JPH0890151A - Resin coated sand composition for shell mold - Google Patents

Resin coated sand composition for shell mold

Info

Publication number
JPH0890151A
JPH0890151A JP23369194A JP23369194A JPH0890151A JP H0890151 A JPH0890151 A JP H0890151A JP 23369194 A JP23369194 A JP 23369194A JP 23369194 A JP23369194 A JP 23369194A JP H0890151 A JPH0890151 A JP H0890151A
Authority
JP
Japan
Prior art keywords
resin
parts
coated sand
sand
refractory material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23369194A
Other languages
Japanese (ja)
Inventor
Toshiaki Nishimura
敏秋 西村
Shigeru Nemoto
茂 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Durez Co Ltd
Original Assignee
Sumitomo Durez Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Durez Co Ltd filed Critical Sumitomo Durez Co Ltd
Priority to JP23369194A priority Critical patent/JPH0890151A/en
Publication of JPH0890151A publication Critical patent/JPH0890151A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To enhance the strength of a shell mold by resin coated sand by incorporating a polyamide resin into a phenolic resin and specifying the melt viscosity at a specific temp. to a specific poise. CONSTITUTION: The resin coated sand is formed by coating a refractory material for castings having the moisture adsorbability of the refractory material of >=0.6% with the phenolic resin. The phenolic resin contg. the polyamide resin and having the melt viscosity of 5 to 20 poises at 150 deg.C is used. The amt. of the polyamide resin to be incorporated into the phenolic resin is specified to 1 to 20wt.%. The phenolic resin contg. the polyamide resin is effective for the refractory material having the high moisture adsorbability. The phenolic resin is a solid phenolic resin obtd. by bringing phenols and aldehydes into reaction in the presence of a catalyst. As a result, this resin coated sand compsn. is adequate for production of the resin coated sand for industrial shell molds.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は鋳物用鋳型を成型する際
に用いられるシェルモールド用レジンコーテッドサンド
組成物に係り、高度の鋳型強度を具備するシェルモール
ド用レジンコーテッドサンド組成物に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resin coated sand composition for shell molds used when molding a casting mold, and relates to a resin coated sand composition for shell molds having a high mold strength. .

【0002】[0002]

【従来の技術】鋳物砂用の耐火材料は一般に珪砂、クロ
マイト砂、オリビン砂、ジルコン砂またはこれらの再生
砂などが使用されているが、これらの砂の生成履歴によ
り砂の表面状態の変動により、水分吸着能が高い場合が
ある。特に鋳造後の排砂を回収し、リクレーマー法又は
流動床による加熱処理法により再生された再生砂はこの
傾向が顕著である。水分吸着能の高い耐火材料を用いた
シェルモールド用レジンコーテッドサンドは鋳型の強度
が低いという欠点があった。この原因は結合剤として使
用されているフェノール樹脂が鋳型の造型時に耐火材料
の表面の細孔、クラックなどに吸収されるため砂粒子間
結合に寄与しうる有効樹脂量が減少するためと考えられ
ている。この欠点を解決するため低粘性の樹脂類による
予備コーティングを行った後、本コーティングを行う方
法が試みられているが、鋳型の強度の向上には不充分で
あった。
2. Description of the Related Art Generally, silica sand, chromite sand, olivine sand, zircon sand or recycled sand of these are used as a refractory material for foundry sand. In some cases, the water adsorption capacity is high. This tendency is particularly remarkable in the reclaimed sand that is recovered by the reclaimer method or the heat treatment method using a fluidized bed after collecting the discharged sand after casting. The resin coated sand for shell molds, which uses a refractory material having a high water adsorption capacity, has a drawback that the strength of the mold is low. This is probably because the phenolic resin used as a binder is absorbed by the pores and cracks on the surface of the refractory material during molding of the mold, and the amount of effective resin that can contribute to the bond between sand particles decreases. ing. In order to solve this drawback, there has been attempted a method of performing preliminary coating with a low-viscosity resin and then performing this coating, but it was not sufficient to improve the strength of the mold.

