JPH088865B2 - Method for producing chemically modified enzyme - Google Patents

Method for producing chemically modified enzyme

Info

Publication number
JPH088865B2
JPH088865B2 JP62276353A JP27635387A JPH088865B2 JP H088865 B2 JPH088865 B2 JP H088865B2 JP 62276353 A JP62276353 A JP 62276353A JP 27635387 A JP27635387 A JP 27635387A JP H088865 B2 JPH088865 B2 JP H088865B2
Authority
JP
Japan
Prior art keywords
reaction
god
oxidase
chemically modified
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62276353A
Other languages
Japanese (ja)
Other versions
JPH01117781A (en
Inventor
隆造 林
義雄 橋爪
昭夫 刈米
Original Assignee
新王子製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新王子製紙株式会社 filed Critical 新王子製紙株式会社
Priority to JP62276353A priority Critical patent/JPH088865B2/en
Publication of JPH01117781A publication Critical patent/JPH01117781A/en
Publication of JPH088865B2 publication Critical patent/JPH088865B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、臨床診断等の分析試薬、バイオセンサー、
バイオリアクター等に用いる酵素に関し、特に溶存酸素
量が少ない系でも酸化還元反応を触媒する性質を有す
る、フラビンアデニンジヌクレオチド(以下FADと略
す)を補酵素とする化学修飾されたオキシダーゼに関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to an analytical reagent for clinical diagnosis, a biosensor,
The present invention relates to an enzyme used in a bioreactor or the like, and particularly to a chemically modified oxidase using flavin adenine dinucleotide (hereinafter abbreviated as FAD) as a coenzyme, which has a property of catalyzing redox reaction even in a system having a small amount of dissolved oxygen.

(従来の技術) 自然界に存在する酸化還元酵素の中には、その活性中
心に電子授受を行う補酵素を機能団として持つものが見
られる。例えばグルコースオキシダーゼ(以下GODと略
す)の場合、グルコースオキシダーゼ1分子中に2分子
のFADが含まれている。このGODは反応系内にあっては、
グルコースをグルコノ−δ−ラクトンへと酸化する反応
を触媒する(反応式(1))。一方反応式(1)で還元
体となったGODは、酸素と反応して元の酸化体となる
(反応式(2))。
(Prior Art) Among oxidoreductases existing in nature, those having a coenzyme that exchanges electrons at the active center as a functional group can be seen. For example, in the case of glucose oxidase (hereinafter abbreviated as GOD), one molecule of glucose oxidase contains two molecules of FAD. When this GOD is in the reaction system,
It catalyzes the reaction of oxidizing glucose to glucono-δ-lactone (reaction formula (1)). On the other hand, the GOD that has become the reductant in reaction formula (1) reacts with oxygen to become the original oxidant (reaction formula (2)).

グルコース+GODox→グルコノ−δ−ラクトン+GODred
(1) GODred+O2→H2O2+GODox (2) (ここで、GODox、GODredは酸化体、還元体を表し、G
OD中のFADを酸化もしくは還元状態を表す。) 上記反応式より導かれる反応速度式は、 となる。
Glucose + GOD ox → Glucono-δ-lactone + GOD red
(1) GOD red + O 2 → H 2 O 2 + GOD ox (2) (where GOD ox and GOD red represent oxidant and reductant, and G
It represents the oxidation or reduction state of FAD in OD. ) The reaction rate formula derived from the above reaction formula is Becomes

