JPH0889789A - Production of hollow particle - Google Patents

Production of hollow particle

Info

Publication number
JPH0889789A
JPH0889789A JP6226449A JP22644994A JPH0889789A JP H0889789 A JPH0889789 A JP H0889789A JP 6226449 A JP6226449 A JP 6226449A JP 22644994 A JP22644994 A JP 22644994A JP H0889789 A JPH0889789 A JP H0889789A
Authority
JP
Japan
Prior art keywords
water
self
resin
particles
dispersible resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6226449A
Other languages
Japanese (ja)
Inventor
Hiroko Sakurai
宏子 桜井
Namiyuki Tashiro
南征 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP6226449A priority Critical patent/JPH0889789A/en
Publication of JPH0889789A publication Critical patent/JPH0889789A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To obtain hollow particles which can develop high coloring power and shielding power by producing microcapsule particles from a hydrophobic material and then extracting with using an org. solvent which does not dissolve the self-water dispersible resin which constitutes the particles but permeates through the resin and dissolves the hydrophobic material in the particles. CONSTITUTION: The resin particles having vacancy inside (hollow particles) which can be used for various kinds of coating materials such as coating liquid, paper, fiber, leather, and cosmetic products are produced by the following method. A self-water dispersion resin (A) and a hydrophobic material (B) which is insoluble with the resin (A) are mixed in an org. solvent (C) which can dissolve the resin (A). The obtd. mixture soln. I is phase inversed in water and emulsified to produce particles of the self-water dispersion resin (A) including the hydrophobic material (B) inside. Then an org. solvent (D) which does not dissolve the self-water dispersion resin (A) but permeates through the resin (A) and can dissolve the hydrophobic material (B) is used to extract the hydrophobic material (B) included in the particles. Then the particles are dried to complete the production of desired hollow particles.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は粒子内部に空隙(中空
部)を有する樹脂粒子(中空粒子)の製造方法を提供す
るものである。当該製造法による中空粒子は高い着色力
と隠蔽力を発現するものであり、最も代表的な利用例と
しては、たとえば白色顔料である酸化チタンの代替品
(プラスチックピグメント)等として使用され、塗料、
紙、繊維、皮革、化粧品等への各種コーティング剤等と
して利用できる。
FIELD OF THE INVENTION The present invention provides a method for producing resin particles (hollow particles) having voids (hollow parts) inside the particles. The hollow particles produced by the production method exhibit high coloring power and hiding power, and the most typical application is, for example, a substitute for titanium oxide which is a white pigment (plastic pigment), a paint,
It can be used as various coating agents for paper, textiles, leather, cosmetics, etc.

【0002】[0002]

【従来の技術】今日、白色顔料として酸化チタンが最も
代表的なものであり、幅広く使用されているが、比重が
高いことや、環境破壊の問題から粒子内部に空隙(中空
部)のある粒子、すなわち中空粒子による白色顔料への
代替が注目されている。中空粒子による白色顔料代替
は、樹脂粒子内部の空隙により光の乱反射による、隠蔽
力が生じ、高い白色の着色力が発現することを利用した
ものである。
2. Description of the Related Art Today, titanium oxide is the most typical white pigment and is widely used. However, particles having voids (hollow parts) inside due to their high specific gravity and environmental damage. That is, the replacement of white pigments with hollow particles has been attracting attention. The replacement of the white pigment by the hollow particles is based on the fact that the voids inside the resin particles cause a hiding power due to diffused reflection of light and a high white coloring power is developed.

【0003】例えば、継続的な乳化重合により、カルボ
ン酸性基を含むコア粒子上にシェルポリマーを形成さ
せ、次いでアンモニア、またはアミンで中和することに
よりコアポリマーを膨潤させ粒子内部に空陵を形成す
る、非水溶性コア/シェル顔料様ポリマー粒状体による
シックナー水性分散液の製造方法が特公平3−7688
号公報に紹介されている。
For example, by continuous emulsion polymerization, a shell polymer is formed on a core particle containing a carboxylic acid group and then neutralized with ammonia or an amine to swell the core polymer and form voids inside the particle. A method for producing a thickener aqueous dispersion using a water-insoluble core / shell pigment-like polymer particle is disclosed in JP-B-3-7688.
It is introduced in the Gazette.

【0004】[0004]

【発明が解決しようとする課題】しかし、かかる製造方
法においてはコアポリマーが必ずしも完全にシェルポリ
マーにて包まれないため、得られた粒子の表面には内部
空陵と通ずる小孔が多く観察される。かかる表面状態の
中空粒子を着色剤等に用いる場合には、例えば油性バイ
ンダーと練り合わせると、中空部に油性バインダーが浸
入して、隠蔽力が低下して、着色力の低下等を生じやす
いという課題がある。
However, in such a production method, the core polymer is not always completely enclosed by the shell polymer, and therefore many small holes communicating with the inner voids are observed on the surface of the obtained particles. It When the hollow particles having such a surface state are used as a colorant or the like, for example, when kneaded with an oily binder, the oily binder penetrates into the hollow portion, the hiding power is reduced, and the coloring power is likely to be reduced. There are challenges.

【0005】[0005]

【課題を解決するための手段】本発明者等は、上記の課
題を解決するため鋭意検討した結果、転相乳化を用いた
マイクロカプセル製造方法(特開平3−221137号
公報)に着目し、ここで使用されている着色剤の代わり
に疎水性物質を使用して、マイクロカプセル粒子を作成
後、該粒子を形成している自己水分散性樹脂を溶解はし
ないが透過し、粒子中の疎水性物質を溶解する有機溶剤
を用いて抽出したところ、得られた中空粒子は、従来の
技術同等の隠蔽力と、高い着色力を示し、なおかつ隠蔽
力が低下せず着色力を保持し、着色剤等に使用して優れ
た効果を奏することを見い出し、本発明を完成するに至
った。
Means for Solving the Problems The inventors of the present invention have made extensive studies to solve the above problems, and as a result, have focused on a method for producing microcapsules using phase inversion emulsification (Japanese Patent Laid-Open No. 3-221137), After forming a microcapsule particle by using a hydrophobic substance instead of the colorant used here, the self-water-dispersible resin forming the particle does not dissolve but permeates, and When extracted using an organic solvent that dissolves the volatile substance, the obtained hollow particles show a hiding power equivalent to that of the conventional technique, and a high coloring power, and the hiding power does not decrease, and the coloring power is retained and the coloring power is maintained. The inventors have found that they can be used as agents and the like to have excellent effects, and have completed the present invention.

【0006】すなわち本発明は、自己水分散性樹脂
(A)と、自己水分散性樹脂(A)とは相溶性を有しな
い疎水性物質(B)とを、自己水分散性樹脂(A)を溶
解せしめる有機溶剤(C)中にて混合して混合溶液
(I)とした後、この混合溶液(I)を水中に転相乳化
させて疎水性物質(B)を自己水分散性樹脂(A)中に
内包した粒子を形成し、次いで自己水分散性樹脂(A)
を溶解はしないが透過し、かつ疎水性物質(B)を溶解
する有機溶剤(D)を用いて、粒子中に内包された疎水
性物質(B)を抽出した後、粒子を乾燥させることを特
徴とする中空粒子の製造方法を提供するものである。
That is, according to the present invention, the self-water-dispersible resin (A) and the self-water-dispersible resin (A) are mixed with the hydrophobic substance (B) which is not compatible with the self-water-dispersible resin (A). After mixing in an organic solvent (C) that dissolves the compound (I) to form a mixed solution (I), the mixed solution (I) is phase-inverted and emulsified in water to make the hydrophobic substance (B) a self-water dispersible resin ( A) to form particles encapsulated therein, and then self-dispersible resin (A)
The organic solvent (D) which does not dissolve but permeates the hydrophobic substance (B) is used to extract the hydrophobic substance (B) encapsulated in the particles, and then the particles are dried. The present invention provides a method for producing a characteristic hollow particle.