【0003】[0003]

【発明が解決しようとする課題】本発明は従来水分吸着
能の高い耐火材料を用いたシェルモールド用レジンコー
テッドサンドは鋳型の強度が低いという欠点を改良し、
且つレジンコーテッドサンドの製造時の作業性、及び造
型時の硬化性及び作業性を低下させないフェノール樹脂
を得んとし鋭意研究した結果、ポリアミド樹脂を内含し
150℃における溶融粘度が5〜20ポイズである、限
定されたフェノール樹脂を使用することによりきわめて
良好な特性が得られることを見い出した。
DISCLOSURE OF THE INVENTION The present invention overcomes the drawback that the strength of the mold is low in the resin coated sand for shell molds, which uses a refractory material having a high water adsorption capacity.
Moreover, as a result of diligent research aimed at obtaining a phenol resin which does not deteriorate workability at the time of manufacturing the resin coated sand and curability and workability at the time of molding, a melt viscosity at 150 ° C. including a polyamide resin is 5 to 20 poises. It has been found that very good properties are obtained by using a limited phenolic resin which is

【0004】[0004]

【課題を解決するための手段】本発明はフエノール樹脂
で耐火材料の水分吸着能が0.6%以上である鋳物用耐
火材料を被覆したレジンコーテッドサンドにおいて、フ
エノール樹脂がポリアミド樹脂を内含し150℃におけ
る溶融粘度が5〜20ポイズである、限定されたフェノ
ール樹脂を使用することによりきわめて良好な特性を有
するレジンコーテッドサンド組成物が得られることを見
い出し本発明を完成した。
DISCLOSURE OF THE INVENTION The present invention provides a resin coated sand coated with a refractory material for castings, which has a water adsorption capacity of 0.6% or more, and the phenol resin contains a polyamide resin. It was found that a resin coated sand composition having extremely good properties can be obtained by using a limited phenol resin having a melt viscosity of 5 to 20 poises at 150 ° C. and completed the present invention.

【0005】ここで耐火材料の水分吸着能とは耐火材料
の表面状態に関係する特性値であって、試験法はJAC
T試験法:S−8に詳細に記載されている。即ち耐火材
料を水中に充分浸漬したのち遠心分離機にかけ余分な水
を分離する。その後乾燥処理して耐火材料に吸着した水
分量を乾燥耐火材料の試料量で除した値である。通常の
新砂又は砂表面が充分研磨処理された再生砂の水分吸着
能は0.5%以下である。しかし研磨処理が不充分で砂
表面に海綿状の不純物が付着していたり、微粉分の除去
が不充分な砂の場合水分吸着能値は上昇の傾向にある。
The water adsorption capacity of the refractory material is a characteristic value related to the surface condition of the refractory material, and the test method is JAC.
T test method: S-8 is described in detail. That is, the refractory material is sufficiently immersed in water and then centrifuged to separate excess water. It is a value obtained by dividing the amount of water adsorbed on the refractory material after the drying treatment by the sample amount of the dried refractory material. Normal fresh sand or regenerated sand whose sand surface has been sufficiently polished has a water adsorption capacity of 0.5% or less. However, if the polishing treatment is insufficient and spongy impurities are adhered to the sand surface, or if the removal of fine powder is insufficient, the water adsorption capacity tends to increase.

