern is formed by printing. Therefore, the upper limit of the average particle size of the flake powder is 5 μm. The average particle size is usually measured by the particle gauge method used for measuring the average particle size of this type of paste composition.

【0010】フレーク粉末のタップ密度が低いと、形成
する前記導電体の比抵抗が大きくなる。前記導電体の比
抵抗を十分に小さくするためには、フレーク粉末のタッ
プ密度を真密度の30%以上とする必要がある。
If the tap density of the flake powder is low, the specific resistance of the conductor formed will be high. In order to sufficiently reduce the specific resistance of the conductor, the tap density of the flake powder needs to be 30% or more of the true density.

【0011】[0011]

【実施例】以下、本発明の実施例を詳細に説明する。化
学的液相還元法によって作成した粒子径およそ1μmの
金属粉末を遊星ボールミルで処理してフレーク粉末を得
た。これらのフレーク粉末について、粉末粒子の長径と
厚みの比、平均粒径、タップ密度を測定した。それぞれ
の測定方法は次の通りである。
EXAMPLES Examples of the present invention will be described in detail below. Flake powder was obtained by treating a metal powder having a particle diameter of about 1 μm prepared by a chemical liquid phase reduction method with a planetary ball mill. With respect to these flake powders, the ratio of the long diameter to the thickness of the powder particles, the average particle diameter, and the tap density were measured. Each measuring method is as follows.

【0012】粉末粒子の長径と厚み:粉末試料にエポキ
シ樹脂、ブチルカルビトールアセテートを加えてペース
ト化し、これをガラス基板に厚さ5μmに印刷し、温度
120℃で1時間加熱してエポキシ樹脂を硬化し、ガラ
ス基板上に導体膜を作成した。前記導体膜をガラス基板
とともに破折し、導体膜破面に現れた粉末粒子の破面を
走査型電子顕微鏡で観察し粉末粒子の長径と厚みを測定
した。
Major axis and thickness of powder particles: Epoxy resin and butyl carbitol acetate were added to a powder sample to form a paste, which was printed on a glass substrate to a thickness of 5 μm and heated at a temperature of 120 ° C. for 1 hour to form an epoxy resin. After curing, a conductor film was formed on the glass substrate. The conductor film was fractured together with the glass substrate, and the fracture surface of the powder particles appearing on the fracture surface of the conductor film was observed with a scanning electron microscope to measure the major axis and thickness of the powder particles.

【0013】平均粒径:前記と同様にして作成したペー
ストを、粒ゲージ法によって測定した。粒ゲージ法はテ
ーパーゲージ上にペーストを載せてスクレーパで引いた
とき、ペースト面にかき疵が現れるところを測定する方
法であり、ペーストが50%かき取られたところの粒径
を平均粒径とした。 タップ密度:日本粉末冶金工業会規格 JPMA P−
08(金属粉のタップ密度試験方法)によって測定し
た。
Average particle size: The paste prepared as described above was measured by the particle gauge method. The grain gauge method is a method in which when a paste is placed on a taper gauge and pulled by a scraper, the scratches appearing on the paste surface appear, and the particle size at which 50% of the paste is scraped off is the average particle size. did. Tap Density: Japan Powder Metallurgical Industry Association Standard JPMA P-
08 (metal powder tap density test method).

【0014】前記フレーク粉末に、エポキシ樹脂および
溶剤としてブチルカルビトールアセテートのそれぞれ所
定量を加えて、乳鉢でよく混合してペーストとした。前
記ペーストを用いてガラス基板に幅3mm、長さ60m
m、厚さ20μmの厚膜パターンを印刷し、これを温度
120℃で1時間加熱して前記厚膜パターンを硬化して
試験体とした。前記試験体について4探子法によって電
気抵抗を測定し、比抵抗の値を算出した。それらの結果
を表1に示す。
A predetermined amount of each of epoxy resin and butyl carbitol acetate as a solvent was added to the flake powder and mixed well in a mortar to form a paste. Width 3mm, length 60m on the glass substrate using the paste
A thick film pattern having a thickness of m and a thickness of 20 μm was printed, and this was heated at a temperature of 120 ° C. for 1 hour to cure the thick film pattern to obtain a test body. The electrical resistance of the test body was measured by the 4-probe method, and the specific resistance value was calculated. The results are shown in Table 1.

【0015】印刷むら:ガラスパターンに厚膜を印刷
し、肉眼で印刷面のかすれ、むら等を観察した。
Print unevenness: A thick film was printed on a glass pattern, and the print surface was visually observed for blurring, unevenness, and the like.