【0007】本発明における自己水分散性樹脂(A)と
は、分子内に有する親水基の作用により水系媒体の作用
下で乳化剤を用いることなく安定なる水分散体を形成す
る能力を有する樹脂をさす。
The self-water-dispersible resin (A) in the present invention is a resin having the ability to form a stable water dispersion without using an emulsifier under the action of an aqueous medium due to the action of a hydrophilic group in the molecule. As expected.

【0008】かかる親水基としてはイオン性、ノニオン
性の何れでも良いが、イオン性親水基の場合、樹脂の親
水性を樹脂設計時にかかわらず、必要に応じて適宜調節
することができる点で好ましい。
The hydrophilic group may be either ionic or nonionic, but the ionic hydrophilic group is preferable because the hydrophilicity of the resin can be appropriately adjusted as necessary regardless of the resin design. .

【0009】イオン性(カチオン性またはアニオン性)
の親水基である場合は、アニオン型自己水分散性樹脂で
あれば樹脂中に導入された酸性基の一部ないしは全部を
塩基により中和されて塩構造をとったものであり、また
カチオン型自己水分散性樹脂であれば樹脂中に導入され
た塩基性基の一部ないしは全部が酸により中和されて塩
構造をとったものである。中和されて塩構造をとった親
水基により、水系媒体中で安定して粒状に分散できる。
Ionic (cationic or anionic)
In the case of anionic self-water dispersible resin, the acidic group introduced into the resin has a salt structure in which a part or all of the acidic groups are neutralized with a base. In the case of a self-water-dispersible resin, some or all of the basic groups introduced into the resin are neutralized with an acid to form a salt structure. Due to the neutralized hydrophilic group having a salt structure, it can be stably dispersed in a granular form in an aqueous medium.

【0010】かかる酸性基としては例えばカルボキシル
基、燐酸基、スルホン基または硫酸基等が挙げられ、そ
の中でもカルボキシル基は弱酸性基であることから、中
和して塩構造をとった際の親水性の調節がしやすいため
好ましい。また塩基性基としては、例えばジメチルアミ
ノ基、ジエチルアミノ基等の第3級アミノ基等が挙げら
れる。こうした酸性基または塩基性基は化学結合を通じ
て当該樹脂中に導入されている。
Examples of such an acidic group include a carboxyl group, a phosphoric acid group, a sulfone group, a sulfuric acid group and the like. Among them, the carboxyl group is a weakly acidic group, and therefore it is hydrophilic when neutralized to form a salt structure. It is preferable because the sex can be easily adjusted. Examples of the basic group include tertiary amino groups such as dimethylamino group and diethylamino group. Such acidic group or basic group is introduced into the resin through a chemical bond.

【0011】かかる親水基の量は樹脂固形分100gあ
たり10〜500mg当量、好ましくは樹脂固形分10
0gあたり20〜400mg当量、更に好ましくは樹脂
固形分100gあたり30〜300mg当量である。更
に、中和された酸性基または塩基性基の量(中和量、中
和率)は樹脂固形分100gあたり10〜400mg当
量、好ましくは樹脂固形分100gあたり20〜250
mg当量、更に好ましくは樹脂固形分100gあたり3
0〜200mg当量有するものである。
The amount of the hydrophilic group is 10 to 500 mg equivalent per 100 g of resin solid content, preferably 10 resin solid content.
20 to 400 mg equivalent per 0 g, more preferably 30 to 300 mg equivalent per 100 g of resin solids. Further, the amount of neutralized acidic group or basic group (neutralization amount, neutralization rate) is 10 to 400 mg equivalent per 100 g of resin solid content, preferably 20 to 250 per 100 g of resin solid content.
mg equivalent, more preferably 3 per 100 g of resin solids
It has 0 to 200 mg equivalent.

【0012】また当該自己水分散性樹脂(A)の酸性基
または塩基性基を中和する中和剤としては一般的に使用
される有機塩基、無機塩基、有機酸、無機酸の何れでも
良いが、例えば自己水分散性樹脂(A)が中和された酸
性基を有するものである、アニオン性自己水分散性樹脂
の場合、トリエチルアミン、ジメチルエタノールアミン
等の第三級アミン;水酸化ナトリウム、水酸化カリウム
等の無機塩基;アンモニア等が挙げられ、また自己水分
散性樹脂(A)が中和された塩基性基を有するものであ
る、カチオン性自己水分散性樹脂の場合、酢酸等の有機
酸、塩酸等の無機酸を挙げることができる。自己水分散
性樹脂(A)はこのときの中和量(中和率)によりその
親水性をコントロールすることができ、これにより分散
体、すなわち粒子の粒径を数十nm〜μmオーダーまで
容易にコントロールでき、目的に応じた自由な粒径を得
ることができる。
The neutralizing agent for neutralizing the acidic group or basic group of the self-water-dispersible resin (A) may be any of commonly used organic bases, inorganic bases, organic acids and inorganic acids. In the case of an anionic self-water-dispersible resin in which, for example, the self-water-dispersible resin (A) has a neutralized acidic group, a tertiary amine such as triethylamine or dimethylethanolamine; sodium hydroxide, Inorganic bases such as potassium hydroxide; ammonia and the like, and, in the case of a cationic self-water-dispersible resin, which has a neutralized basic group of the self-water-dispersible resin (A), acetic acid, etc. Inorganic acids such as organic acids and hydrochloric acid can be mentioned. The hydrophilicity of the self-water-dispersible resin (A) can be controlled by the neutralization amount (neutralization ratio) at this time, which facilitates the dispersion, that is, the particle size of particles to the order of several tens nm to μm. Can be controlled to a desired value and a free particle size can be obtained according to the purpose.

【0013】自己水分散性樹脂(A)に使用される樹脂
は、前述のような酸性基又は塩基性基等を含有した樹脂
であれば何れの方法で製造されたものでも良く、アクリ
ル系樹脂、ウレタン系樹脂、ポリエステル系樹脂等が使
用される。
The resin used as the self-water-dispersible resin (A) may be any resin produced by any method as long as it is a resin containing an acidic group or a basic group as described above. An acrylic resin , Urethane resin, polyester resin, etc. are used.

【0014】該自己水分散性樹脂がアクリル系樹脂であ
る場合には、例えば、前述のような酸性基または塩基性
基等を含有した重合性ビニルモノマーおよび/又はオリ
ゴマーと、それ以外の重合性ビニルモノマーおよび/又
はオリゴマーをラジカル開始剤存在下でラジカル重合さ
せて得られる。
When the self-water-dispersible resin is an acrylic resin, for example, a polymerizable vinyl monomer and / or oligomer containing an acidic group or a basic group as described above and another polymerizable resin It is obtained by radical polymerization of a vinyl monomer and / or oligomer in the presence of a radical initiator.

【0015】具体的に、該酸性基含有重合性モノマーと
しては、例えばアクリル酸、メタクリル酸、クロトン
酸、イタコン酸、マレイン酸、フマル酸、イタコン酸モ
ノブチル等が挙げられる。
Specific examples of the acidic group-containing polymerizable monomer include acrylic acid, methacrylic acid, crotonic acid, itaconic acid, maleic acid, fumaric acid, monobutyl itaconate and the like.

【0016】また、該塩基性基含有重合性モノマーとし
ては、ジメチルアミノエチルアクリレート、ジエチルア
ミノエチルメタクリレート等が挙げられる。更にまた、
酸性基あるいは塩基性基含有オリゴマーとしては、例え
ばビニル変性ポリエステル、ビニル変性ウレタン、ビニ
ル変性エポキシ化合物等が挙げられる。
Examples of the basic group-containing polymerizable monomer include dimethylaminoethyl acrylate and diethylaminoethyl methacrylate. Furthermore,
Examples of the acidic group- or basic group-containing oligomer include vinyl modified polyester, vinyl modified urethane, vinyl modified epoxy compound and the like.