【0006】本発明のポリアミド樹脂を内含したフエノ
ール樹脂は水分吸着能の高い耐火材料に有効である。本
発明において、フェノール樹脂はフェノール類とアルデ
ヒド類を触媒の存在下で反応して得られた固形のフェノ
ール樹脂である。原料として使用されるフェノール類
は、フェノール、クレゾール、キシレノールなどである
が、ビスフェノール類、尿素、メラミンなどを共存せし
めたものも使用できる。また、アルデヒド類はホルマリ
ン、パラホルムアルデヒド、トリオキサンなどアルデヒ
ド源となるものが使用できる。反応触媒は蓚酸、硫酸、
塩酸などの酸性物質である。ポリアミド樹脂はナイロン
6、ナイロン66、ナイロン610、ナイロン11、ナ
イロン12及びこれらの混合物である。
The phenol resin containing the polyamide resin of the present invention is effective as a refractory material having a high water adsorption capacity. In the present invention, the phenol resin is a solid phenol resin obtained by reacting phenols and aldehydes in the presence of a catalyst. Phenols used as a raw material are phenol, cresol, xylenol and the like, but those in which bisphenols, urea, melamine and the like are allowed to coexist can also be used. As the aldehyde, formalin, paraformaldehyde, trioxane or the like which can be an aldehyde source can be used. The reaction catalyst is oxalic acid, sulfuric acid,
It is an acidic substance such as hydrochloric acid. The polyamide resin is nylon 6, nylon 66, nylon 610, nylon 11, nylon 12, and mixtures thereof.

【0007】ポリアミド樹脂をフェノール樹脂に内含す
る方法としてはフェノール樹脂の反応開始前にポリアミ
ド樹脂をフェノールに溶解する方法、フェノール樹脂の
反応終了後にポリアミド樹脂を溶融混合する方法のいづ
れでもよい。フェノール樹脂に内含するポリアミド樹脂
量は1〜20重量%である。ポリアミド樹脂量が1重量
%未満では樹脂内含の効果が乏しく鋳型強度の向上がな
い。ポリアミド樹脂量は20重量%を越えるとフェノー
ル樹脂との相溶性が悪くなり且つ溶融粘度が高くなり鋳
型強度の向上とならない。
The method of incorporating the polyamide resin into the phenol resin may be either a method of dissolving the polyamide resin in phenol before the reaction of the phenol resin or a method of melt mixing the polyamide resin after the reaction of the phenol resin. The amount of polyamide resin contained in the phenol resin is 1 to 20% by weight. If the amount of polyamide resin is less than 1% by weight, the effect of inclusion in the resin is poor and the mold strength is not improved. When the amount of the polyamide resin exceeds 20% by weight, the compatibility with the phenol resin becomes poor and the melt viscosity becomes high so that the mold strength cannot be improved.

【0008】ポリアミド樹脂を内含したフェノール樹脂
の150℃における溶融粘度は5〜20ポイズである。
この溶融粘度が5ポイズ未満では樹脂が鋳型の造型時に
耐火材料の表面の細孔、クラックなどに吸収されるため
鋳型強度の向上とならない。20ポイズを越えると樹脂
の砂表面へのコーティング性が低下して鋳型強度は低下
する。かかる溶融粘度の調整はフェノール樹脂の分子量
の選択、ポリアミド樹脂の内含量の調整、フェノール類
モノマーの添加により行うことができる。
The melt viscosity of a phenol resin containing a polyamide resin at 150 ° C. is 5 to 20 poise.
If the melt viscosity is less than 5 poise, the resin is absorbed by the pores and cracks on the surface of the refractory material during the molding of the mold, so that the mold strength cannot be improved. When it exceeds 20 poise, the coating property of the resin on the sand surface is deteriorated and the mold strength is deteriorated. The melt viscosity can be adjusted by selecting the molecular weight of the phenol resin, adjusting the content of the polyamide resin, and adding a phenolic monomer.

【0009】本発明におけるポリアミド樹脂を内含する
フェノール樹脂を用いてなるレジンコーテッドサンドに
よる鋳型の強度を更に向上するために、滑剤及びシラン
カップリング剤を樹脂の製造時に添加し内含させること
は可能である。滑剤としてはエチレンビスステアリン酸
アマイド、メチレンビスステアリン酸アマイド、オキシ
ステアリン酸アマイド、ステアリン酸アマイド、メチロ
ールステアリン酸アマイド、などが使用され、シランカ
ップリング剤としてはアミノシラン、エポキシシラン、
ビニルシランなどが使用される。本発明に採用されるレ
ジンコーテッドサンドの製造方法としてはドライホット
コート法が推奨される。
In order to further improve the strength of the mold by the resin coated sand which uses the phenol resin containing the polyamide resin in the present invention, it is not necessary to add the lubricant and the silane coupling agent at the time of producing the resin. It is possible. As the lubricant, ethylene bis-stearic acid amide, methylene bis-stearic acid amide, oxystearic acid amide, stearic acid amide, methylol stearic acid amide, etc. are used, and as the silane coupling agent, aminosilane, epoxysilane,
Vinylsilane or the like is used. The dry hot coat method is recommended as the method for producing the resin coated sand employed in the present invention.