(ここでυは反応速度、即ちグルコノ−δ−ラクトン
またはH2O2の単位時間当たりの生成量もしくはO2の減少
量を示す。Vmaxは最大速度、Cg、Coはグルコース及びO2
の濃度を、Kg及びKoは各々グルコース及びO2に対するGO
Dのミハエリス定数を示す。) この反応式はGODのみならず、オキシダーゼの触媒す
る反応系において一般に成立するものである。この場合
反応速度υは、基質であるグルコースの濃度Cgによって
影響をうけるばかりでなく反応系における酸素濃度Coに
よっても支配される。このため、グルコース濃度Cgが小
さい場合にはそれ程顕著ではないが、グルコース濃度が
高い場合には系の溶存酸素濃度が少ないと、酸素濃度Co
によって反応速度υが制限され、それ以上反応速度を高
めることが出来ないという難点がある。
(Here, υ represents the reaction rate, that is, the amount of glucono-δ-lactone or H 2 O 2 produced per unit time or the amount of decrease of O 2. Vmax is the maximum rate, Cg and Co are glucose and O 2
The concentrations of Kg and Ko are GO and G for glucose and O 2, respectively.
The Michaelis constant of D is shown. ) This reaction formula is generally established not only in GOD but also in the reaction system catalyzed by oxidase. In this case, the reaction rate υ is not only influenced by the concentration Cg of the substrate glucose, but is also controlled by the oxygen concentration Co in the reaction system. Therefore, it is not so remarkable when the glucose concentration Cg is low, but when the glucose concentration is high and the dissolved oxygen concentration of the system is low, the oxygen concentration Co
The reaction speed υ is limited by this, and there is a drawback that the reaction speed cannot be further increased.

この問題はオキシダーゼを試料分析、或いはバイオリ
アクター等に利用しようとする場合に問題となる。特に
固定化酵素を用いるバイオセンサーにおいて、特定化合
物の分析を行う場合溶存酸素量が少ないと正確な測定を
行うことが出来ないということになり、この問題を克服
することが重要な課題となっている。
This problem becomes a problem when the oxidase is used for sample analysis or bioreactor. Especially in a biosensor using an immobilized enzyme, accurate analysis cannot be performed when the amount of dissolved oxygen is small when analyzing a specific compound, and it is an important issue to overcome this problem. There is.

このような課題に対して近年酵素の活性中心にあるFA
Dと電子交換を行うために酸素を代えメディエーターを
反応系内或いは電極内部に共存させておく方法が提案さ
れている。
To address these issues, FA, which has recently been at the center of enzyme activity,
In order to exchange electrons with D, a method of replacing oxygen and allowing a mediator to coexist in the reaction system or inside the electrode has been proposed.

因に、FADはオキシダーゼの高分子量ポリペプチド鎖
中に存在するため、白金等の電極とは直接接触すること
はないと考えられている。よって溶存酸素量が少ない場
合にFADと電極間で電子授受を起こさせるためには、メ
ディエーターによる電子授受の橋渡しを必要とする。そ
こで反応系内或いは電極内部に適当なメディエーターを
共存させると溶液中の酵素もしくは固定化された酵素
は、溶存酸素量が少ない場合でも酸化還元反応を容易に
行うことが出来るものである。この方法は分析、特にバ
イオセンサーの特性改善、及びリアクターの効率向上に
役立つと考えられている。また、溶存酸素量の低い生体
中で作動する埋込み型バイオセンサーへの期待ももたれ
ている。
Incidentally, since FAD exists in the high molecular weight polypeptide chain of oxidase, it is considered that it does not come into direct contact with electrodes such as platinum. Therefore, in order to cause electron transfer between the FAD and the electrode when the amount of dissolved oxygen is small, it is necessary to bridge the transfer of electrons by the mediator. Therefore, when an appropriate mediator is allowed to coexist in the reaction system or the electrode, the enzyme in solution or the immobilized enzyme can easily carry out the redox reaction even when the amount of dissolved oxygen is small. This method is believed to be useful for analysis, in particular for improving the characteristics of biosensors, and for increasing the efficiency of reactors. In addition, there are expectations for implantable biosensors that operate in living organisms with low dissolved oxygen content.

しかし、これらのメディエーターを安定に供給するに
はなお幾つかの問題が残っている。つまり、反応系内に
均一な濃度でメディエーターを溶存させるには大量のメ
ディエーターを必要とし、経済的ではない。また電極内
にメディエーターを存在させる場合、例えば比較的溶解
度の低いメディエーターを固体電極上にディップコート
した場合においては反応に伴い一部もしくは全部のメデ
ィエーターが反応溶液中に溶け出し、メディエーター濃
度の減少が、反応速度を低下させる結果となってしま
う。そこでバイオセンサー及びリアクターに関しては、
圧倒的大量のメディエーターの貯留部を設ける方法(特
開昭61−61049号)もあるがメディエーターの反応液へ
の流出による反応速度の低下は避けられない。
However, there are still some problems in stable supply of these mediators. That is, a large amount of mediator is required to dissolve the mediator in the reaction system at a uniform concentration, which is not economical. When a mediator is present in the electrode, for example, when a relatively low-solubility mediator is dip-coated on the solid electrode, some or all of the mediator dissolves into the reaction solution with the reaction, and the mediator concentration decreases. As a result, the reaction speed is reduced. So for biosensors and reactors,
There is also a method of providing an overwhelmingly large amount of mediator storage (Japanese Patent Laid-Open No. 61-61049), but a decrease in the reaction rate due to the outflow of the mediator into the reaction solution cannot be avoided.