【0017】一方、酸性基または塩基性基を含有した重
合性モノマー以外の重合性モノマーとしては、スチレ
ン、ビニルトルエン等の各種のスチレン系モノマー;酢
酸ビニル、アクリロニトリル、アクリル酸メチル、アク
リル酸エチル、アクリル酸イソプロピル、アクリル酸n
−ブチルアクリル酸ヘキシル、アクリル酸2−エチルヘ
キシル、アクリル酸ドデシル等の各種のアクリル酸エス
テル;メタクリル酸メチル、メタクリル酸エチル、メタ
クリル酸ブチル、メタクリル酸ヘキシル、メタクリル酸
2−エチルヘキシル、メタクリル酸ラウリル等のメタク
リル酸エステル等が挙げられ、なかでもスチレンが特に
好ましく使用される。
On the other hand, as the polymerizable monomer other than the polymerizable monomer containing an acidic group or a basic group, various styrene-based monomers such as styrene and vinyltoluene; vinyl acetate, acrylonitrile, methyl acrylate, ethyl acrylate, Isopropyl acrylate, acrylic acid n
Various acrylates such as hexyl butyl acrylate, 2-ethylhexyl acrylate, dodecyl acrylate; methyl methacrylate, ethyl methacrylate, butyl methacrylate, hexyl methacrylate, 2-ethylhexyl methacrylate, lauryl methacrylate, etc. Methacrylic acid ester and the like can be mentioned, of which styrene is particularly preferably used.

【0018】また、該自己水分散性樹脂(A)がウレタ
ン系樹脂である場合には、例えば、トリレンジイソシア
ネート、ヘキサメチレンジイソシアネート、イソホロン
ジイソシアネート等のポリイソシアネートとポリエチレ
ングリコール等のポリエーテルポリオール、ポリエステ
ルポリオール、アクリルポリオール、ポリブタジエンポ
リオール等の各種のポリオールとをあらかじめ反応させ
た末端にイソシアネート基を有するウレタンプレポリマ
ーに、ジメチロールプロピオン酸、2,2−メチルアミ
ノジエタノール等の酸性基または塩基性基含有のポリオ
ールを付加重合させることによって、または末端イソシ
アネート基を有するウレタンプレポリマーとメタクリル
酸ヒドロキシエチル、アクリル酸ヒドロキシエチル等の
水酸基含有重合性モノマーとの付加反応物に酸性基また
は塩基性基含有重合性モノマーを重合させることによっ
て得られる。
When the self-water-dispersible resin (A) is a urethane resin, for example, polyisocyanates such as tolylene diisocyanate, hexamethylene diisocyanate and isophorone diisocyanate, and polyether polyols such as polyethylene glycol and polyesters. Urethane prepolymer having an isocyanate group at the terminal which has been previously reacted with various polyols such as polyols, acrylic polyols, polybutadiene polyols, etc., containing acidic groups or basic groups such as dimethylolpropionic acid and 2,2-methylaminodiethanol Polymerization of urethane prepolymers having terminal isocyanate groups with hydroxyl groups containing hydroxyethyl methacrylate, hydroxyethyl acrylate, etc. Obtained by polymerizing an acidic group or a basic group-containing polymerizable monomer in the addition reaction product of an Nomar.

【0019】また、前記した自己水分散性樹脂(A)が
ポリエステル系樹脂である場合には、例えば、エチレン
グリコール、ジエチレングリコール、グリセリン、トリ
メチロールエタン等の多価アルコールと無水フタル酸、
イソフタル酸、アジピン酸、無水マレイン酸、イタコン
酸、無水トリメリット酸等の多塩基酸との縮合によりア
ニオン性の自己水分散性樹脂(A)が、またカチオン性
の自己水分散性樹脂(A)は上記成分と共に、2,2−
メチルアミノジエタノール等の塩基性基含有の多価アル
コールを縮合させることによって得る等の方法が挙げら
れる。
When the self-water-dispersible resin (A) is a polyester resin, for example, a polyhydric alcohol such as ethylene glycol, diethylene glycol, glycerin or trimethylolethane and phthalic anhydride,
Anionic self-water dispersible resin (A) and cationic self-water dispersible resin (A) by condensation with polybasic acids such as isophthalic acid, adipic acid, maleic anhydride, itaconic acid, trimellitic anhydride, etc. ), Together with the above components, 2,2-
Examples thereof include a method obtained by condensing a polyhydric alcohol containing a basic group such as methylaminodiethanol.

【0020】該自己水分散性樹脂(A)の分子量は重量
平均分子量3,000〜300,000なる範囲内のも
の、好ましくは重量平均分子量5,000〜150,0
00なる範囲内のものが、転相乳化の際、安定な粒子を
形成し、また所望の粒径の粒子を粒度分布良く得られる
ため好ましい。
The self-water-dispersible resin (A) has a weight average molecular weight of 3,000 to 300,000, preferably 5,000 to 150,0.
The range of 00 is preferable because it forms stable particles during phase inversion emulsification and particles with a desired particle size can be obtained with a good particle size distribution.

【0021】本発明における疎水性物質(B)として
は、自己水分散性樹脂(A)と相溶性がなく、かつ下記
有機溶剤(D)に可溶のものであれば何れでも良いが、
その中でも固形であるよりは、常温で液状である方が好
ましく、例えば流動パラフィン、大豆油、パラオクチル
フタレート等のような高級炭化水素、油脂、または可塑
剤等が挙げられる。
As the hydrophobic substance (B) in the present invention, any substance may be used as long as it is incompatible with the self-water-dispersible resin (A) and soluble in the following organic solvent (D).
Among them, it is preferably liquid at room temperature rather than solid, and examples thereof include higher hydrocarbons such as liquid paraffin, soybean oil, and paraoctyl phthalate, oils and fats, and plasticizers.

【0022】有機溶剤(C)は、自己水分散姓樹脂
(A)を溶解するものであれば何れでも良いが、後の工
程で乾燥させ、粉末化することを考慮すると、沸点の低
いものが好ましく、汎用の有機溶剤の中でも、例えば、
イソプロピルアルコール、ブタノール等のアルコール
類、アセトン、メチルエチルケトン等のケトン類、酢酸
エチル等のエステル類、テトラヒドロフラン等の有機溶
剤を、単独あるいは2種以上を併用して用いるのが好ま
しい。
The organic solvent (C) may be any as long as it dissolves the self-water-dispersing resin (A), but in consideration of drying and powdering in the subsequent step, one having a low boiling point is used. Preferably, among general-purpose organic solvents, for example,
It is preferable to use alcohols such as isopropyl alcohol and butanol, ketones such as acetone and methyl ethyl ketone, esters such as ethyl acetate, and organic solvents such as tetrahydrofuran alone or in combination of two or more kinds.

【0023】有機溶剤(D)は、自己水分散性樹脂
(A)を溶解はしないが透過し、疎水性物質(B)を溶
解するものであれば何れでも良いが、通常は、自己水分
酸性樹脂(A)を溶解はしないが、膨潤するものが使用
される。その中でも炭素原子数6〜18の高級炭化水素
類が、自己水分散性樹脂(A)に対して貧溶解性であ
り、また乾燥時の除去が容易なため好ましく、例えばア
クリル系樹脂、又はウレタン系樹脂に対するヘキサン、
ヘプタン、オクタン等が挙げられる。
The organic solvent (D) may be any one as long as it does not dissolve the self-water-dispersible resin (A) but permeates it and dissolves the hydrophobic substance (B). A resin that does not dissolve the resin (A) but swells is used. Of these, higher hydrocarbons having 6 to 18 carbon atoms are preferable because they are poorly soluble in the self-water-dispersible resin (A) and can be easily removed during drying. For example, acrylic resin or urethane. Hexane to resin
Examples include heptane and octane.