【0010】[0010]

【作用】本発明において、ポリアミド樹脂を内含するフ
ェノール樹脂を用いたレジンコーテッドサンドが鋳型強
度を向上させる理由としては、フェノール樹脂との相溶
性のよいポリアミド樹脂が他特性を損なうことなく砂表
面と樹脂成分との接着性を向上させ、溶融粘度の適正化
と相俟ってによって砂表面へ吸着される樹脂量を減少さ
せることができるためと推定している。
In the present invention, the reason why the resin coated sand using the phenol resin containing the polyamide resin improves the mold strength is that the polyamide resin having good compatibility with the phenol resin does not impair other properties. It is presumed that the amount of resin adsorbed on the sand surface can be reduced by improving the adhesiveness between the resin component and the resin component and by optimizing the melt viscosity.

【0011】[0011]

【実施例】以下本発明を実施例により説明する。しかし
本発明はこれらの実施例によって限定されるものではな
い。また製造例、実施例、比較例に記載されている
「部」及び、「%」はすべて「重量部」及び、「重量
%」を示す。
EXAMPLES The present invention will be described below with reference to examples. However, the present invention is not limited to these examples. Further, "parts" and "%" described in Production Examples, Examples and Comparative Examples all represent "parts by weight" and "% by weight".

【0012】[製造例1]冷却器と撹拌器付きの反応容
器にフェノール1000部を仕込み120±10℃に加
熱、撹拌しながらナイロン6、60部を徐々に添加して
溶解した。次いで10部の蓚酸を仕込んだ後37%のホ
ルマリン518部を60分かけて添加し、更に60分還
流状態に維持した。次いで真空下で脱水反応を行い温度
が180℃に到達した時、エチレンビスステアリン酸ア
マイド12部、γ−アミノトリエトキシシラン5部を添
加混合した。次いで反応容器より排出し急冷しポリアミ
ド樹脂を内含したフェノール樹脂1040部を得た。こ
の樹脂の150℃における溶融粘度は8ポイズであっ
た。
[Production Example 1] 1000 parts of phenol was charged into a reaction vessel equipped with a condenser and a stirrer, heated to 120 ± 10 ° C., and while stirring, 6 parts of nylon 6 was gradually added and dissolved. Next, after 10 parts of oxalic acid was charged, 518 parts of 37% formalin was added over 60 minutes, and the state of reflux was further maintained for 60 minutes. Next, dehydration reaction was performed under vacuum, and when the temperature reached 180 ° C., 12 parts of ethylenebisstearic acid amide and 5 parts of γ-aminotriethoxysilane were added and mixed. Then, it was discharged from the reaction vessel and rapidly cooled to obtain 1040 parts of a phenol resin containing a polyamide resin. The melt viscosity of this resin at 150 ° C. was 8 poises.

【0013】[製造例2]製造例1においてナイロン6
に替えてナイロン66を用いて同じ反応方法にてポリア
ミド樹脂を内含したフェノール樹脂1050部を得た。
この樹脂の150℃における溶融粘度は12ポイズであ
った。
[Production Example 2] Nylon 6 in Production Example 1
In place of Nylon 66, 650 parts of a phenol resin containing a polyamide resin was obtained by the same reaction method.
The melt viscosity of this resin at 150 ° C. was 12 poise.