またメディエーターの役割をポリピロール等の導電性
薄膜に受けもたせる方法(特開昭62−115284号,62−115
285号)も提案ささているが、酵素の活性中心と導電性
薄膜を直接接触させることは困難と考えられ、この方法
では充分な電流密度が得られておらず実用レベルに達し
ていない。
Further, a method in which a conductive thin film such as polypyrrole is made to play the role of a mediator (JP-A-62-115284, 62-115).
No. 285) has been proposed, but it is considered difficult to directly contact the active center of the enzyme with the conductive thin film, and a sufficient current density has not been obtained by this method, and it has not reached a practical level.

更にメディエーターとしての作用が認められているフ
ェロセンカルボン酸を直接化学結合させたGODを用いて
直接電極と電子授受をさせる方法も提案されているが
(Y.Degani,A.Heller,J.phys.Chem、91(6),1285−12
89(1987);C&E News,March16、24−26(1987))、こ
の方法ではGODを尿素で処理し、変性した状態でフェロ
センカルボン酸と反応させるため、約50%の活性しか回
収されないし、また電流密度が不充分でこれも実用レベ
ルに達していない。
Furthermore, a method has been proposed in which electrons are directly transferred to and from an electrode using a GOD in which ferrocenecarboxylic acid, which is recognized as a mediator, is directly chemically bound (Y. Degani, A. Heller, J. phys. Chem, 91 (6), 1285-12
89 (1987); C & E News, March 16, 24-26 (1987)), this method treats GOD with urea and reacts it with ferrocenecarboxylic acid in a denatured state, so that only about 50% of the activity is recovered. In addition, the current density is insufficient and this has not reached a practical level.

(本発明が解決しようとする問題点) 本発明は、臨床診断等の分析試薬、バイオセンサー、
バイオリアクター等に広く応用されるFADを補酵素とす
るオキシダーゼにおける上記の問題を解決するもので、
溶存酸素量が少ない系でも酸化還元反応を行える化学修
飾されたオキシダーゼを提供することを目的とする。
(Problems to be Solved by the Present Invention) The present invention relates to an analytical reagent for clinical diagnosis, a biosensor,
In order to solve the above problems in the oxidase with FAD as a coenzyme widely applied to bioreactors,
It is an object of the present invention to provide a chemically modified oxidase capable of performing a redox reaction even in a system having a small amount of dissolved oxygen.

(問題を解決するための手段) メディエーターは、遊離状態では容易に酵素中のFAD
に接近し電子授受を行える特性を有している。しかし遊
離状態のメディエーターを使用した場合、上述の様に系
への溶出の問題がある。そこで本発明者等は化学反応性
が高く、また遊離状態においてFADを補酵素とするオキ
シダーゼとの電子交換が速やかに進行し得るメディエー
ターとして、特にベンゾキノン類に注目し、これをFAD
を補酵素とするオキシダーゼ(即ちフラビン系オキシダ
ーゼ)に共有結合させることを検討した。現在までベン
ゾキノン類を用いた有効な共有結合による化学修飾され
た酵素の例は報告されていない。フラビン系オキシダー
ゼは高いpH領域では活性が低いものが多く、従来弱酸性
領域でしか使用されなかったが、本発明者等は比較的高
いpH領域において、ベンゾキノン類がフラビン系オキシ
ダーゼに共有結合し、オキシダーゼの使用に際しベンゾ
キノン類が反応系内に溶出しなくなること並びに得られ
た化学修飾された酵素が高い活性を示すことを見出した
本発明を完成するに至った。
(Means to solve the problem) The mediator is easily free of FAD in the enzyme in the free state.
It has the property that it can approach and exchange electrons. However, when a free mediator is used, there is a problem of elution into the system as described above. Therefore, the present inventors have paid particular attention to benzoquinones as mediators having high chemical reactivity and capable of rapidly progressing electron exchange with oxidase having FAD as a coenzyme in a free state,
It was examined to covalently bind to oxidase (ie, flavin oxidase) that uses as a coenzyme. To date, no examples of effective covalently chemically modified enzymes using benzoquinones have been reported. Many of the flavin oxidases have low activity in a high pH range, and were conventionally used only in a weakly acidic range, but the present inventors have found that in a relatively high pH range, benzoquinones are covalently bonded to the flavin oxidase, The present invention has been completed in which it was found that benzoquinones do not elute in the reaction system when an oxidase is used, and that the obtained chemically modified enzyme exhibits high activity.