【0024】本発明は、自己水分散性樹脂(A)と、自
己水分散性樹脂(A)とは相溶性を有しない疎水性物質
(B)とを、自己水分散性樹脂(A)を溶解せしめる有
機溶剤(C)中にて混合して混合溶液(I)とする第一
工程と、この混合溶液(I)を水中に転相乳化させて疎
水性物質(B)を自己水分散性樹脂(A)中に内包した
粒子を形成せしめる第二工程と、自己水分散性樹脂
(A)を溶解はしないが透過し、かつ疎水性物質(B)
を溶解する有機溶剤(D)を用いて、粒子中に内包され
た疎水性物質(B)を抽出せしめる第三工程と、粒子を
乾燥し、粉末化せしめる第四工程とから成る。
In the present invention, the self-water-dispersible resin (A) and the hydrophobic substance (B) which is incompatible with the self-water-dispersible resin (A) are combined with the self-water-dispersible resin (A). First step of mixing in an organic solvent (C) to be dissolved to form a mixed solution (I), and phase inversion emulsification of this mixed solution (I) in water to disperse the hydrophobic substance (B) in self-water dispersibility Second step of forming particles encapsulated in the resin (A) and permeation of the self-water-dispersible resin (A), which does not dissolve, and a hydrophobic substance (B)
It comprises a third step of extracting the hydrophobic substance (B) encapsulated in the particles using an organic solvent (D) which dissolves, and a fourth step of drying and pulverizing the particles.

【0025】第一工程において、自己水分散性樹脂
(A)と疎水性物質(B)の固形分の比率はこれにより
当該中空粒子の空隙率がコントロールされるものであ
り、この空隙率は中空粒子の隠蔽力、着色力、機械的強
度に影響する。自己水分散性樹脂(A)/疎水性物質
(B)の比率は固形分重量比30/70〜90/10の
範囲内で通常用いるが、その中でも40/60〜75/
25なる範囲内が、粒子内の空隙率が高まり、高い着色
力と隠蔽力を発揮する上で好ましく、更にその中でも5
0/50〜70/30なる範囲内では機械的強度が更に
高まり好ましい。
In the first step, the solid content ratio of the self-water-dispersible resin (A) and the hydrophobic substance (B) controls the void ratio of the hollow particles, and this void ratio is hollow. It affects the hiding power, coloring power and mechanical strength of the particles. The ratio of self-water-dispersible resin (A) / hydrophobic substance (B) is usually used within a solid content weight ratio range of 30/70 to 90/10, and among them, 40/60 to 75 /.
The range of 25 is preferable in order to increase the porosity in the particles and to exhibit high coloring power and hiding power, and further preferably 5
Within the range of 0/50 to 70/30, the mechanical strength is further increased, which is preferable.

【0026】自己水分散性樹脂(A)、疎水性物質
(B)、有機溶剤(C)の混合方法は、何れの方法でも
良いが、例えば、常温、あるいは加温の状態で、自己水
分散性樹脂(A)は溶解し、疎水性物質(B)は、溶解
するか、あるいは溶解しなくても均一の状態になるま
で、攪拌する方法が挙げられる。
Any method may be used for mixing the self-water-dispersible resin (A), the hydrophobic substance (B) and the organic solvent (C). For example, the self-water-dispersible resin may be dispersed at room temperature or under heating. The resin (A) is dissolved, and the hydrophobic substance (B) is dissolved, or even if it is not dissolved, it is stirred until a uniform state is obtained.

【0027】第二工程において、自己水分散性樹脂
(A)、疎水性物質(B)、有機溶剤(C)の混合溶液
(I)を転相乳化させる方法としては、いずれの方法で
も良いが、例えば攪拌下で水を徐々に加える、または攪
拌下の水中に混合溶液(I)を滴下する等の方法が挙げ
られる。
In the second step, any method may be used as the method of phase inversion emulsification of the mixed solution (I) of the self-water-dispersible resin (A), the hydrophobic substance (B) and the organic solvent (C). Examples thereof include a method in which water is gradually added with stirring, or the mixed solution (I) is dropped into water with stirring.

【0028】第三工程において、有機溶剤(D)を用い
て粒子に内包された疎水性物質(B)を抽出する方法と
しては特に限定はないが、例えば系内に有機溶剤(D)
を加えた後、攪拌する方法がある。
In the third step, the method for extracting the hydrophobic substance (B) encapsulated in the particles by using the organic solvent (D) is not particularly limited. For example, the organic solvent (D) may be added to the system.
After adding, there is a method of stirring.

【0029】また、あらかじめ有機溶剤(C)を、エバ
ポレーション等により除去した後、有機溶剤(D)を加
えると疎水性物質(B)をより効率良く抽出することが
できる。有機溶剤(D)と有機溶剤(C)が相溶性を有
する場合には、特にこの方法は効果が大きい。
The hydrophobic substance (B) can be more efficiently extracted by removing the organic solvent (C) in advance by evaporation or the like and then adding the organic solvent (D). This method is particularly effective when the organic solvent (D) and the organic solvent (C) are compatible with each other.

【0030】他に、あらかじめ疎水性物質(B)を内包
した粒子を、濾別等の手段により水系媒体から分離した
後、分離された粒子から有機溶剤(D)を用いて疎水性
物質(B)の抽出を行うと、より抽出効率が良い。この
場合、水系媒体より分離した粒子は、有機溶剤(D)中
に浸漬又は攪拌する方法、または、有機溶剤(D)の流
動下に放置する方法等により、疎水性物質(B)を抽出
することができる。その中でも、水系媒体から粒子を除
去し有機溶剤(D)中に浸漬し、攪拌する方法が、抽出
効率が良いため、好ましい。
In addition, particles containing the hydrophobic substance (B) in advance are separated from the aqueous medium by means such as filtration, and then the separated substance is treated with the organic solvent (D) to obtain the hydrophobic substance (B). ), The extraction efficiency is better. In this case, the particles separated from the aqueous medium are extracted with the hydrophobic substance (B) by a method of immersing or agitating in the organic solvent (D), a method of leaving the particles in a flow of the organic solvent (D), or the like. be able to. Among them, the method of removing the particles from the aqueous medium, immersing in the organic solvent (D), and stirring is preferable because the extraction efficiency is good.

【0031】第四工程において、得られた中空粒子を乾
燥し粉末化する際、粉末化法は何れでも良く、ー般に行
われている粉末化法で差し支えないが、例えば凍結乾燥
法、気流式乾燥法等が挙げられる。
In the fourth step, when the obtained hollow particles are dried and pulverized, any pulverization method may be used, and a commonly used pulverization method may be used, for example, a freeze-drying method, an air stream. A method such as a dry method is used.

【0032】また、転相乳化から乾燥までの任意の段階
で、該粒子を構成する自己水分散性樹脂が中和された酸
性基を持つアニオン型である場合には、酸を用いて、当
該自己水分散性樹脂が中和された塩基性基を持つカチオ
ン型である場合には、塩基を用いて処理すると、中和さ
れて塩構造を形成している親水部位が、遊離の酸性基又
は塩基性基になり、樹脂の親水性が低下し、粒子の水系
媒体からの分離も容易となり、後続する工程が一層スム
ーズに進行できるようになるので好ましい。
When the self-water-dispersible resin forming the particles is an anion type having a neutralized acidic group at any stage from phase inversion emulsification to drying, an acid is used to When the self-water-dispersible resin is a cation type having a neutralized basic group, when treated with a base, the hydrophilic moiety which is neutralized to form a salt structure has a free acidic group or It is preferable because it becomes a basic group, the hydrophilicity of the resin is reduced, the particles are easily separated from the aqueous medium, and the subsequent steps can proceed more smoothly.

【0033】得られた中空粒子が内部に空隙(中空部)
を有しているかどうかは透過型電子顕微鏡による断面の
観察により、また、粒子外表面に通じた空隙が著しく少
ないかどうかは走査型電子顕微鏡による表面観察で容易
に確認できる。
The obtained hollow particles have voids (hollow portions) inside.
It can be easily confirmed by observing the cross section with a transmission electron microscope, and by observing the surface with a scanning electron microscope whether there are significantly few voids communicating with the outer surface of the particle.