【0014】[製造例3]冷却器と撹拌器付きの反応容
器にフェノール1000部、蓚酸10部を仕込み、98
℃まで加熱した後37%のホルマリン518部を60分
かけて添加し、更に60分還流状態に維持した。次いで
真空下で脱水反応を行い温度が180℃に到達した時脱
水反応を終了しナイロン6、80部を徐々に添加して2
30℃に加熱しナイロン6を溶融混合した。160℃ま
で内容物を冷却した後、エチレンビスステアリン酸アマ
イド12部、γ−アミノトリエトキシシラン5部を添加
混合した。次いで反応容器より排出し急冷しポリアミド
樹脂を内含したフェノール樹脂1020部を得た。この
樹脂の150℃における溶融粘度は15ポイズであっ
た。
[Production Example 3] A reaction vessel equipped with a condenser and a stirrer was charged with 1000 parts of phenol and 10 parts of oxalic acid, and 98
After heating to 0 ° C., 518 parts of 37% formalin was added over 60 minutes, and the state of reflux was further maintained for 60 minutes. Then, the dehydration reaction is performed under vacuum, and when the temperature reaches 180 ° C., the dehydration reaction is terminated, and nylon 6, 80 parts is gradually added to
Nylon 6 was melt-mixed by heating to 30 ° C. After cooling the content to 160 ° C., 12 parts of ethylenebisstearic acid amide and 5 parts of γ-aminotriethoxysilane were added and mixed. Then, it was discharged from the reaction vessel and rapidly cooled to obtain 1020 parts of a phenol resin containing a polyamide resin. The melt viscosity of this resin at 150 ° C. was 15 poise.

【0015】[製造例4(比較例)]冷却器と撹拌器付
きの反応容器にフェノール1000部、蓚酸10部を仕
込み、98℃まで加熱した後37%のホルマリン518
部を60分かけて添加し、更に60分還流状態に維持し
た。次いで真空下で脱水反応を行い温度が180℃に到
達した時脱水反応を終了し160℃まで内容物を冷却し
た後、エチレンビスステアリン酸アマイド12部、γ−
アミノトリエトキシシラン5部を添加混合した。次いで
反応容器より排出し急冷したフェノール樹脂960部を
得た。この樹脂の150℃における溶融粘度は4ポイズ
であった。
Production Example 4 (Comparative Example) 1000 parts of phenol and 10 parts of oxalic acid were placed in a reaction vessel equipped with a condenser and a stirrer, heated to 98 ° C. and then 37% formalin 518.
Parts were added over 60 minutes and maintained at reflux for an additional 60 minutes. Next, dehydration reaction is performed under vacuum, and when the temperature reaches 180 ° C., the dehydration reaction is terminated and the content is cooled to 160 ° C., then 12 parts of ethylenebisstearic acid amide, γ-
5 parts of aminotriethoxysilane was added and mixed. Then, 960 parts of a phenol resin which was discharged from the reaction vessel and rapidly cooled was obtained. The melt viscosity of this resin at 150 ° C. was 4 poises.

【0016】[製造例5(比較例)]冷却器と撹拌器付
きの反応容器にフェノール1000部、蓚酸10部を仕
込み、98℃まで加熱した後37%のホルマリン647
部を60分かけて添加し、更に60分還流状態に維持し
た。次いで真空下で脱水反応を行い温度が180℃に到
達した時脱水反応を終了し160℃まで内容物を冷却し
た後、エチレンビスステアリン酸アマイド12部、γ−
アミノトリエトキシシラン5部を添加混合した。次いで
反応容器より排出し急冷したフェノール樹脂1050部
を得た。この樹脂の150℃における溶融粘度は10ポ
イズであった。
Production Example 5 (Comparative Example) 1000 parts of phenol and 10 parts of oxalic acid were placed in a reaction vessel equipped with a condenser and a stirrer, heated to 98 ° C. and then 37% formalin 647.
Parts were added over 60 minutes and maintained at reflux for an additional 60 minutes. Next, dehydration reaction is performed under vacuum, and when the temperature reaches 180 ° C., the dehydration reaction is terminated and the content is cooled to 160 ° C., then 12 parts of ethylenebisstearic acid amide, γ-
5 parts of aminotriethoxysilane was added and mixed. Then, 1050 parts of a phenol resin which was discharged from the reaction vessel and rapidly cooled was obtained. The melt viscosity of this resin at 150 ° C. was 10 poise.