本発明はフラビンアデニンジヌクレオチドを補酵素と
するオキシダーゼとベンゾキノン類を含有する緩衝液を
4℃〜50℃の温度で反応させる、ベンゾキノン類を共有
結合させたオキシダーゼの製造方法である。
The present invention is a method for producing an oxidase covalently bound to benzoquinones, which comprises reacting an oxidase having flavin adenine dinucleotide as a coenzyme with a buffer solution containing benzoquinones at a temperature of 4 ° C to 50 ° C.

(作用) 以下、フラビンアデニンジヌクレオチドを補酵素とす
るオキシダーゼにベンゾキノン類を共有結合させる方法
について説明する。先づGODを緩衝液に溶解し、これに
ベンゾキノン類を加え、よく混合した後反応させるもの
である。
(Action) Hereinafter, a method for covalently bonding benzoquinones to an oxidase having flavin adenine dinucleotide as a coenzyme will be described. First, GOD is dissolved in a buffer solution, benzoquinones are added thereto, and they are mixed well and then reacted.

GODを溶解するための緩衝液としてはリン酸ナトリウ
ム緩衝液、トリス−塩酸緩衝液、炭酸ナトリウム緩衝液
等が用いられる。本発明ではGODの通常用いられる作用
範囲より高いpH領域、即ちpH7.0〜pH9.0、好ましくはpH
8.0〜pH9.0の緩衝液にGODを溶解する点に特徴を有す
る。次にメタノール、エタノール、アセトン等の溶剤に
溶解したベンゾキノン類を0.001〜0.1Mの濃度となるよ
うに加え、よく混合した後、4℃〜50℃の温度で反応さ
せる。この際酵素の失活を防ぐ意味で好ましくは4℃〜
10℃で反応を行う。
As the buffer for dissolving GOD, sodium phosphate buffer, Tris-hydrochloric acid buffer, sodium carbonate buffer and the like are used. In the present invention, the pH range higher than the normally used action range of GOD, that is, pH 7.0 to pH 9.0, preferably pH
It is characterized in that GOD is dissolved in a buffer solution of 8.0 to pH 9.0. Next, benzoquinones dissolved in a solvent such as methanol, ethanol, or acetone are added so as to have a concentration of 0.001 to 0.1 M, mixed well, and then reacted at a temperature of 4 ° C to 50 ° C. At this time, in order to prevent the inactivation of the enzyme, preferably 4 ° C to
Perform the reaction at 10 ° C.

本発明で言うベンゾキノン類とはベンゾキノン、ナフ
トキノン及びこれらの誘導体であり、具体的にはp−ベ
ンゾキノン、o−ベンゾキノン、トルキノン、ナフトキ
ノン、ヒドロキシナフトキノン等が挙げられるが、電子
交換速度が大きく、化学修飾を行う際の水溶液系への溶
解度が比較的高い点でp−ベンゾキノンが最も好まし
い。
The benzoquinones referred to in the present invention are benzoquinone, naphthoquinone and derivatives thereof, and specific examples thereof include p-benzoquinone, o-benzoquinone, toluquinone, naphthoquinone and hydroxynaphthoquinone, which have a large electron exchange rate and are chemically modified. P-benzoquinone is most preferable because it has a relatively high solubility in an aqueous solution system.