【0034】[0034]

【実施例】次に本発明を実施例に基づいて更に詳細に説
明する。元より本発明はかかる実施例のみに限定される
ものではない。
EXAMPLES The present invention will be described in more detail based on examples. Originally, the present invention is not limited to such embodiments.

【0035】粒径、および着色力の保持性、および粒子
表面の観察は、以下の方法で行った。 (1)粒径 サブミクロン粒度分布計CHDF−1100(米国 M
ATEC APPLIED SCIENCES社製)を
用いて測定した。 (2)着色力の保持性 中空粒子1gを2gの流動パラフィンに良く混合分散
し、その後一部を手にとり指先でよく練り合わせた。こ
れを黒色塗装版の上に塗布し、それぞれの着色力の変化
を目視で、以下の基準で評価した。
The particle size, the retention of the coloring power, and the particle surface were observed by the following methods. (1) Particle size Submicron particle size distribution meter CHDF-1100 (US M
It was measured using ATEC APPLIED SCIENCES. (2) Retention of tinting strength 1 g of the hollow particles was well mixed and dispersed in 2 g of liquid paraffin, and then a part of it was picked up and kneaded well with a fingertip. This was applied onto a black coating plate, and the change in each coloring power was visually evaluated according to the following criteria.

【0036】○:着色力の低下は見られなかった。 △:着色力の低下が多少見られた。 ×:着色力の著しい低下がみられた。 (3)粒子表面および内部空隙の観察 得られた粒子表面を走査型電子顕微鏡(SEM)で観察
した。また粒子内部の空隙を粒子を樹脂中に包埋し、こ
の樹脂片を薄くスライスし、この切片中の粒子断面を透
過型電子顕微鏡(TEM)で観察した。写真より粒子内
部空隙の最大径を測定した。
◯: No decrease in coloring power was observed. Δ: Some decrease in coloring power was observed. X: The coloring power was remarkably reduced. (3) Observation of particle surface and internal void The obtained particle surface was observed with a scanning electron microscope (SEM). The voids inside the particles were embedded in the resin, the resin pieces were sliced into thin pieces, and the cross section of the particles in this section was observed with a transmission electron microscope (TEM). The maximum diameter of the void inside the particle was measured from the photograph.

【0037】また、部および%は特にことわりのない限
り、すべて重量基準であるものとする。 実施例1 窒素雰囲気下、400部のメチルエチルケトン(ME
K)を80℃に加熱しリフラックスせしめ、以下に示す
割合の混合物を2時間に亘って滴下した。
All parts and% are based on weight unless otherwise specified. Example 1 400 parts of methyl ethyl ketone (ME
K) was heated to 80 ° C. for reflux, and the mixture in the following proportions was added dropwise over 2 hours.

【0038】 メタクリル酸 90部 アクリル酸2−エチルヘキシル 66部 メタクリル酸メチル 90部 スチレン 354部 パーブチルO((株)日本油脂製) 6部 上記混合物の滴下終了時より1時間後、及び2時間後、
更にそれ以後は4時間ごとに毎回0.5部のパーブチル
Oを反応液に添加しながら22時間熟成した。反応温度
は80℃に保った。反応終了時にMEKを添加し、不揮
発分を40%に調製した。重量平均分子量4万のアクリ
ル系樹脂を得た。
Methacrylic acid 90 parts 2-Ethylhexyl acrylate 66 parts Methyl methacrylate 90 parts Styrene 354 parts Perbutyl O (manufactured by NOF Corporation) 6 parts 1 hour and 2 hours after the end of dropping the above mixture,
After that, 0.5 parts of perbutyl O was added to the reaction solution every 4 hours for aging for 22 hours. The reaction temperature was kept at 80 ° C. MEK was added at the end of the reaction to adjust the nonvolatile content to 40%. An acrylic resin having a weight average molecular weight of 40,000 was obtained.

【0039】該アクリル系樹脂175gに対してトリエ
チルアミン(TEA)3.40gを加え、均一になるま
で攪拌し、自己水分散性樹脂を得た。該自己水分散性樹
脂の中和量は、樹脂固形分100gに対して47.1m
g当量であった。該自己水分散性樹脂に、流動パラフィ
ン30gを混合し、350rpmにて攪拌しながら水5
00gをゆっくり滴下した。減圧蒸留にて有機溶剤を除
去した後、固形分と水系媒体を濾別し、得られた固形分
を再度水中に分散し、攪拌下で1規定の塩酸水溶液にて
pH3に調整し、30分間攪拌した。水系媒体と固形分
を濾別し、固形分を水洗後、洗浄液を濾別し、得られた
固形分をヘプタン400g中に浸漬、攪拌し、流動パラ
フィンを抽出せしめた。粒子を抽出液より濾別し、ヘプ
タン300gにて2回洗浄した後、洗浄液を除去し、減
圧下にて粒子を乾燥せしめ、粉末化した。
3.40 g of triethylamine (TEA) was added to 175 g of the acrylic resin, and the mixture was stirred until it became uniform to obtain a self-water-dispersible resin. The neutralization amount of the self-water-dispersible resin is 47.1 m based on 100 g of resin solid content.
It was g equivalent. 30 g of liquid paraffin was mixed with the self-water-dispersible resin, and water was added while stirring at 350 rpm.
00 g was slowly added dropwise. After removing the organic solvent by vacuum distillation, the solid content and the aqueous medium are separated by filtration, the obtained solid content is dispersed again in water, and the pH is adjusted to 3 with 1N hydrochloric acid aqueous solution under stirring for 30 minutes. It was stirred. The aqueous medium and the solid content were separated by filtration, the solid content was washed with water, the washing liquid was filtered off, and the obtained solid content was immersed in 400 g of heptane and stirred to extract liquid paraffin. The particles were separated from the extract by filtration, washed twice with 300 g of heptane, the washing solution was removed, and the particles were dried under reduced pressure and pulverized.

【0040】得られた粒子は、平均粒径0.5μmであ
り、高い着色力を示した。また、得られた粒子は、粒子
外表面に通じた空隙が著しく少ないことが確認できた。
得られた粒子の内部空陵の最大径と、着色力の保持性の
結果を表1に示す。
The obtained particles had an average particle size of 0.5 μm and showed high coloring power. Further, it was confirmed that the obtained particles had extremely few voids communicating with the outer surface of the particles.
Table 1 shows the maximum diameter of the inner void of the obtained particles and the result of the retention of the coloring power.

【0041】実施例2 実施例1と同様にして得られたアクリル系樹脂125g
にトリエチルアミン1.60gを加え、均一になるまで
攪拌し自己水分散性樹脂を得た。該自己水分散性樹脂の
中和量は樹脂固形分100gに対して48.8mg当量
であった。該自己水分散性樹脂にパラオクチルフタレー
ト(POP)50gを混合し、350rpmにて攪拌し
ながら水500gをゆっくり滴下した。減圧蒸留にて有
機溶剤を除去した後、固形分と水系媒体を濾別し、得ら
れた固形分をオクタン中に浸漬、攪拌し、POPを抽出
せしめた。粒子を抽出液より濾別し、オクタンにて数度
洗浄した後、洗浄液を除去し、得られた固形分を再度水
中に分散し、攪拌下で1規定の塩酸水溶液にてpH3に
調整し、30分間攪拌した。水系媒体と固形分を濾別
し、固形分を水洗後、洗浄液を濾別し、得られた固形分
減圧下にて粒子を乾燥せしめ、粉末化した。 得られた
粒子は、平均粒径0.6μmであり、高い着色力を示し
た。
Example 2 125 g of an acrylic resin obtained in the same manner as in Example 1.
1.60 g of triethylamine was added to the mixture, and the mixture was stirred until it became uniform to obtain a self-water-dispersible resin. The neutralization amount of the self-water-dispersible resin was 48.8 mg equivalent based on 100 g of resin solid content. 50 g of para-octyl phthalate (POP) was mixed with the self-water-dispersible resin, and 500 g of water was slowly added dropwise while stirring at 350 rpm. After removing the organic solvent by vacuum distillation, the solid content and the aqueous medium were separated by filtration, and the obtained solid content was immersed in octane and stirred to extract POP. The particles were separated from the extract by filtration, washed several times with octane, the washing solution was removed, the obtained solid content was dispersed again in water, and the pH was adjusted to 3 with 1N hydrochloric acid aqueous solution with stirring. Stir for 30 minutes. The aqueous medium and the solid content were filtered off, the solid content was washed with water, the washing liquid was filtered off, and the obtained solid content was dried under reduced pressure to give powder. The obtained particles had an average particle size of 0.6 μm and showed high coloring power.