【0017】《実施例1》温度140〜150℃に加熱
した水分吸着能1.0%の再生珪砂8000部をワール
ミキサーに仕込み、製造例1にて得られたポリアミド樹
脂を内含したフェノール樹脂200部を添加した後45
秒間混練した。次いでヘキサメチレンテトラミン30部
を水88部に溶解したヘキサメチレンテトラミン水溶液
を添加し、コーテッドサンドが崩壊するまで空冷しなが
ら混練し、更にステアリン酸カルシウム8部を添加し2
0秒混練を行った後、ミキサーより排出しレジンコーテ
ッドサンドを得た。
Example 1 8000 parts of regenerated silica sand having a water adsorption capacity of 1.0% heated to a temperature of 140 to 150 ° C. was charged into a whirl mixer, and the phenol resin containing the polyamide resin obtained in Production Example 1 was included. 45 after adding 200 parts
Knead for 2 seconds. Next, an aqueous hexamethylenetetramine solution prepared by dissolving 30 parts of hexamethylenetetramine in 88 parts of water was added, and the mixture was kneaded while air cooling until the coated sand collapsed, and further 8 parts of calcium stearate was added.
After kneading for 0 seconds, the mixture was discharged from the mixer to obtain a resin coated sand.

【0018】《実施例2》温度140〜150℃に加熱
した水分吸着能0.8%の合成新砂8000部をワール
ミキサーに仕込み、製造例2にて得られたポリアミド樹
脂を内含したフェノール樹脂200部を添加した後45
秒間混練した。次いでヘキサメチレンテトラミン30部
を水88部に溶解したヘキサメチレンテトラミン水溶液
を添加し、コーテッドサンドが崩壊するまで空冷しなが
ら混練し、更にステアリン酸カルシウム8部を添加し2
0秒混練を行った後、ミキサーより排出しレジンコーテ
ッドサンドを得た。
Example 2 A phenol resin containing the polyamide resin obtained in Production Example 2 was prepared by charging 8000 parts of synthetic new sand having a water adsorption capacity of 0.8% heated to a temperature of 140 to 150 ° C. into the whirl mixer. 45 after adding 200 parts
Knead for 2 seconds. Next, an aqueous hexamethylenetetramine solution prepared by dissolving 30 parts of hexamethylenetetramine in 88 parts of water was added, and the mixture was kneaded while air cooling until the coated sand collapsed, and further 8 parts of calcium stearate was added.
After kneading for 0 seconds, the mixture was discharged from the mixer to obtain a resin coated sand.

【0019】《実施例3》温度140〜150℃に加熱
した水分吸着能1.8%の再生珪砂8000部をワール
ミキサーに仕込み、製造例3にて得られたポリアミド樹
脂を内含したフェノール樹脂200部を添加した後45
秒間混練した。次いでヘキサメチレンテトラミン30部
を水88部に溶解したヘキサメチレンテトラミン水溶液
を添加し、コーテッドサンドが崩壊するまで空冷しなが
ら混練し、更にステアリン酸カルシウム8部を添加し2
0秒混練を行った後、ミキサーより排出しレジンコーテ
ッドサンドを得た。
Example 3 A phenol resin containing the polyamide resin obtained in Production Example 3 was prepared by charging 8000 parts of regenerated silica sand having a water adsorption capacity of 1.8% heated to a temperature of 140 to 150 ° C. 45 after adding 200 parts
Knead for 2 seconds. Next, an aqueous hexamethylenetetramine solution prepared by dissolving 30 parts of hexamethylenetetramine in 88 parts of water was added, and the mixture was kneaded while air cooling until the coated sand collapsed, and further 8 parts of calcium stearate was added.
After kneading for 0 seconds, the mixture was discharged from the mixer to obtain a resin coated sand.