反応時間が短いと充分に反応が進まず、長いと酵素の
活性収率が低下するため1時間〜1週間、好ましくは1
時間〜3日、より好ましくは1時間〜24時間反応させ
る。因に反応時間が1日では活性収率は70%、3日では
50〜60%となる。
If the reaction time is short, the reaction does not proceed sufficiently, and if the reaction time is long, the activity yield of the enzyme decreases, so 1 hour to 1 week, preferably 1
The reaction is carried out for a period of time to 3 days, more preferably 1 to 24 hours. The reaction yield is 70% when the reaction time is 1 day, and when the reaction time is 3 days,
50-60%.

次に過剰のベンゾキノン類を透析、ゲル濾過、膜分離
等の方法で完全に除去するとベンゾキノン類が共有結合
したGODが得られる。
Then, excess benzoquinones are completely removed by a method such as dialysis, gel filtration, and membrane separation to obtain GOD to which benzoquinones are covalently bound.

尚GOD以外のフラビン系オキシダーゼ、例えばグルタ
ミン酸オキシダーゼ、アルコールオキシダーゼ、コレス
テロールオキシダーゼ等でも同様にpH7.0〜pH9.0、好ま
しくはpH8.0〜pH9.0の緩衝液にオキシダーゼを溶解する
ことによりベンゾキノン類を共有結合させることが出来
る。
In addition, flavin oxidases other than GOD, such as glutamate oxidase, alcohol oxidase, cholesterol oxidase and the like, similarly benzoquinones by dissolving the oxidase in a pH 7.0 to pH 9.0, preferably pH 8.0 to pH 9.0 buffer solution. Can be covalently bound.

ベンゾキノン類が、特定のpH領域でフラビン系オキシ
ダーゼに結合する理由については必ずしも明らかではな
いが、以下の様に推測される。ベンゾキノン類は、遊離
アミノ基を有する化合物により、α,β不飽和カルボニ
ル化合物一般に見られる求核付加反応を受ける。ところ
で、オキシダーゼにはグルタミン、アスパラギン、リジ
ン等の側鎖アミノ基が存在するが、これらは中性から酸
性領域ではプロトンが付加し、正荷電を持っている。し
かし比較的高いpH領域では、遊離のアミノ基の存在比が
増加し、この遊離アミノ基の孤立電子対が求核付加反応
を起こし、ベンゾキノン類と共有結合するものと考えら
れる。
The reason why benzoquinones bind to flavin oxidase in a specific pH region is not always clear, but it is speculated as follows. Benzoquinones undergo a nucleophilic addition reaction commonly found in α, β unsaturated carbonyl compounds with compounds having a free amino group. By the way, oxidase has side chain amino groups such as glutamine, asparagine, and lysine, but these have a positive charge due to the addition of a proton in the neutral to acidic region. However, in a relatively high pH region, the abundance ratio of free amino groups increases, and it is considered that the lone electron pair of this free amino group causes a nucleophilic addition reaction and covalently bonds with benzoquinones.

(実施例) 以下に実施例を示し本発明をより詳細に説明するが、
もちろんこれに限定されるものではない。
(Examples) Hereinafter, the present invention will be described in more detail with reference to Examples.
Of course, it is not limited to this.

実施例1 GODの化学修飾処理 酵素としてはGOD(Sigma社製、Type VII−S,Aspergil
lus niger由来,146000units/g)10mgを0.1Mリン酸ナト
リウム緩衝液(pH8.0)1mlに溶解しその中へ0.5Mのp−
ベンゾキノンのメタノール溶液を0.1ml加えた。この混
合液を10℃において24時間放置し、その後大量の0.1Mリ
ン酸ナトリウム緩衝液(pH5.0)に対し室温で48時間透
析した。透析後の内容液を上記pH5.0の緩衝液で洗い出
し、全量5mlとした。こうして得られた化学修飾された
酵素溶液を用いて、空気飽和グルコース水溶液中におけ
る過酸化水素生成速度を色素−パーオキシダーゼ法によ
り測定し残存活性を検討したところ、もとのGODに対し7
0%の高活性が回収された。
Example 1 Chemical modification treatment of GOD As an enzyme, GOD (Sigma, Type VII-S, Aspergil
Lus niger origin, 146000units / g) 10mg is dissolved in 0.1M sodium phosphate buffer (pH8.0) 1ml, into which 0.5M p-
0.1 ml of a solution of benzoquinone in methanol was added. This mixed solution was allowed to stand at 10 ° C. for 24 hours and then dialyzed against a large amount of 0.1 M sodium phosphate buffer (pH 5.0) at room temperature for 48 hours. The content solution after dialysis was washed out with the above pH 5.0 buffer solution to a total volume of 5 ml. Using the chemically modified enzyme solution thus obtained, the rate of hydrogen peroxide production in an air-saturated glucose aqueous solution was measured by the dye-peroxidase method to examine the residual activity.
A high activity of 0% was recovered.