【0042】また、得られた粒子は、粒子外表面に通じ
た空隙が著しく少ないことが確認できた。得られた粒子
の内部空陵の最大径と、着色力の保持性の結果を表1に
示す。
It was also confirmed that the obtained particles had extremely few voids communicating with the outer surface of the particles. Table 1 shows the maximum diameter of the inner void of the obtained particles and the result of the retention of the coloring power.

【0043】実施例3 「ユニセーフ PT−200」(日本油脂(株)製のポ
リテトラメチレングリコール;数平均分子量約200
0)293部とイソホロンジイソシアネート77部とを
フラスコに仕込み、窒素シールド下に攪拌しながら12
0℃まで昇温し、同温度に30分の間保持してから、オ
クテン酸錫0.05部を投入して1時間後に80℃に降
温し、メチルエチルケトン210部とジメチロールプロ
ピオン酸20部とを投入し、75℃に5時間の間保持し
て反応を続行させたところ、粘度の増加も、イソシアネ
ート基の含有率の減少も認められなくなり、ここに溶液
の酸価13、イソシアネート基含有率0.9%なる、ウ
レタン系樹脂が得られた。
Example 3 "Unisafe PT-200" (polytetramethylene glycol manufactured by NOF CORPORATION); number average molecular weight of about 200
0) 293 parts and 77 parts of isophorone diisocyanate were placed in a flask and stirred under a nitrogen shield for 12 hours.
The temperature was raised to 0 ° C. and kept at the same temperature for 30 minutes, 0.05 part of tin octenoate was added, and 1 hour later, the temperature was lowered to 80 ° C., and 210 parts of methyl ethyl ketone and 20 parts of dimethylolpropionic acid were added. Was added and the reaction was continued at 75 ° C. for 5 hours, no increase in viscosity or decrease in the content of isocyanate groups was observed, and the acid value of the solution was 13 and the content of isocyanate groups was A urethane resin having a content of 0.9% was obtained.

【0044】該ウレタン系樹脂162.5gにトリエチ
ルアミン(TEA)2.30gを加え、均一になるまで
攪拌し自己水分散性樹脂を得た。該自己水分散性樹脂の
中和量は樹脂固形分100gに対して35.5mg当量
であった。該自己水分散性樹脂に大豆油35gを混合
し、350rpmにて攪拌しながら水500gをゆっく
り滴下し、その後ジメチルエタノールアミン(DME
A)を添加した。減圧蒸留にて有機溶剤を除去した後、
固形分と水系媒体を濾別し、得られた固形分をオクタン
中に浸漬、攪拌し、大豆油を抽出せしめた。粒子を抽出
液より濾別し、オクタンにて数度洗浄した後、洗浄液を
除去し、減圧下にて粒子を乾燥せしめ、粉末化した。
2.30 g of triethylamine (TEA) was added to 162.5 g of the urethane resin and stirred until uniform to obtain a self-water-dispersible resin. The neutralization amount of the self-water-dispersible resin was 35.5 mg equivalent based on 100 g of resin solid content. Soybean oil (35 g) was mixed with the self-water-dispersible resin, 500 g of water was slowly added dropwise while stirring at 350 rpm, and then dimethylethanolamine (DME) was added.
A) was added. After removing the organic solvent by vacuum distillation,
The solid content and the aqueous medium were separated by filtration, and the obtained solid content was immersed in octane and stirred to extract soybean oil. The particles were separated from the extract by filtration, washed several times with octane, the washing solution was removed, and the particles were dried under reduced pressure and pulverized.

【0045】得られた粒子は、平均粒径0.5μmであ
り、高い着色力を示した。また、得られた粒子は、粒子
外表面に通じた空隙が著しく少ないことが確認できた。
得られた粒子の内部空陵の最大径と、着色力の保持性の
結果を表1に示す。
The obtained particles had an average particle size of 0.5 μm and showed high coloring power. Further, it was confirmed that the obtained particles had extremely few voids communicating with the outer surface of the particles.
Table 1 shows the maximum diameter of the inner void of the obtained particles and the result of the retention of the coloring power.

【0046】比較例1 櫂形攪拌機、温度計、窒素入口および環流冷却器を備え
た5リットルのフラスコを用い、脱イオン水(2900
g)およびスルホン酸ドデシルベンゼンナトリウム2.
0gをフラスコ中、窒素雰囲気下で攪拌しながら78℃
に加熱した。
Comparative Example 1 A 5 liter flask equipped with a paddle stirrer, thermometer, nitrogen inlet and reflux condenser was used and deionized water (2900) was used.
g) and sodium dodecylbenzene sulfonate 2.
0 g in a flask with stirring under a nitrogen atmosphere at 78 ° C
Heated to.

【0047】該フラスコ中に、脱イオン水266g、ス
ルホン酸ドデシルベンゼンナトリウム0.40g、アク
リル酸ブチル416g、メタクリル酸メチル374gお
よびメタクリル酸10.4gから調製されたモノマーエ
マルジョン50gを添加し、次いで水10mlに溶解し
た過硫酸アンモニウム3.0gを添加し、15分後、残
りのモノマーエマルジョンを16g/分で供給し、温度
を85℃に上昇させ、かつモノマー添加の間中、その温
度に保持した。モノマー添加完了15分後、反応混合物
を冷却し、55℃で、t−ブチルヒドロパーオキシド
(70%)1.0mlおよび20gの水に溶解したスル
ホキシル酸ホルムアルデヒドナトリウムを添加した。更
に25℃で、28%アンモニア水を添加した。
Into the flask was added 266 g of deionized water, 0.40 g of sodium dodecylbenzene sulfonate, 416 g of butyl acrylate, 374 g of methyl methacrylate and 50 g of a monomer emulsion prepared from 10.4 g of methacrylic acid, and then water. 3.0 g ammonium persulfate dissolved in 10 ml was added and after 15 minutes the remaining monomer emulsion was fed at 16 g / min, the temperature was raised to 85 ° C. and kept at that temperature throughout the monomer addition. 15 minutes after the monomer addition was complete, the reaction mixture was cooled and at 55 ° C. 1.0 ml t-butyl hydroperoxide (70%) and sodium formaldehyde sulfoxylate dissolved in 20 g water were added. Further, at 25 ° C., 28% aqueous ammonia was added.

【0048】次いで、櫂形攪拌機、温度計、窒素入口お
よび環流冷却器を備えた5L丸底フラスコを用い、窒素
雰囲気下のフラスコ中で84℃に加熱した脱イオン水2
115gに、水25gに溶解した過硫酸ナトリウム4.
2gを添加し、引続き前述のアクリル系樹脂分散液62
gを添加した。
Then, using a 5 L round bottom flask equipped with a paddle stirrer, a thermometer, a nitrogen inlet and a reflux condenser, deionized water 2 heated to 84 ° C. in a flask under a nitrogen atmosphere was used.
115 g, sodium persulfate dissolved in 25 g water 4.
2 g was added, and the above-mentioned acrylic resin dispersion 62 was continuously added.
g was added.