【0020】《比較例1》温度140〜150℃に加熱
した水分吸着能1.0%の再生珪砂8000部をワール
ミキサーに仕込み、製造比較例1にて得られたフェノー
ル樹脂200部を添加した後45秒間混練した。次いで
ヘキサメチレンテトラミン30部を水88部に溶解した
ヘキサメチレンテトラミン水溶液を添加し、コーテッド
サンドが崩壊するまで空冷しながら混練し、更にステア
リン酸カルシウム8部を添加し20秒混練を行った後、
ミキサーより排出しレジンコーテッドサンドを得た。
Comparative Example 1 8000 parts of regenerated silica sand having a water adsorption capacity of 1.0% heated to a temperature of 140 to 150 ° C. was charged into a whirl mixer, and 200 parts of the phenol resin obtained in Production Comparative Example 1 was added. After that, the mixture was kneaded for 45 seconds. Then, an aqueous solution of hexamethylenetetramine in which 30 parts of hexamethylenetetramine is dissolved in 88 parts of water is added, and the mixture is kneaded while being air-cooled until the coated sand collapses. Further, 8 parts of calcium stearate is added and kneaded for 20 seconds,
It was discharged from the mixer to obtain resin coated sand.

【0021】《比較例2》温度140〜150℃に加熱
した水分吸着能1.8%の再生珪砂8000部をワール
ミキサーに仕込み、製造比較例2にて得られたフェノー
ル樹脂200部を添加した後45秒間混練した。次いで
ヘキサメチレンテトラミン30部を水88部に溶解した
ヘキサメチレンテトラミン水溶液を添加し、コーテッド
サンドが崩壊するまで空冷しながら混練し、更にステア
リン酸カルシウム8部を添加し20秒混練を行った後、
ミキサーより排出しレジンコーテッドサンドを得た。
Comparative Example 2 8000 parts of regenerated silica sand having a water adsorption capacity of 1.8% heated to a temperature of 140 to 150 ° C. was charged into a whirl mixer, and 200 parts of the phenol resin obtained in Production Comparative Example 2 was added. After that, the mixture was kneaded for 45 seconds. Then, an aqueous solution of hexamethylenetetramine in which 30 parts of hexamethylenetetramine is dissolved in 88 parts of water is added, and the mixture is kneaded while being air-cooled until the coated sand collapses. Further, 8 parts of calcium stearate is added and kneaded for 20 seconds,
It was discharged from the mixer to obtain resin coated sand.

【0022】実施例1.2.3及び比較例1.2にて得
られた各々のレジンコーテッドサンドの特性値を表1に
示す。なお試験方法は次の通りである。 1.冷間曲げ強度:JACT試験法SM−1による。 焼成条件 :250℃、60秒 2.熱間引張り強度:JACT試験法SM−10によ
る。 焼成条件 :250℃、30秒
The characteristic values of the resin coated sands obtained in Example 1.2.3 and Comparative Example 1.2 are shown in Table 1. The test method is as follows. 1. Cold bending strength: According to JACT test method SM-1. Firing condition: 250 ° C., 60 seconds 2. Hot tensile strength: According to JACT test method SM-10. Firing condition: 250 ° C, 30 seconds