電極の作製 次に直径3mmの白金電極をエメリー紙を用いて研磨
後、0.1M硫酸中で、対飽和カロメル参照電極(以下SCE
と略す)−0.3〜+1.5Vの範囲で、1.0V/secの速度でサ
イクリックスィープを10分間繰り返し、表面を清浄化し
た。この電極を0.1M硫酸中で、対SCE+1.4Vに5分間保
持し酸化処理した。その後よく水洗いし40℃で15分間乾
燥した。10%γ−アミノプロピルトリエトキシシランの
トルエン溶液に1時間浸漬し、よくトルエンで洗浄後、
40℃で15分間乾燥し、アミノシラン化処理を行った。次
に10%グルタルアルデヒド水溶液に1時間浸漬し、水洗
後前記のp−ベンゾキノンを共有結合した酵素溶液に1
時間浸漬し、白金電極表面に酵素を化学固定した。
Preparation of Electrode Next, a platinum electrode with a diameter of 3 mm was polished using emery paper, and then in 0.1M sulfuric acid, a saturated calomel reference electrode (hereinafter SCE) was used.
The surface was cleaned by repeating cyclic sweep for 10 minutes at a speed of 1.0V / sec in the range of -0.3 to + 1.5V. This electrode was subjected to an oxidation treatment in 0.1 M sulfuric acid by holding it at SCE +1.4 V for 5 minutes. Then, it was thoroughly washed with water and dried at 40 ° C. for 15 minutes. Immerse in a toluene solution of 10% γ-aminopropyltriethoxysilane for 1 hour, wash well with toluene,
It was dried at 40 ° C. for 15 minutes and subjected to aminosilanization treatment. Next, it was immersed in a 10% glutaraldehyde aqueous solution for 1 hour, washed with water, and then washed with the above enzyme solution covalently bonded to p-benzoquinone.
After immersion for a period of time, the enzyme was chemically fixed on the platinum electrode surface.

この電極を0.1Mリン酸ナトリウム緩衝液(pH5.0)中
で24時間よく洗浄し、物理吸着した過剰の酵素や、除去
されきれなかった残留p−ベンゾキノンを洗い落とし
た。
This electrode was thoroughly washed in a 0.1 M sodium phosphate buffer (pH 5.0) for 24 hours to wash off excess physically adsorbed enzyme and residual p-benzoquinone that could not be removed.

測定 このようにして作成した固定化酵素電極を37℃とした
0.1Mリン酸ナトリウム緩衝液(pH5.0)に浸漬し、1cm角
の白金を対極とし対SCE+0.6Vの電圧を印加した。この
系にグルコース溶液をマイクロシリンジで順次加え、出
力電流値を記録した。この結果を第1図に示す。
Measurement Immobilized enzyme electrode prepared in this way was set to 37 ° C
It was immersed in a 0.1 M sodium phosphate buffer (pH 5.0), and a 1 cm square platinum was used as a counter electrode, and a voltage of SCE + 0.6 V was applied. A glucose solution was sequentially added to this system with a microsyringe, and the output current value was recorded. The results are shown in FIG.

さらに緩衝液を入れ換え、高純度窒素を50ml/minの流
量で通気し、1時間脱酸素後、同様に出力電流値を記録
した。この結果を第2図に示す。(グルコース溶液によ
り持ち込まれる酸素の影響を除くため、電流値の記録は
グルコース添加1分後に行った。) 比較例1 p−ベンゾキノンによる化学修飾処理を省略した以外
は同様のGOD固定化電極を作成し、測定を行った。測定
結果を第1図(溶存酸素存在下)及び第2図(脱酸素
後)に示す。
Further, the buffer solution was replaced, high-purity nitrogen was aerated at a flow rate of 50 ml / min, and after deoxidizing for 1 hour, the output current value was similarly recorded. The results are shown in FIG. (The current value was recorded 1 minute after the addition of glucose in order to remove the influence of oxygen brought in by the glucose solution.) Comparative Example 1 A similar GOD-immobilized electrode was prepared except that the chemical modification treatment with p-benzoquinone was omitted. Then, the measurement was performed. The measurement results are shown in FIG. 1 (in the presence of dissolved oxygen) and FIG. 2 (after deoxidation).