【0049】該フラスコ中、脱イオン水235g、スル
ホン酸ドデシルベンゼンナトリウム0.8g、メタクリ
ル酸メチル490g、メタクリル酸210gおよびジア
クリル酸エチレングリコール3.5gから成るモノマー
エマルジョンを3時間に亘り、85℃でケトルに添加し
た。モノマー供給の完了後、分散液を85℃に30分間
保持し、25℃に冷却し、かつろ過して凝固物を除去
後、ろ過した分散液をアンモニアでPH10に中和し、
減圧凍結乾燥し、粉末化した。得られた粒子は平均粒径
0.8μmであり、着色力の低下が見られた。
A monomer emulsion consisting of 235 g of deionized water, 0.8 g of sodium dodecylbenzene sulfonate, 490 g of methyl methacrylate, 210 g of methacrylic acid and 3.5 g of ethylene glycol diacrylate was placed in the flask at 85 ° C. for 3 hours. Added to kettle. After the completion of the monomer supply, the dispersion liquid was kept at 85 ° C. for 30 minutes, cooled to 25 ° C., filtered to remove coagulated matter, and the filtered dispersion liquid was neutralized to pH 10 with ammonia.
It was freeze-dried under reduced pressure and pulverized. The obtained particles had an average particle size of 0.8 μm, and a decrease in coloring power was observed.

【0050】また、得られた粒子は、粒子外表面に通じ
た小孔が多いことが確認された。得られた粒子の内部空
陵の最大径と、着色力の保持性の結果を表1に示す。
Further, it was confirmed that the obtained particles had many small holes communicating with the outer surface of the particles. Table 1 shows the maximum diameter of the inner void of the obtained particles and the result of the retention of the coloring power.

【0051】[0051]

【表1】 [Table 1]

【0052】[0052]

【発明の効果】本発明の製造方法により得られる中空粒
子は、着色力の保持性に優れていることを特徴とするも
のである。
The hollow particles obtained by the production method of the present invention are characterized by excellent retention of coloring power.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 自己水分散性樹脂(A)と、自己水分散
性樹脂(A)とは相溶性を有しない疎水性物質(B)と
を、自己水分散性樹脂(A)を溶解せしめる有機溶剤
(C)中にて混合して混合溶液(I)とした後、この混
合溶液(I)を水中に転相乳化させて疎水性物質(B)
を自己水分散性樹脂(A)中に内包した粒子を形成さ
せ、次いで自己水分散性樹脂(A)を溶解はしないが透
過し、かつ疎水性物質(B)を溶解できる有機溶剤
(D)を用いて、該粒子中に内包された疎水性物質
(B)を抽出した後、粒子を乾燥させることを特徴とす
る中空粒子の製造方法。
1. A self-water-dispersible resin (A) and a hydrophobic substance (B) which is incompatible with the self-water-dispersible resin (A) are dissolved in the self-water-dispersible resin (A). After mixing in an organic solvent (C) to prepare a mixed solution (I), the mixed solution (I) is phase-inverted and emulsified in water to form a hydrophobic substance (B).
Organic solvent (D) capable of forming particles in which the self-water-dispersible resin (A) is encapsulated and then permeating the self-water-dispersible resin (A) but not permeating it and dissolving the hydrophobic substance (B). Is used to extract the hydrophobic substance (B) encapsulated in the particles, and then the particles are dried, to thereby produce hollow particles.
【請求項2】 有機溶剤(D)として疎水性の有機溶剤
を用いる請求項1記載の製造方法。
2. The production method according to claim 1, wherein a hydrophobic organic solvent is used as the organic solvent (D).
【請求項3】 疎水性物質(B)を自己水分散性樹脂
(A)中に内包した粒子を形成させた後、有機溶剤
(C)を除去し、次いで水中に有機溶剤(D)を加えて
疎水性物質(B)を抽出させる請求項1記載の製造方
法。
3. After forming particles in which a hydrophobic substance (B) is included in a self-water-dispersible resin (A), the organic solvent (C) is removed, and then the organic solvent (D) is added to water. The production method according to claim 1, wherein the hydrophobic substance (B) is extracted by a method.
【請求項4】 有機溶剤(D)として疎水性の有機溶剤
を用いる請求項3記載の製造方法。
4. The production method according to claim 3, wherein a hydrophobic organic solvent is used as the organic solvent (D).
【請求項5】 疎水性物質(B)を自己水分散性樹脂
(A)中に内包した粒子を形成させた後、有機溶剤
(C)を除去し、次いで粒子を水と分離した後、有機溶
剤(D)に浸漬させて疎水性物質(B)を抽出させる請
求項1記載の製造方法。
5. After forming particles in which the hydrophobic substance (B) is included in the self-water-dispersible resin (A), the organic solvent (C) is removed, and then the particles are separated from water, followed by organic The production method according to claim 1, wherein the hydrophobic substance (B) is extracted by immersing it in the solvent (D).
【請求項6】 自己水分散性樹脂(A)が、中和された
酸性基または塩基性基を樹脂固形分100gあたり10
〜400mg当量有するものである請求項1〜5のいず
れか1つに記載の製造方法。
6. The self-water-dispersible resin (A) contains 10 or more neutralized acidic groups or basic groups per 100 g of resin solids.
The manufacturing method according to any one of claims 1 to 5, wherein the manufacturing method has an amount of ~ 400 mg equivalent.
【請求項7】 自己水分散性樹脂(A)が、中和された
酸性基または塩基性基を樹脂固形分100gあたり20
〜250mg当量有するものである請求項1〜5のいず
れか1つに記載の製造方法。
7. The self-water-dispersible resin (A) contains 20 or more neutralized acidic or basic groups per 100 g of resin solids.
The method according to any one of claims 1 to 5, wherein the production method has about 250 mg equivalent.
【請求項8】 自己水分散性樹脂(A)が、アクリル系
樹脂、ウレタン系樹脂である請求項6又は7記載の製造
方法。
8. The method according to claim 6, wherein the self-water-dispersible resin (A) is an acrylic resin or a urethane resin.
【請求項9】 疎水性物質(B)が、疎水性の液状物質
である請求項1〜8のいずれか1つに記載の製造方法。
9. The manufacturing method according to claim 1, wherein the hydrophobic substance (B) is a hydrophobic liquid substance.
【請求項10】 疎水性物質(B)が、高級炭化水素、
油脂又は可塑剤のいずれか1つである請求項1〜9のい
ずれか1つに記載の製造方法。
10. The hydrophobic substance (B) is a higher hydrocarbon,
The method according to any one of claims 1 to 9, wherein the method is any one of oils and fats and plasticizers.
【請求項11】 自己水分散性樹脂(A)と疎水性物質
(B)の固形分重量比が、30/70〜90/10であ
る請求項6〜10のいずれか1つに記載の製造方法。
11. The production according to claim 6, wherein the weight ratio of the solid content of the self-water-dispersible resin (A) to the hydrophobic substance (B) is 30/70 to 90/10. Method.
【請求項12】 疎水性物質(B)を自己水分散性樹脂
(A)中に内包した粒子を形成させた後から、乾燥する
までの任意の段階で、該粒子を構成する自己水分散性樹
脂(A)が中和された酸性基を持つアニオン型である場
合には、酸を用いて、自己水分散性樹脂(A)が中和さ
れた塩基性基を持つカチオン型である場合には、塩基を
用いて処理する請求項1〜11のいずれか1つに記載の
製造方法。
12. The self-water dispersibility of forming the particles at any stage from the formation of the particles containing the hydrophobic substance (B) contained in the self-water dispersible resin (A) to the drying. When the resin (A) is an anion type having a neutralized acidic group, an acid is used and when the self-water dispersible resin (A) is a cation type having a neutralized basic group. Is a process using a base, The manufacturing method as described in any one of Claims 1-11.
JP6226449A 1994-09-21 1994-09-21 Production of hollow particle Pending JPH0889789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6226449A JPH0889789A (en) 1994-09-21 1994-09-21 Production of hollow particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6226449A JPH0889789A (en) 1994-09-21 1994-09-21 Production of hollow particle

Publications (1)