【0016】[0016]

【表1】 [Table 1]

【0017】表1から判るように、本発明の導電性フレ
ーク粉末を用いることによって、ベアチップICの高密
度実装等に必要な5×10-4Ωcm以下の低い比抵抗を
有する導電膜が得られる。以上、本発明の実施例として
金属微粉末を用いた導電性フレーク粉末について例示し
たが、本発明の導電性フレーク粉末としては導電性を有
し、かつ、フレーク状にすることができる微粉末、例え
ばグラファイト粉末を用いることができることは言うま
でもない。
As can be seen from Table 1, by using the conductive flake powder of the present invention, a conductive film having a low specific resistance of 5 × 10 −4 Ωcm or less necessary for high-density mounting of bare chip ICs can be obtained. . As mentioned above, the conductive flake powder using the fine metal powder as an example of the present invention is illustrated, but the conductive flake powder of the present invention has conductivity, and a fine powder that can be made into a flake shape, Needless to say, for example, graphite powder can be used.

【0018】[0018]

【発明の効果】以上説明したように、本発明によると、
低温硬化法によって比抵抗が低い導体膜を形成すること
ができる低温硬化用導電性ペーストに用いる導電性フレ
ーク粉末を提供することができるという効果がある。
As described above, according to the present invention,
There is an effect that it is possible to provide a conductive flake powder used for a low temperature curing conductive paste capable of forming a conductor film having a low specific resistance by the low temperature curing method.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 導電性を有するフレーク粉末において、 前記フレーク粉末の粉末粒子の長径(l)と厚み(t)
の比l/t≧10であり、 前記フレーク粉末の平均粒子径が粒ゲージで測定して2
〜5μmであり、 前記フレーク粉末のタップ密度が真密度の30%以上で
あることを特徴とする導電性フレーク粉末。
1. A flake powder having electrical conductivity, wherein the major axis (1) and the thickness (t) of the powder particles of the flake powder.
Is 1 / t ≧ 10, and the average particle size of the flake powder is 2 when measured with a particle gauge.
The conductive flake powder has a tap density of 30% or more of the true density.
JP6229235A 1994-09-26 1994-09-26 Conductive flake powder Pending JPH0892601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6229235A JPH0892601A (en) 1994-09-26 1994-09-26 Conductive flake powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6229235A JPH0892601A (en) 1994-09-26 1994-09-26 Conductive flake powder

Publications (1)

Publication Number Publication Date
JPH0892601A true JPH0892601A (en) 1996-04-09

Family

ID=16888951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6229235A Pending JPH0892601A (en) 1994-09-26 1994-09-26 Conductive flake powder

Country Status (1)

Country Link
JP (1) JPH0892601A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009105045A (en) * 2007-10-12 2009-05-14 Cheil Industries Inc Electrode forming composition containing aluminum content of flake shape and electrode manufactured by using the composition
JP2011134630A (en) * 2009-12-25 2011-07-07 Jsr Corp Conductive paste

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009105045A (en) * 2007-10-12 2009-05-14 Cheil Industries Inc Electrode forming composition containing aluminum content of flake shape and electrode manufactured by using the composition
JP2011134630A (en) * 2009-12-25 2011-07-07 Jsr Corp Conductive paste

Similar Documents

Publication Publication Date Title
JP6884285B2 (en) Bonding composition, bonding structure of conductor and method for manufacturing the same
KR102011166B1 (en) Silver-coated copper alloy powder and method for manufacturing same
CA2426861C (en) Conductive metal paste
EP1884960A1 (en) Conductive paste and wiring board using it
KR102077115B1 (en) Silver coated graphite particles, silver coated graphite mixed powder and production method thereof, and conductive paste
JP6900278B2 (en) Silver coated alloy powder, conductive paste, electronic components and electrical equipment
KR100678533B1 (en) Conductive powder and method for preparing the same
JP2004111254A (en) Metal contained composition for electrical connection of electronic device
JP2008091250A (en) Low-temperature calcination type silver paste
CN85105454A (en) Composites with low ohmic value
CN110335700B (en) High-temperature sintering type yellow light conductive paste, conductive circuit and preparation method
KR102574302B1 (en) Silver alloy powder and manufacturing method thereof
JP2013136818A (en) Copper powder
WO2006118182A1 (en) Tin powder, process for producing tin powder, and tin powder-containing elctrically conductive paste
JP2004111253A (en) Conductive composition for electrical connection of electronic device, and electron device
JP2010236039A (en) Flaky silver powder, its production method and conductive paste
JPH0892601A (en) Conductive flake powder
JP7544697B2 (en) Copper powder for additive manufacturing, and manufacturing method for additive manufacturing body
JP2008235198A (en) Conductive powder, conductive paste, conductive sheet, circuit board, and electronic component mounting circuit board
JP5609492B2 (en) Electronic component and manufacturing method thereof
JP3368420B2 (en) Uniform molybdenum powder and method for producing the same
JPH03167713A (en) Conductive paste burnable at low temperature and burning method thereof
JP2006196246A (en) Conductive paste and wiring circuit board using it
JPH0931402A (en) Production of carbon-based conductive paste
JP2012136771A (en) Method of producing surface-modified copper particle, method of producing composition for forming conductor, method of producing conductor film, and article having the conductor film