酸素の存在下では、化学修飾したGOD(実施例1)は
化学修飾していないGOD(比較例1)に比べて約70%の
勾配を有する検量線を与えた。この結果は実施例1に前
記したように化学修飾後に溶液系で行った残存活性測定
の結果70%と一致する。
In the presence of oxygen, chemically modified GOD (Example 1) gave a calibration curve with a slope of about 70% compared to unmodified GOD (Comparative Example 1). This result is consistent with the result of residual activity measurement of 70% performed in a solution system after chemical modification as described in Example 1.

溶存酸素存在下において、化学修飾していないGOD電
極(比較例1)ではグルコース濃度と出力電流値の関係
が直線性を示すのはグルコース濃度が略1.5mMまでで、
1.5mM以上の領域では出力電流値の増加が鈍るのに対
し、実施例1の化学修飾を加えたGOD電極では2.5mMまで
直線性が保たれ、高濃度のグルコースまで正確に測定出
来ることが分かった。これは比較例1の場合、系の溶存
酸素量により反応速度が制限され、高濃度のグルコース
領域では正確な測定が行えないのに対し、化学修飾した
GOD電極(実施例1)ではp−ベンゾキノンが酸素に代
わり電極との電子授受を行っているため溶存酸素量によ
る制限を受けないためである。
In the presence of dissolved oxygen, the GOD electrode (Comparative Example 1) not chemically modified shows a linear relationship between the glucose concentration and the output current value when the glucose concentration is up to about 1.5 mM.
In the region of 1.5 mM or more, the increase of the output current value slowed down, whereas the chemically modified GOD electrode of Example 1 maintained linearity up to 2.5 mM, and it was found that high concentration glucose can be accurately measured. It was This is because in Comparative Example 1, the reaction rate was limited by the amount of dissolved oxygen in the system, and accurate measurement could not be performed in the high-concentration glucose region, whereas it was chemically modified.
This is because in the GOD electrode (Example 1), p-benzoquinone exchanges electrons with the electrode in place of oxygen, and is not limited by the amount of dissolved oxygen.

除酸素した系では(第2図)比較例1は殆ど電流応答
を示さなかったが、実施例1では出力電流値はグルコー
ス濃度に対し直線関係を示しており、酸素のない系でも
化学修飾されたGODが酸化還元反応を触媒していること
が分かった。
In the deoxygenated system (Fig. 2), Comparative Example 1 showed almost no current response, but in Example 1, the output current value showed a linear relationship with the glucose concentration, and even in the system without oxygen, it was chemically modified. It was found that the GOD catalyzed the redox reaction.

(効果) 本発明は、溶存酸素量の少ない系でも酸化還元反応を
行う分析試薬、バイオセンサー、バイオリアクターへ応
用出来る優れた化学修飾されたフラビン系オキシダーゼ
を提供するものである。
(Effect) The present invention provides an excellent chemically modified flavin oxidase that can be applied to an analytical reagent, a biosensor, and a bioreactor that perform a redox reaction even in a system having a small amount of dissolved oxygen.

【図面の簡単な説明】[Brief description of drawings]