Publication Number Publication Date
JPH0889789A true JPH0889789A (en) 1996-04-09

Family

ID=16845277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6226449A Pending JPH0889789A (en) 1994-09-21 1994-09-21 Production of hollow particle

Country Status (1)

Country Link
JP (1) JPH0889789A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08169982A (en) * 1994-09-02 1996-07-02 Rhone Poulenc Chim Organic polymer-calcium carbonate composite particle,hollow calcium carbonate particle,their production,and their use asfiller or additive for plastic or elastomer
JP2003088747A (en) * 2001-09-19 2003-03-25 Yasuo Hatate Microcapsule with hollow and porous shell, its production method, and method for encapsulating active substance
JP2003155504A (en) * 2001-11-16 2003-05-30 Inst Of Physical & Chemical Res Manufacturing method of nano-size particle having double structure or hollow structure
US6842275B2 (en) 2002-03-26 2005-01-11 Seiko Epson Corporation Electrophoretic dispersion, electrophoretic device, and electronic device
JP2006159194A (en) * 2001-07-19 2006-06-22 New Industry Research Organization Method for manufacturing target component-encapsulated fine particle and hollow polymer fine particle and method for manufacturing it
WO2007142018A1 (en) * 2006-06-02 2007-12-13 Hitachi Chemical Co., Ltd. Package for mounting optical semiconductor element and optical semiconductor device employing the same
WO2019035382A1 (en) * 2017-08-18 2019-02-21 三井化学株式会社 Hollow resin particles, heat-sensitive recording material, and method for producing hollow resin particles
WO2019181988A1 (en) * 2018-03-23 2019-09-26 富士フイルム株式会社 Method for producing hollow particles, method for producing pore-making material, method for producing particles for cosmetics, and method for producing weight-reducing material

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08169982A (en) * 1994-09-02 1996-07-02 Rhone Poulenc Chim Organic polymer-calcium carbonate composite particle,hollow calcium carbonate particle,their production,and their use asfiller or additive for plastic or elastomer
JP2006159194A (en) * 2001-07-19 2006-06-22 New Industry Research Organization Method for manufacturing target component-encapsulated fine particle and hollow polymer fine particle and method for manufacturing it
JP2003088747A (en) * 2001-09-19 2003-03-25 Yasuo Hatate Microcapsule with hollow and porous shell, its production method, and method for encapsulating active substance
JP2003155504A (en) * 2001-11-16 2003-05-30 Inst Of Physical & Chemical Res Manufacturing method of nano-size particle having double structure or hollow structure
US6842275B2 (en) 2002-03-26 2005-01-11 Seiko Epson Corporation Electrophoretic dispersion, electrophoretic device, and electronic device
US9076932B2 (en) 2006-06-02 2015-07-07 Hitachi Chemical Company, Ltd. Optical semiconductor element mounting package, and optical semiconductor device using the same
US10205072B2 (en) 2006-06-02 2019-02-12 Hitachi Chemical Company, Ltd. Light-emitting device and method of preparing same, optical semiconductor element mounting package, and optical semiconductor device using the same
JP2011155277A (en) * 2006-06-02 2011-08-11 Hitachi Chem Co Ltd Package for mounting optical semiconductor element and optical semiconductor device using the same
JP4968258B2 (en) * 2006-06-02 2012-07-04 日立化成工業株式会社 Optical semiconductor device mounting package and optical semiconductor device using the same
TWI464918B (en) * 2006-06-02 2014-12-11 Hitachi Chemical Co Ltd Package for carrying optical semiconductor element and optical semiconductor device using thereof
WO2007142018A1 (en) * 2006-06-02 2007-12-13 Hitachi Chemical Co., Ltd. Package for mounting optical semiconductor element and optical semiconductor device employing the same
US9608184B2 (en) 2006-06-02 2017-03-28 Hitachi Chemical Company, Ltd. Optical semiconductor element mounting package, and optical semiconductor device using the same
US9660156B2 (en) 2006-06-02 2017-05-23 Hitachi Chemical Company, Ltd. Optical semiconductor element mounting package, and optical semiconductor device using the same
US9673362B2 (en) 2006-06-02 2017-06-06 Hitachi Chemical Company, Ltd. Optical semiconductor element mounting package, and optical semiconductor device using the same
JPWO2007142018A1 (en) * 2006-06-02 2009-10-22 日立化成工業株式会社 Optical semiconductor device mounting package and optical semiconductor device using the same
US11810778B2 (en) 2006-06-02 2023-11-07 Shenzhen Jufei Optoelectronics Co., Ltd. Optical semiconductor element mounting package and optical semiconductor device using the same
US10326063B2 (en) 2006-06-02 2019-06-18 Hitachi Chemical Company, Ltd. Light-emitting device and method of preparing same, optical semiconductor element mounting package, and optical semiconductor device using the same
US10950767B2 (en) 2006-06-02 2021-03-16 Shenzhen Jufei Optoelectronics Co., Ltd. Light-emitting device and method of preparing same, optical semiconductor element mounting package, and optical semiconductor device using the same
WO2019035382A1 (en) * 2017-08-18 2019-02-21 三井化学株式会社 Hollow resin particles, heat-sensitive recording material, and method for producing hollow resin particles
CN111867719A (en) * 2018-03-23 2020-10-30 富士胶片株式会社 Method for producing hollow particles, method for producing pore-forming material, method for producing cosmetic particles, and method for producing lightweight material
JPWO2019181988A1 (en) * 2018-03-23 2021-01-07 富士フイルム株式会社 A method for producing hollow particles, a method for producing a pore-forming material, a method for producing cosmetic particles, and a method for producing a lightweight material.
WO2019181988A1 (en) * 2018-03-23 2019-09-26 富士フイルム株式会社 Method for producing hollow particles, method for producing pore-making material, method for producing particles for cosmetics, and method for producing weight-reducing material

Similar Documents

Publication Publication Date Title
US5569715A (en) Process for obtaining hydrophobically modified emulsion polymers and polymers obtained thereby
JP2767253B2 (en) Polymer comprising alkali-insoluble core / alkali-soluble shell and composition thereof
EP0505648B1 (en) Microcapsules, encapsulation method therefor, and method of use thereof
US4191672A (en) Polymer aggregates
JP3312952B2 (en) Method for producing aqueous dispersion of water-insoluble polymer particles
CA1180474A (en) Sequential heteropolymer dispersion and a particulate material obtainable therefrom useful in coating compositions as a thickening and/or opacifying agent
US5969030A (en) Waterborne coating compositions containing hydrophobically modified emulsions
US4963601A (en) Polymer non-aqueous dispersion, process for preparing the same and coating composition formulated therewith
US4206099A (en) Autoxidizable coating compositions
JP6272871B2 (en) Aqueous coating composition and coating having a specific gloss profile formed therefrom
CA2767173A1 (en) Aqueous self-crosslinkable polymer dispersion made from hard-core, soft-shell structured polymer particles, and coating or treatment compositions
JPS63135409A (en) Production of dispersion of core-shell particle
JP3301082B2 (en) Microcapsule and method for producing the same
CZ20011086A3 (en) Stable water dispersion and process for preparing thereof
US5171772A (en) Micro composite systems and processes for making same
JP3651063B2 (en) Method for producing aqueous pigment dispersion, and aqueous colorant composition containing the aqueous pigment dispersion
KR20110104945A (en) A crosslinkable polymer binder
RU2315779C2 (en) Cellular polymer particle, composition for preparing it, and a particle preparation method (embodiments)
JPH0889789A (en) Production of hollow particle
CN111589387A (en) Microcapsule composite material and preparation method thereof
US5470906A (en) Odor free, air dry, decorative latex paints
JPH0840832A (en) Production of water-born manicure agent
JP3804808B2 (en) Method for producing aqueous pigment dispersion and aqueous colorant composition containing the aqueous pigment dispersion
JPH0665682B2 (en) Method for producing stable aqueous dispersion of polymer particles
JPH02274772A (en) Micro-composite system and manufacture thereof