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【発明の効果】本発明に従うと、従来不可能であった水
分吸着能の高い耐火材料を用いたシェルモールド用レジ
ンコーテッドサンドによるシェル鋳型の高強度化が可能
となるので、工業的なシェルモールド用レジンコーテッ
ドサンドの製造に好適である。
According to the present invention, since it is possible to increase the strength of the shell mold by the resin coated sand for shell mold using the refractory material having a high water adsorption capacity, which has been impossible in the past, the industrial shell mold can be made. It is suitable for manufacturing resin coated sand for use.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 耐火材料の水分吸着能が0.6%以上で
ある鋳物用耐火材料をフエノール樹脂で被覆したレジン
コーテッドサンドにおいて、フエノール樹脂がポリアミ
ド樹脂を内含し150℃における溶融粘度が5〜20ポ
イズであることを特徴とするシェルモールド用レジンコ
ーテッドサンド組成物。
1. A resin-coated sand obtained by coating a refractory material for castings having a water adsorption capacity of 0.6% or more with a phenol resin, wherein the phenol resin contains a polyamide resin and the melt viscosity at 150 ° C. is 5. A resin coated sand composition for a shell mold, wherein the resin coated sand composition is 20 poise.
【請求項2】 フエノール樹脂に内含するポリアミド
樹脂量が1〜20重量%であることを特徴とする請求項
1記載のシェルモールド用レジンコーテッドサンド組成
物。
2. The resin coated sand composition for shell mold according to claim 1, wherein the amount of the polyamide resin contained in the phenol resin is 1 to 20% by weight.
JP23369194A 1994-09-28 1994-09-28 Resin coated sand composition for shell mold Pending JPH0890151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23369194A JPH0890151A (en) 1994-09-28 1994-09-28 Resin coated sand composition for shell mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23369194A JPH0890151A (en) 1994-09-28 1994-09-28 Resin coated sand composition for shell mold

Publications (1)

Publication Number Publication Date
JPH0890151A true JPH0890151A (en) 1996-04-09

Family

ID=16959038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23369194A Pending JPH0890151A (en) 1994-09-28 1994-09-28 Resin coated sand composition for shell mold

Country Status (1)

Country Link
JP (1) JPH0890151A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006305628A (en) * 2005-03-30 2006-11-09 Asahi Organic Chem Ind Co Ltd Mold material for shell mold
US7267876B2 (en) 2003-04-01 2007-09-11 Gun Ei Chemical Industry Co., Ltd. Resin-coated sand

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7267876B2 (en) 2003-04-01 2007-09-11 Gun Ei Chemical Industry Co., Ltd. Resin-coated sand
JP2006305628A (en) * 2005-03-30 2006-11-09 Asahi Organic Chem Ind Co Ltd Mold material for shell mold

Similar Documents

Publication Publication Date Title
JP4119515B2 (en) Resin coated sand for mold
JP2003505334A (en) Refractory aggregate coated with phenol
JPH0593128A (en) Alkaline resole phenol-aldehyde resin binder composition
JPH02261815A (en) Alkaline, benzyl ether phenolic resin binder
JPH0890151A (en) Resin coated sand composition for shell mold
WO1988008763A1 (en) Hot box process for preparing foundry shapes
JPWO2011010559A1 (en) Phenolic resin composition for shell mold, resin-coated sand for shell mold, and mold for shell mold obtained using the same
JPS5978745A (en) Resin coated sand for casting
US8367749B2 (en) Coated microspheres and their uses
JP4754327B2 (en) Resin composition for shell mold, resin-coated sand in which it is coated with refractory particles, and mold obtained using the resin-coated sand
JPH02302460A (en) Improved ester curing agent for phenolic resin binder system
JPH0270717A (en) Novolac phenol resin for shell mold
JPS6195735A (en) Bonding agent of phenol resin for shell mold
JP2002102999A (en) Resin coated sand for shell mold
JP2000015389A (en) Binder composition for carbon dioxide curing
JPS58224038A (en) Composition of coated sand and its production
JPS59215241A (en) Resin coated sand for shell mold
JPH0593127A (en) Alkaline resole phenol-aldehyde resin binder composition
JP2542144B2 (en) Binder composition for organic ester-curable foundry sand and method for producing mold using the same
JP2647254B2 (en) Method for producing novolak type phenol resin for shell mold
JPH08275B2 (en) Method for producing resin-coated sand grains for shell mold
JP4119514B2 (en) Resin coated sand for mold
JPH08276B2 (en) Method for producing resin-coated sand grains for shell mold
JPS63230760A (en) Phenolic resin binder
JP2023152693A (en) Method for manufacturing highly collapsible mold