第1図は溶存酸素存在下における各グルコース濃度に対
する出力電流値を示したもので、本発明の化学修飾した
GODを固定した電極の出力電流値(実施例1)を○で示
し、化学修飾していないGODを固定した電極の出力電流
値(比較例1)を△で示す。第2図は測定系を除酸素し
た後に同様の測定を行った場合の各出力電流値を示す。
FIG. 1 shows the output current value for each glucose concentration in the presence of dissolved oxygen, which was chemically modified according to the present invention.
The output current value (Example 1) of the electrode on which GOD was fixed is indicated by ◯, and the output current value of the electrode on which GOD is not chemically modified (Comparative Example 1) is indicated by Δ. FIG. 2 shows each output current value when the same measurement was performed after deoxidizing the measurement system.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】フラビンアデニンジヌクレオチドを補酵素
とするオキシダーゼとベンゾキノン類を含有する緩衝液
を4℃〜50℃の温度で反応させる、ベンゾキノン類を共
有結合させたオキシダーゼの製造方法。
1. A method for producing an oxidase to which benzoquinones are covalently bound, which comprises reacting an oxidase containing flavin adenine dinucleotide as a coenzyme with a buffer containing benzoquinones at a temperature of 4 ° C. to 50 ° C.
JP62276353A 1987-10-31 1987-10-31 Method for producing chemically modified enzyme Expired - Lifetime JPH088865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62276353A JPH088865B2 (en) 1987-10-31 1987-10-31 Method for producing chemically modified enzyme

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62276353A JPH088865B2 (en) 1987-10-31 1987-10-31 Method for producing chemically modified enzyme

Publications (2)

Publication Number Publication Date
JPH01117781A JPH01117781A (en) 1989-05-10
JPH088865B2 true JPH088865B2 (en) 1996-01-31

Family

ID=17568251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62276353A Expired - Lifetime JPH088865B2 (en) 1987-10-31 1987-10-31 Method for producing chemically modified enzyme

Country Status (1)

Country Link
JP (1) JPH088865B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69319771T2 (en) * 1992-03-31 1999-04-22 Dainippon Printing Co Ltd Immobilized enzyme electrode, composition for its production and electrically conductive enzymes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J.PHYS.CHEM=1987US *

Also Published As

Publication number Publication date
JPH01117781A (en) 1989-05-10

Similar Documents

Publication Publication Date Title
Lawrence et al. Potentiometric titrations and oxidation-reduction potentials of manganese and copper-zinc superoxide dismutases
Kawagoe et al. Enzyme-modified organic conducting salt microelectrode
Frew et al. Electron-transfer biosensors
Turner et al. Carbon monoxide: acceptor oxidoreductase from Pseudomonas thermocarboxydovorans strain C2 and its use in a carbon monoxide sensor
JP3621084B2 (en) Biosensor
Wollenberger et al. Bulk modified enzyme electrodes for reagentless detection of peroxides
EP1472361B1 (en) Biosensor carrying redox enzymes
US5356786A (en) Interferant eliminating biosensor
JPS63215962A (en) Electrochemical process and device thereof
JP2009031283A (en) Cm sensor with covalently bound enzyme
Villalonga et al. Construction of an amperometric biosensor for xanthine via supramolecular associations
Kulys et al. Bienzyme sensors based on chemically modified electrodes
Haccoun et al. Reagentless amperometric detection of L-lactate on an enzyme-modified conducting copolymer poly (5-hydroxy-1, 4-naphthoquinone-co-5-hydroxy-3-thioacetic acid-1, 4-naphthoquinone)
Gündoğan-Paul et al. Amperometric enzyme electrode for organic peroxides determination prepared from horseradish peroxidase immobilized in poly (vinylferrocenium) film
Slama et al. Semisynthetic enzymes: Synthesis of a new flavopapain with high catalytic efficiency
Devaux‐Basséguy et al. Electroenzymatic processes: a clean technology alternative for highly selective synthesis?
JPH088865B2 (en) Method for producing chemically modified enzyme
ERDEM et al. Electrochemical biosensor based on horseradish peroxidase for the determination of oxidizable drugs
Kulys et al. Kinetics of biocatalytic current generation
Adeyoju et al. Amperometric determination of butanone peroxide and hydroxylamine via direct electron transfer at a horseradish peroxidase-modified platinum electrode
GB2188728A (en) Specific binding assays
Tu et al. Studies of a disposable biosensor based on the β-cyclodextrin inclusion complex as mediator
Stoytcheva Electrocatalysis with an acetylcholinesterase immobilized graphite electrode
Wang et al. Amperometric biosensing of alcohols at electrochemically pretreated glassy‐carbon enzyme electrodes
Wu et al. Biosensor sensitive to hydrogen peroxide via methylene blue incorporated into nafion film as an electron transfer mediator